xref: /openbmc/u-boot/drivers/mtd/ubi/eba.c (revision 3fda0262c33fc2b63be06588afe2802a8ab81eb8)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (c) International Business Machines Corp., 2006
4  *
5  * Author: Artem Bityutskiy (Битюцкий Артём)
6  */
7 
8 /*
9  * The UBI Eraseblock Association (EBA) sub-system.
10  *
11  * This sub-system is responsible for I/O to/from logical eraseblock.
12  *
13  * Although in this implementation the EBA table is fully kept and managed in
14  * RAM, which assumes poor scalability, it might be (partially) maintained on
15  * flash in future implementations.
16  *
17  * The EBA sub-system implements per-logical eraseblock locking. Before
18  * accessing a logical eraseblock it is locked for reading or writing. The
19  * per-logical eraseblock locking is implemented by means of the lock tree. The
20  * lock tree is an RB-tree which refers all the currently locked logical
21  * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
22  * They are indexed by (@vol_id, @lnum) pairs.
23  *
24  * EBA also maintains the global sequence counter which is incremented each
25  * time a logical eraseblock is mapped to a physical eraseblock and it is
26  * stored in the volume identifier header. This means that each VID header has
27  * a unique sequence number. The sequence number is only increased an we assume
28  * 64 bits is enough to never overflow.
29  */
30 
31 #ifndef __UBOOT__
32 #include <linux/slab.h>
33 #include <linux/crc32.h>
34 #else
35 #include <ubi_uboot.h>
36 #endif
37 
38 #include <linux/err.h>
39 #include "ubi.h"
40 
41 /* Number of physical eraseblocks reserved for atomic LEB change operation */
42 #define EBA_RESERVED_PEBS 1
43 
44 /**
45  * next_sqnum - get next sequence number.
46  * @ubi: UBI device description object
47  *
48  * This function returns next sequence number to use, which is just the current
49  * global sequence counter value. It also increases the global sequence
50  * counter.
51  */
52 unsigned long long ubi_next_sqnum(struct ubi_device *ubi)
53 {
54 	unsigned long long sqnum;
55 
56 	spin_lock(&ubi->ltree_lock);
57 	sqnum = ubi->global_sqnum++;
58 	spin_unlock(&ubi->ltree_lock);
59 
60 	return sqnum;
61 }
62 
63 /**
64  * ubi_get_compat - get compatibility flags of a volume.
65  * @ubi: UBI device description object
66  * @vol_id: volume ID
67  *
68  * This function returns compatibility flags for an internal volume. User
69  * volumes have no compatibility flags, so %0 is returned.
70  */
71 static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
72 {
73 	if (vol_id == UBI_LAYOUT_VOLUME_ID)
74 		return UBI_LAYOUT_VOLUME_COMPAT;
75 	return 0;
76 }
77 
78 /**
79  * ltree_lookup - look up the lock tree.
80  * @ubi: UBI device description object
81  * @vol_id: volume ID
82  * @lnum: logical eraseblock number
83  *
84  * This function returns a pointer to the corresponding &struct ubi_ltree_entry
85  * object if the logical eraseblock is locked and %NULL if it is not.
86  * @ubi->ltree_lock has to be locked.
87  */
88 static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
89 					    int lnum)
90 {
91 	struct rb_node *p;
92 
93 	p = ubi->ltree.rb_node;
94 	while (p) {
95 		struct ubi_ltree_entry *le;
96 
97 		le = rb_entry(p, struct ubi_ltree_entry, rb);
98 
99 		if (vol_id < le->vol_id)
100 			p = p->rb_left;
101 		else if (vol_id > le->vol_id)
102 			p = p->rb_right;
103 		else {
104 			if (lnum < le->lnum)
105 				p = p->rb_left;
106 			else if (lnum > le->lnum)
107 				p = p->rb_right;
108 			else
109 				return le;
110 		}
111 	}
112 
113 	return NULL;
114 }
115 
116 /**
117  * ltree_add_entry - add new entry to the lock tree.
118  * @ubi: UBI device description object
119  * @vol_id: volume ID
120  * @lnum: logical eraseblock number
121  *
122  * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
123  * lock tree. If such entry is already there, its usage counter is increased.
124  * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
125  * failed.
126  */
127 static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
128 					       int vol_id, int lnum)
129 {
130 	struct ubi_ltree_entry *le, *le1, *le_free;
131 
132 	le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
133 	if (!le)
134 		return ERR_PTR(-ENOMEM);
135 
136 	le->users = 0;
137 	init_rwsem(&le->mutex);
138 	le->vol_id = vol_id;
139 	le->lnum = lnum;
140 
141 	spin_lock(&ubi->ltree_lock);
142 	le1 = ltree_lookup(ubi, vol_id, lnum);
143 
144 	if (le1) {
145 		/*
146 		 * This logical eraseblock is already locked. The newly
147 		 * allocated lock entry is not needed.
148 		 */
149 		le_free = le;
150 		le = le1;
151 	} else {
152 		struct rb_node **p, *parent = NULL;
153 
154 		/*
155 		 * No lock entry, add the newly allocated one to the
156 		 * @ubi->ltree RB-tree.
157 		 */
158 		le_free = NULL;
159 
160 		p = &ubi->ltree.rb_node;
161 		while (*p) {
162 			parent = *p;
163 			le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
164 
165 			if (vol_id < le1->vol_id)
166 				p = &(*p)->rb_left;
167 			else if (vol_id > le1->vol_id)
168 				p = &(*p)->rb_right;
169 			else {
170 				ubi_assert(lnum != le1->lnum);
171 				if (lnum < le1->lnum)
172 					p = &(*p)->rb_left;
173 				else
174 					p = &(*p)->rb_right;
175 			}
176 		}
177 
178 		rb_link_node(&le->rb, parent, p);
179 		rb_insert_color(&le->rb, &ubi->ltree);
180 	}
181 	le->users += 1;
182 	spin_unlock(&ubi->ltree_lock);
183 
184 	kfree(le_free);
185 	return le;
186 }
187 
188 /**
189  * leb_read_lock - lock logical eraseblock for reading.
190  * @ubi: UBI device description object
191  * @vol_id: volume ID
192  * @lnum: logical eraseblock number
193  *
194  * This function locks a logical eraseblock for reading. Returns zero in case
195  * of success and a negative error code in case of failure.
196  */
197 static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
198 {
199 	struct ubi_ltree_entry *le;
200 
201 	le = ltree_add_entry(ubi, vol_id, lnum);
202 	if (IS_ERR(le))
203 		return PTR_ERR(le);
204 	down_read(&le->mutex);
205 	return 0;
206 }
207 
208 /**
209  * leb_read_unlock - unlock logical eraseblock.
210  * @ubi: UBI device description object
211  * @vol_id: volume ID
212  * @lnum: logical eraseblock number
213  */
214 static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
215 {
216 	struct ubi_ltree_entry *le;
217 
218 	spin_lock(&ubi->ltree_lock);
219 	le = ltree_lookup(ubi, vol_id, lnum);
220 	le->users -= 1;
221 	ubi_assert(le->users >= 0);
222 	up_read(&le->mutex);
223 	if (le->users == 0) {
224 		rb_erase(&le->rb, &ubi->ltree);
225 		kfree(le);
226 	}
227 	spin_unlock(&ubi->ltree_lock);
228 }
229 
230 /**
231  * leb_write_lock - lock logical eraseblock for writing.
232  * @ubi: UBI device description object
233  * @vol_id: volume ID
234  * @lnum: logical eraseblock number
235  *
236  * This function locks a logical eraseblock for writing. Returns zero in case
237  * of success and a negative error code in case of failure.
238  */
239 static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
240 {
241 	struct ubi_ltree_entry *le;
242 
243 	le = ltree_add_entry(ubi, vol_id, lnum);
244 	if (IS_ERR(le))
245 		return PTR_ERR(le);
246 	down_write(&le->mutex);
247 	return 0;
248 }
249 
250 /**
251  * leb_write_lock - lock logical eraseblock for writing.
252  * @ubi: UBI device description object
253  * @vol_id: volume ID
254  * @lnum: logical eraseblock number
255  *
256  * This function locks a logical eraseblock for writing if there is no
257  * contention and does nothing if there is contention. Returns %0 in case of
258  * success, %1 in case of contention, and and a negative error code in case of
259  * failure.
260  */
261 static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
262 {
263 	struct ubi_ltree_entry *le;
264 
265 	le = ltree_add_entry(ubi, vol_id, lnum);
266 	if (IS_ERR(le))
267 		return PTR_ERR(le);
268 	if (down_write_trylock(&le->mutex))
269 		return 0;
270 
271 	/* Contention, cancel */
272 	spin_lock(&ubi->ltree_lock);
273 	le->users -= 1;
274 	ubi_assert(le->users >= 0);
275 	if (le->users == 0) {
276 		rb_erase(&le->rb, &ubi->ltree);
277 		kfree(le);
278 	}
279 	spin_unlock(&ubi->ltree_lock);
280 
281 	return 1;
282 }
283 
284 /**
285  * leb_write_unlock - unlock logical eraseblock.
286  * @ubi: UBI device description object
287  * @vol_id: volume ID
288  * @lnum: logical eraseblock number
289  */
290 static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
291 {
292 	struct ubi_ltree_entry *le;
293 
294 	spin_lock(&ubi->ltree_lock);
295 	le = ltree_lookup(ubi, vol_id, lnum);
296 	le->users -= 1;
297 	ubi_assert(le->users >= 0);
298 	up_write(&le->mutex);
299 	if (le->users == 0) {
300 		rb_erase(&le->rb, &ubi->ltree);
301 		kfree(le);
302 	}
303 	spin_unlock(&ubi->ltree_lock);
304 }
305 
306 /**
307  * ubi_eba_unmap_leb - un-map logical eraseblock.
308  * @ubi: UBI device description object
309  * @vol: volume description object
310  * @lnum: logical eraseblock number
311  *
312  * This function un-maps logical eraseblock @lnum and schedules corresponding
313  * physical eraseblock for erasure. Returns zero in case of success and a
314  * negative error code in case of failure.
315  */
316 int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
317 		      int lnum)
318 {
319 	int err, pnum, vol_id = vol->vol_id;
320 
321 	if (ubi->ro_mode)
322 		return -EROFS;
323 
324 	err = leb_write_lock(ubi, vol_id, lnum);
325 	if (err)
326 		return err;
327 
328 	pnum = vol->eba_tbl[lnum];
329 	if (pnum < 0)
330 		/* This logical eraseblock is already unmapped */
331 		goto out_unlock;
332 
333 	dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
334 
335 	down_read(&ubi->fm_eba_sem);
336 	vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED;
337 	up_read(&ubi->fm_eba_sem);
338 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0);
339 
340 out_unlock:
341 	leb_write_unlock(ubi, vol_id, lnum);
342 	return err;
343 }
344 
345 /**
346  * ubi_eba_read_leb - read data.
347  * @ubi: UBI device description object
348  * @vol: volume description object
349  * @lnum: logical eraseblock number
350  * @buf: buffer to store the read data
351  * @offset: offset from where to read
352  * @len: how many bytes to read
353  * @check: data CRC check flag
354  *
355  * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
356  * bytes. The @check flag only makes sense for static volumes and forces
357  * eraseblock data CRC checking.
358  *
359  * In case of success this function returns zero. In case of a static volume,
360  * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
361  * returned for any volume type if an ECC error was detected by the MTD device
362  * driver. Other negative error cored may be returned in case of other errors.
363  */
364 int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
365 		     void *buf, int offset, int len, int check)
366 {
367 	int err, pnum, scrub = 0, vol_id = vol->vol_id;
368 	struct ubi_vid_hdr *vid_hdr;
369 	uint32_t uninitialized_var(crc);
370 
371 	err = leb_read_lock(ubi, vol_id, lnum);
372 	if (err)
373 		return err;
374 
375 	pnum = vol->eba_tbl[lnum];
376 	if (pnum < 0) {
377 		/*
378 		 * The logical eraseblock is not mapped, fill the whole buffer
379 		 * with 0xFF bytes. The exception is static volumes for which
380 		 * it is an error to read unmapped logical eraseblocks.
381 		 */
382 		dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
383 			len, offset, vol_id, lnum);
384 		leb_read_unlock(ubi, vol_id, lnum);
385 		ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
386 		memset(buf, 0xFF, len);
387 		return 0;
388 	}
389 
390 	dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
391 		len, offset, vol_id, lnum, pnum);
392 
393 	if (vol->vol_type == UBI_DYNAMIC_VOLUME)
394 		check = 0;
395 
396 retry:
397 	if (check) {
398 		vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
399 		if (!vid_hdr) {
400 			err = -ENOMEM;
401 			goto out_unlock;
402 		}
403 
404 		err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
405 		if (err && err != UBI_IO_BITFLIPS) {
406 			if (err > 0) {
407 				/*
408 				 * The header is either absent or corrupted.
409 				 * The former case means there is a bug -
410 				 * switch to read-only mode just in case.
411 				 * The latter case means a real corruption - we
412 				 * may try to recover data. FIXME: but this is
413 				 * not implemented.
414 				 */
415 				if (err == UBI_IO_BAD_HDR_EBADMSG ||
416 				    err == UBI_IO_BAD_HDR) {
417 					ubi_warn(ubi, "corrupted VID header at PEB %d, LEB %d:%d",
418 						 pnum, vol_id, lnum);
419 					err = -EBADMSG;
420 				} else {
421 					err = -EINVAL;
422 					ubi_ro_mode(ubi);
423 				}
424 			}
425 			goto out_free;
426 		} else if (err == UBI_IO_BITFLIPS)
427 			scrub = 1;
428 
429 		ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
430 		ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
431 
432 		crc = be32_to_cpu(vid_hdr->data_crc);
433 		ubi_free_vid_hdr(ubi, vid_hdr);
434 	}
435 
436 	err = ubi_io_read_data(ubi, buf, pnum, offset, len);
437 	if (err) {
438 		if (err == UBI_IO_BITFLIPS)
439 			scrub = 1;
440 		else if (mtd_is_eccerr(err)) {
441 			if (vol->vol_type == UBI_DYNAMIC_VOLUME)
442 				goto out_unlock;
443 			scrub = 1;
444 			if (!check) {
445 				ubi_msg(ubi, "force data checking");
446 				check = 1;
447 				goto retry;
448 			}
449 		} else
450 			goto out_unlock;
451 	}
452 
453 	if (check) {
454 		uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
455 		if (crc1 != crc) {
456 			ubi_warn(ubi, "CRC error: calculated %#08x, must be %#08x",
457 				 crc1, crc);
458 			err = -EBADMSG;
459 			goto out_unlock;
460 		}
461 	}
462 
463 	if (scrub)
464 		err = ubi_wl_scrub_peb(ubi, pnum);
465 
466 	leb_read_unlock(ubi, vol_id, lnum);
467 	return err;
468 
469 out_free:
470 	ubi_free_vid_hdr(ubi, vid_hdr);
471 out_unlock:
472 	leb_read_unlock(ubi, vol_id, lnum);
473 	return err;
474 }
475 
476 #ifndef __UBOOT__
477 /**
478  * ubi_eba_read_leb_sg - read data into a scatter gather list.
479  * @ubi: UBI device description object
480  * @vol: volume description object
481  * @lnum: logical eraseblock number
482  * @sgl: UBI scatter gather list to store the read data
483  * @offset: offset from where to read
484  * @len: how many bytes to read
485  * @check: data CRC check flag
486  *
487  * This function works exactly like ubi_eba_read_leb(). But instead of
488  * storing the read data into a buffer it writes to an UBI scatter gather
489  * list.
490  */
491 int ubi_eba_read_leb_sg(struct ubi_device *ubi, struct ubi_volume *vol,
492 			struct ubi_sgl *sgl, int lnum, int offset, int len,
493 			int check)
494 {
495 	int to_read;
496 	int ret;
497 	struct scatterlist *sg;
498 
499 	for (;;) {
500 		ubi_assert(sgl->list_pos < UBI_MAX_SG_COUNT);
501 		sg = &sgl->sg[sgl->list_pos];
502 		if (len < sg->length - sgl->page_pos)
503 			to_read = len;
504 		else
505 			to_read = sg->length - sgl->page_pos;
506 
507 		ret = ubi_eba_read_leb(ubi, vol, lnum,
508 				       sg_virt(sg) + sgl->page_pos, offset,
509 				       to_read, check);
510 		if (ret < 0)
511 			return ret;
512 
513 		offset += to_read;
514 		len -= to_read;
515 		if (!len) {
516 			sgl->page_pos += to_read;
517 			if (sgl->page_pos == sg->length) {
518 				sgl->list_pos++;
519 				sgl->page_pos = 0;
520 			}
521 
522 			break;
523 		}
524 
525 		sgl->list_pos++;
526 		sgl->page_pos = 0;
527 	}
528 
529 	return ret;
530 }
531 #endif
532 
533 /**
534  * recover_peb - recover from write failure.
535  * @ubi: UBI device description object
536  * @pnum: the physical eraseblock to recover
537  * @vol_id: volume ID
538  * @lnum: logical eraseblock number
539  * @buf: data which was not written because of the write failure
540  * @offset: offset of the failed write
541  * @len: how many bytes should have been written
542  *
543  * This function is called in case of a write failure and moves all good data
544  * from the potentially bad physical eraseblock to a good physical eraseblock.
545  * This function also writes the data which was not written due to the failure.
546  * Returns new physical eraseblock number in case of success, and a negative
547  * error code in case of failure.
548  */
549 static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
550 		       const void *buf, int offset, int len)
551 {
552 	int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0;
553 	struct ubi_volume *vol = ubi->volumes[idx];
554 	struct ubi_vid_hdr *vid_hdr;
555 
556 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
557 	if (!vid_hdr)
558 		return -ENOMEM;
559 
560 retry:
561 	new_pnum = ubi_wl_get_peb(ubi);
562 	if (new_pnum < 0) {
563 		ubi_free_vid_hdr(ubi, vid_hdr);
564 		up_read(&ubi->fm_eba_sem);
565 		return new_pnum;
566 	}
567 
568 	ubi_msg(ubi, "recover PEB %d, move data to PEB %d",
569 		pnum, new_pnum);
570 
571 	err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
572 	if (err && err != UBI_IO_BITFLIPS) {
573 		if (err > 0)
574 			err = -EIO;
575 		up_read(&ubi->fm_eba_sem);
576 		goto out_put;
577 	}
578 
579 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
580 	err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
581 	if (err) {
582 		up_read(&ubi->fm_eba_sem);
583 		goto write_error;
584 	}
585 
586 	data_size = offset + len;
587 	mutex_lock(&ubi->buf_mutex);
588 	memset(ubi->peb_buf + offset, 0xFF, len);
589 
590 	/* Read everything before the area where the write failure happened */
591 	if (offset > 0) {
592 		err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset);
593 		if (err && err != UBI_IO_BITFLIPS) {
594 			up_read(&ubi->fm_eba_sem);
595 			goto out_unlock;
596 		}
597 	}
598 
599 	memcpy(ubi->peb_buf + offset, buf, len);
600 
601 	err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size);
602 	if (err) {
603 		mutex_unlock(&ubi->buf_mutex);
604 		up_read(&ubi->fm_eba_sem);
605 		goto write_error;
606 	}
607 
608 	mutex_unlock(&ubi->buf_mutex);
609 	ubi_free_vid_hdr(ubi, vid_hdr);
610 
611 	vol->eba_tbl[lnum] = new_pnum;
612 	up_read(&ubi->fm_eba_sem);
613 	ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
614 
615 	ubi_msg(ubi, "data was successfully recovered");
616 	return 0;
617 
618 out_unlock:
619 	mutex_unlock(&ubi->buf_mutex);
620 out_put:
621 	ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
622 	ubi_free_vid_hdr(ubi, vid_hdr);
623 	return err;
624 
625 write_error:
626 	/*
627 	 * Bad luck? This physical eraseblock is bad too? Crud. Let's try to
628 	 * get another one.
629 	 */
630 	ubi_warn(ubi, "failed to write to PEB %d", new_pnum);
631 	ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
632 	if (++tries > UBI_IO_RETRIES) {
633 		ubi_free_vid_hdr(ubi, vid_hdr);
634 		return err;
635 	}
636 	ubi_msg(ubi, "try again");
637 	goto retry;
638 }
639 
640 /**
641  * ubi_eba_write_leb - write data to dynamic volume.
642  * @ubi: UBI device description object
643  * @vol: volume description object
644  * @lnum: logical eraseblock number
645  * @buf: the data to write
646  * @offset: offset within the logical eraseblock where to write
647  * @len: how many bytes to write
648  *
649  * This function writes data to logical eraseblock @lnum of a dynamic volume
650  * @vol. Returns zero in case of success and a negative error code in case
651  * of failure. In case of error, it is possible that something was still
652  * written to the flash media, but may be some garbage.
653  */
654 int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
655 		      const void *buf, int offset, int len)
656 {
657 	int err, pnum, tries = 0, vol_id = vol->vol_id;
658 	struct ubi_vid_hdr *vid_hdr;
659 
660 	if (ubi->ro_mode)
661 		return -EROFS;
662 
663 	err = leb_write_lock(ubi, vol_id, lnum);
664 	if (err)
665 		return err;
666 
667 	pnum = vol->eba_tbl[lnum];
668 	if (pnum >= 0) {
669 		dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
670 			len, offset, vol_id, lnum, pnum);
671 
672 		err = ubi_io_write_data(ubi, buf, pnum, offset, len);
673 		if (err) {
674 			ubi_warn(ubi, "failed to write data to PEB %d", pnum);
675 			if (err == -EIO && ubi->bad_allowed)
676 				err = recover_peb(ubi, pnum, vol_id, lnum, buf,
677 						  offset, len);
678 			if (err)
679 				ubi_ro_mode(ubi);
680 		}
681 		leb_write_unlock(ubi, vol_id, lnum);
682 		return err;
683 	}
684 
685 	/*
686 	 * The logical eraseblock is not mapped. We have to get a free physical
687 	 * eraseblock and write the volume identifier header there first.
688 	 */
689 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
690 	if (!vid_hdr) {
691 		leb_write_unlock(ubi, vol_id, lnum);
692 		return -ENOMEM;
693 	}
694 
695 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
696 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
697 	vid_hdr->vol_id = cpu_to_be32(vol_id);
698 	vid_hdr->lnum = cpu_to_be32(lnum);
699 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
700 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
701 
702 retry:
703 	pnum = ubi_wl_get_peb(ubi);
704 	if (pnum < 0) {
705 		ubi_free_vid_hdr(ubi, vid_hdr);
706 		leb_write_unlock(ubi, vol_id, lnum);
707 		up_read(&ubi->fm_eba_sem);
708 		return pnum;
709 	}
710 
711 	dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
712 		len, offset, vol_id, lnum, pnum);
713 
714 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
715 	if (err) {
716 		ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
717 			 vol_id, lnum, pnum);
718 		up_read(&ubi->fm_eba_sem);
719 		goto write_error;
720 	}
721 
722 	if (len) {
723 		err = ubi_io_write_data(ubi, buf, pnum, offset, len);
724 		if (err) {
725 			ubi_warn(ubi, "failed to write %d bytes at offset %d of LEB %d:%d, PEB %d",
726 				 len, offset, vol_id, lnum, pnum);
727 			up_read(&ubi->fm_eba_sem);
728 			goto write_error;
729 		}
730 	}
731 
732 	vol->eba_tbl[lnum] = pnum;
733 	up_read(&ubi->fm_eba_sem);
734 
735 	leb_write_unlock(ubi, vol_id, lnum);
736 	ubi_free_vid_hdr(ubi, vid_hdr);
737 	return 0;
738 
739 write_error:
740 	if (err != -EIO || !ubi->bad_allowed) {
741 		ubi_ro_mode(ubi);
742 		leb_write_unlock(ubi, vol_id, lnum);
743 		ubi_free_vid_hdr(ubi, vid_hdr);
744 		return err;
745 	}
746 
747 	/*
748 	 * Fortunately, this is the first write operation to this physical
749 	 * eraseblock, so just put it and request a new one. We assume that if
750 	 * this physical eraseblock went bad, the erase code will handle that.
751 	 */
752 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
753 	if (err || ++tries > UBI_IO_RETRIES) {
754 		ubi_ro_mode(ubi);
755 		leb_write_unlock(ubi, vol_id, lnum);
756 		ubi_free_vid_hdr(ubi, vid_hdr);
757 		return err;
758 	}
759 
760 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
761 	ubi_msg(ubi, "try another PEB");
762 	goto retry;
763 }
764 
765 /**
766  * ubi_eba_write_leb_st - write data to static volume.
767  * @ubi: UBI device description object
768  * @vol: volume description object
769  * @lnum: logical eraseblock number
770  * @buf: data to write
771  * @len: how many bytes to write
772  * @used_ebs: how many logical eraseblocks will this volume contain
773  *
774  * This function writes data to logical eraseblock @lnum of static volume
775  * @vol. The @used_ebs argument should contain total number of logical
776  * eraseblock in this static volume.
777  *
778  * When writing to the last logical eraseblock, the @len argument doesn't have
779  * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
780  * to the real data size, although the @buf buffer has to contain the
781  * alignment. In all other cases, @len has to be aligned.
782  *
783  * It is prohibited to write more than once to logical eraseblocks of static
784  * volumes. This function returns zero in case of success and a negative error
785  * code in case of failure.
786  */
787 int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
788 			 int lnum, const void *buf, int len, int used_ebs)
789 {
790 	int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id;
791 	struct ubi_vid_hdr *vid_hdr;
792 	uint32_t crc;
793 
794 	if (ubi->ro_mode)
795 		return -EROFS;
796 
797 	if (lnum == used_ebs - 1)
798 		/* If this is the last LEB @len may be unaligned */
799 		len = ALIGN(data_size, ubi->min_io_size);
800 	else
801 		ubi_assert(!(len & (ubi->min_io_size - 1)));
802 
803 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
804 	if (!vid_hdr)
805 		return -ENOMEM;
806 
807 	err = leb_write_lock(ubi, vol_id, lnum);
808 	if (err) {
809 		ubi_free_vid_hdr(ubi, vid_hdr);
810 		return err;
811 	}
812 
813 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
814 	vid_hdr->vol_id = cpu_to_be32(vol_id);
815 	vid_hdr->lnum = cpu_to_be32(lnum);
816 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
817 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
818 
819 	crc = crc32(UBI_CRC32_INIT, buf, data_size);
820 	vid_hdr->vol_type = UBI_VID_STATIC;
821 	vid_hdr->data_size = cpu_to_be32(data_size);
822 	vid_hdr->used_ebs = cpu_to_be32(used_ebs);
823 	vid_hdr->data_crc = cpu_to_be32(crc);
824 
825 retry:
826 	pnum = ubi_wl_get_peb(ubi);
827 	if (pnum < 0) {
828 		ubi_free_vid_hdr(ubi, vid_hdr);
829 		leb_write_unlock(ubi, vol_id, lnum);
830 		up_read(&ubi->fm_eba_sem);
831 		return pnum;
832 	}
833 
834 	dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d",
835 		len, vol_id, lnum, pnum, used_ebs);
836 
837 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
838 	if (err) {
839 		ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
840 			 vol_id, lnum, pnum);
841 		up_read(&ubi->fm_eba_sem);
842 		goto write_error;
843 	}
844 
845 	err = ubi_io_write_data(ubi, buf, pnum, 0, len);
846 	if (err) {
847 		ubi_warn(ubi, "failed to write %d bytes of data to PEB %d",
848 			 len, pnum);
849 		up_read(&ubi->fm_eba_sem);
850 		goto write_error;
851 	}
852 
853 	ubi_assert(vol->eba_tbl[lnum] < 0);
854 	vol->eba_tbl[lnum] = pnum;
855 	up_read(&ubi->fm_eba_sem);
856 
857 	leb_write_unlock(ubi, vol_id, lnum);
858 	ubi_free_vid_hdr(ubi, vid_hdr);
859 	return 0;
860 
861 write_error:
862 	if (err != -EIO || !ubi->bad_allowed) {
863 		/*
864 		 * This flash device does not admit of bad eraseblocks or
865 		 * something nasty and unexpected happened. Switch to read-only
866 		 * mode just in case.
867 		 */
868 		ubi_ro_mode(ubi);
869 		leb_write_unlock(ubi, vol_id, lnum);
870 		ubi_free_vid_hdr(ubi, vid_hdr);
871 		return err;
872 	}
873 
874 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
875 	if (err || ++tries > UBI_IO_RETRIES) {
876 		ubi_ro_mode(ubi);
877 		leb_write_unlock(ubi, vol_id, lnum);
878 		ubi_free_vid_hdr(ubi, vid_hdr);
879 		return err;
880 	}
881 
882 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
883 	ubi_msg(ubi, "try another PEB");
884 	goto retry;
885 }
886 
887 /*
888  * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
889  * @ubi: UBI device description object
890  * @vol: volume description object
891  * @lnum: logical eraseblock number
892  * @buf: data to write
893  * @len: how many bytes to write
894  *
895  * This function changes the contents of a logical eraseblock atomically. @buf
896  * has to contain new logical eraseblock data, and @len - the length of the
897  * data, which has to be aligned. This function guarantees that in case of an
898  * unclean reboot the old contents is preserved. Returns zero in case of
899  * success and a negative error code in case of failure.
900  *
901  * UBI reserves one LEB for the "atomic LEB change" operation, so only one
902  * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
903  */
904 int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
905 			      int lnum, const void *buf, int len)
906 {
907 	int err, pnum, old_pnum, tries = 0, vol_id = vol->vol_id;
908 	struct ubi_vid_hdr *vid_hdr;
909 	uint32_t crc;
910 
911 	if (ubi->ro_mode)
912 		return -EROFS;
913 
914 	if (len == 0) {
915 		/*
916 		 * Special case when data length is zero. In this case the LEB
917 		 * has to be unmapped and mapped somewhere else.
918 		 */
919 		err = ubi_eba_unmap_leb(ubi, vol, lnum);
920 		if (err)
921 			return err;
922 		return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0);
923 	}
924 
925 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
926 	if (!vid_hdr)
927 		return -ENOMEM;
928 
929 	mutex_lock(&ubi->alc_mutex);
930 	err = leb_write_lock(ubi, vol_id, lnum);
931 	if (err)
932 		goto out_mutex;
933 
934 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
935 	vid_hdr->vol_id = cpu_to_be32(vol_id);
936 	vid_hdr->lnum = cpu_to_be32(lnum);
937 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
938 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
939 
940 	crc = crc32(UBI_CRC32_INIT, buf, len);
941 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
942 	vid_hdr->data_size = cpu_to_be32(len);
943 	vid_hdr->copy_flag = 1;
944 	vid_hdr->data_crc = cpu_to_be32(crc);
945 
946 retry:
947 	pnum = ubi_wl_get_peb(ubi);
948 	if (pnum < 0) {
949 		err = pnum;
950 		up_read(&ubi->fm_eba_sem);
951 		goto out_leb_unlock;
952 	}
953 
954 	dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d",
955 		vol_id, lnum, vol->eba_tbl[lnum], pnum);
956 
957 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
958 	if (err) {
959 		ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
960 			 vol_id, lnum, pnum);
961 		up_read(&ubi->fm_eba_sem);
962 		goto write_error;
963 	}
964 
965 	err = ubi_io_write_data(ubi, buf, pnum, 0, len);
966 	if (err) {
967 		ubi_warn(ubi, "failed to write %d bytes of data to PEB %d",
968 			 len, pnum);
969 		up_read(&ubi->fm_eba_sem);
970 		goto write_error;
971 	}
972 
973 	old_pnum = vol->eba_tbl[lnum];
974 	vol->eba_tbl[lnum] = pnum;
975 	up_read(&ubi->fm_eba_sem);
976 
977 	if (old_pnum >= 0) {
978 		err = ubi_wl_put_peb(ubi, vol_id, lnum, old_pnum, 0);
979 		if (err)
980 			goto out_leb_unlock;
981 	}
982 
983 out_leb_unlock:
984 	leb_write_unlock(ubi, vol_id, lnum);
985 out_mutex:
986 	mutex_unlock(&ubi->alc_mutex);
987 	ubi_free_vid_hdr(ubi, vid_hdr);
988 	return err;
989 
990 write_error:
991 	if (err != -EIO || !ubi->bad_allowed) {
992 		/*
993 		 * This flash device does not admit of bad eraseblocks or
994 		 * something nasty and unexpected happened. Switch to read-only
995 		 * mode just in case.
996 		 */
997 		ubi_ro_mode(ubi);
998 		goto out_leb_unlock;
999 	}
1000 
1001 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
1002 	if (err || ++tries > UBI_IO_RETRIES) {
1003 		ubi_ro_mode(ubi);
1004 		goto out_leb_unlock;
1005 	}
1006 
1007 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1008 	ubi_msg(ubi, "try another PEB");
1009 	goto retry;
1010 }
1011 
1012 /**
1013  * is_error_sane - check whether a read error is sane.
1014  * @err: code of the error happened during reading
1015  *
1016  * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
1017  * cannot read data from the target PEB (an error @err happened). If the error
1018  * code is sane, then we treat this error as non-fatal. Otherwise the error is
1019  * fatal and UBI will be switched to R/O mode later.
1020  *
1021  * The idea is that we try not to switch to R/O mode if the read error is
1022  * something which suggests there was a real read problem. E.g., %-EIO. Or a
1023  * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
1024  * mode, simply because we do not know what happened at the MTD level, and we
1025  * cannot handle this. E.g., the underlying driver may have become crazy, and
1026  * it is safer to switch to R/O mode to preserve the data.
1027  *
1028  * And bear in mind, this is about reading from the target PEB, i.e. the PEB
1029  * which we have just written.
1030  */
1031 static int is_error_sane(int err)
1032 {
1033 	if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR ||
1034 	    err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT)
1035 		return 0;
1036 	return 1;
1037 }
1038 
1039 /**
1040  * ubi_eba_copy_leb - copy logical eraseblock.
1041  * @ubi: UBI device description object
1042  * @from: physical eraseblock number from where to copy
1043  * @to: physical eraseblock number where to copy
1044  * @vid_hdr: VID header of the @from physical eraseblock
1045  *
1046  * This function copies logical eraseblock from physical eraseblock @from to
1047  * physical eraseblock @to. The @vid_hdr buffer may be changed by this
1048  * function. Returns:
1049  *   o %0 in case of success;
1050  *   o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc;
1051  *   o a negative error code in case of failure.
1052  */
1053 int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
1054 		     struct ubi_vid_hdr *vid_hdr)
1055 {
1056 	int err, vol_id, lnum, data_size, aldata_size, idx;
1057 	struct ubi_volume *vol;
1058 	uint32_t crc;
1059 
1060 	vol_id = be32_to_cpu(vid_hdr->vol_id);
1061 	lnum = be32_to_cpu(vid_hdr->lnum);
1062 
1063 	dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
1064 
1065 	if (vid_hdr->vol_type == UBI_VID_STATIC) {
1066 		data_size = be32_to_cpu(vid_hdr->data_size);
1067 		aldata_size = ALIGN(data_size, ubi->min_io_size);
1068 	} else
1069 		data_size = aldata_size =
1070 			    ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
1071 
1072 	idx = vol_id2idx(ubi, vol_id);
1073 	spin_lock(&ubi->volumes_lock);
1074 	/*
1075 	 * Note, we may race with volume deletion, which means that the volume
1076 	 * this logical eraseblock belongs to might be being deleted. Since the
1077 	 * volume deletion un-maps all the volume's logical eraseblocks, it will
1078 	 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
1079 	 */
1080 	vol = ubi->volumes[idx];
1081 	spin_unlock(&ubi->volumes_lock);
1082 	if (!vol) {
1083 		/* No need to do further work, cancel */
1084 		dbg_wl("volume %d is being removed, cancel", vol_id);
1085 		return MOVE_CANCEL_RACE;
1086 	}
1087 
1088 	/*
1089 	 * We do not want anybody to write to this logical eraseblock while we
1090 	 * are moving it, so lock it.
1091 	 *
1092 	 * Note, we are using non-waiting locking here, because we cannot sleep
1093 	 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1094 	 * unmapping the LEB which is mapped to the PEB we are going to move
1095 	 * (@from). This task locks the LEB and goes sleep in the
1096 	 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1097 	 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1098 	 * LEB is already locked, we just do not move it and return
1099 	 * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because
1100 	 * we do not know the reasons of the contention - it may be just a
1101 	 * normal I/O on this LEB, so we want to re-try.
1102 	 */
1103 	err = leb_write_trylock(ubi, vol_id, lnum);
1104 	if (err) {
1105 		dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum);
1106 		return MOVE_RETRY;
1107 	}
1108 
1109 	/*
1110 	 * The LEB might have been put meanwhile, and the task which put it is
1111 	 * probably waiting on @ubi->move_mutex. No need to continue the work,
1112 	 * cancel it.
1113 	 */
1114 	if (vol->eba_tbl[lnum] != from) {
1115 		dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel",
1116 		       vol_id, lnum, from, vol->eba_tbl[lnum]);
1117 		err = MOVE_CANCEL_RACE;
1118 		goto out_unlock_leb;
1119 	}
1120 
1121 	/*
1122 	 * OK, now the LEB is locked and we can safely start moving it. Since
1123 	 * this function utilizes the @ubi->peb_buf buffer which is shared
1124 	 * with some other functions - we lock the buffer by taking the
1125 	 * @ubi->buf_mutex.
1126 	 */
1127 	mutex_lock(&ubi->buf_mutex);
1128 	dbg_wl("read %d bytes of data", aldata_size);
1129 	err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size);
1130 	if (err && err != UBI_IO_BITFLIPS) {
1131 		ubi_warn(ubi, "error %d while reading data from PEB %d",
1132 			 err, from);
1133 		err = MOVE_SOURCE_RD_ERR;
1134 		goto out_unlock_buf;
1135 	}
1136 
1137 	/*
1138 	 * Now we have got to calculate how much data we have to copy. In
1139 	 * case of a static volume it is fairly easy - the VID header contains
1140 	 * the data size. In case of a dynamic volume it is more difficult - we
1141 	 * have to read the contents, cut 0xFF bytes from the end and copy only
1142 	 * the first part. We must do this to avoid writing 0xFF bytes as it
1143 	 * may have some side-effects. And not only this. It is important not
1144 	 * to include those 0xFFs to CRC because later the they may be filled
1145 	 * by data.
1146 	 */
1147 	if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1148 		aldata_size = data_size =
1149 			ubi_calc_data_len(ubi, ubi->peb_buf, data_size);
1150 
1151 	cond_resched();
1152 	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
1153 	cond_resched();
1154 
1155 	/*
1156 	 * It may turn out to be that the whole @from physical eraseblock
1157 	 * contains only 0xFF bytes. Then we have to only write the VID header
1158 	 * and do not write any data. This also means we should not set
1159 	 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1160 	 */
1161 	if (data_size > 0) {
1162 		vid_hdr->copy_flag = 1;
1163 		vid_hdr->data_size = cpu_to_be32(data_size);
1164 		vid_hdr->data_crc = cpu_to_be32(crc);
1165 	}
1166 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1167 
1168 	err = ubi_io_write_vid_hdr(ubi, to, vid_hdr);
1169 	if (err) {
1170 		if (err == -EIO)
1171 			err = MOVE_TARGET_WR_ERR;
1172 		goto out_unlock_buf;
1173 	}
1174 
1175 	cond_resched();
1176 
1177 	/* Read the VID header back and check if it was written correctly */
1178 	err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1);
1179 	if (err) {
1180 		if (err != UBI_IO_BITFLIPS) {
1181 			ubi_warn(ubi, "error %d while reading VID header back from PEB %d",
1182 				 err, to);
1183 			if (is_error_sane(err))
1184 				err = MOVE_TARGET_RD_ERR;
1185 		} else
1186 			err = MOVE_TARGET_BITFLIPS;
1187 		goto out_unlock_buf;
1188 	}
1189 
1190 	if (data_size > 0) {
1191 		err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1192 		if (err) {
1193 			if (err == -EIO)
1194 				err = MOVE_TARGET_WR_ERR;
1195 			goto out_unlock_buf;
1196 		}
1197 
1198 		cond_resched();
1199 
1200 		/*
1201 		 * We've written the data and are going to read it back to make
1202 		 * sure it was written correctly.
1203 		 */
1204 		memset(ubi->peb_buf, 0xFF, aldata_size);
1205 		err = ubi_io_read_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1206 		if (err) {
1207 			if (err != UBI_IO_BITFLIPS) {
1208 				ubi_warn(ubi, "error %d while reading data back from PEB %d",
1209 					 err, to);
1210 				if (is_error_sane(err))
1211 					err = MOVE_TARGET_RD_ERR;
1212 			} else
1213 				err = MOVE_TARGET_BITFLIPS;
1214 			goto out_unlock_buf;
1215 		}
1216 
1217 		cond_resched();
1218 
1219 		if (crc != crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size)) {
1220 			ubi_warn(ubi, "read data back from PEB %d and it is different",
1221 				 to);
1222 			err = -EINVAL;
1223 			goto out_unlock_buf;
1224 		}
1225 	}
1226 
1227 	ubi_assert(vol->eba_tbl[lnum] == from);
1228 	down_read(&ubi->fm_eba_sem);
1229 	vol->eba_tbl[lnum] = to;
1230 	up_read(&ubi->fm_eba_sem);
1231 
1232 out_unlock_buf:
1233 	mutex_unlock(&ubi->buf_mutex);
1234 out_unlock_leb:
1235 	leb_write_unlock(ubi, vol_id, lnum);
1236 	return err;
1237 }
1238 
1239 /**
1240  * print_rsvd_warning - warn about not having enough reserved PEBs.
1241  * @ubi: UBI device description object
1242  *
1243  * This is a helper function for 'ubi_eba_init()' which is called when UBI
1244  * cannot reserve enough PEBs for bad block handling. This function makes a
1245  * decision whether we have to print a warning or not. The algorithm is as
1246  * follows:
1247  *   o if this is a new UBI image, then just print the warning
1248  *   o if this is an UBI image which has already been used for some time, print
1249  *     a warning only if we can reserve less than 10% of the expected amount of
1250  *     the reserved PEB.
1251  *
1252  * The idea is that when UBI is used, PEBs become bad, and the reserved pool
1253  * of PEBs becomes smaller, which is normal and we do not want to scare users
1254  * with a warning every time they attach the MTD device. This was an issue
1255  * reported by real users.
1256  */
1257 static void print_rsvd_warning(struct ubi_device *ubi,
1258 			       struct ubi_attach_info *ai)
1259 {
1260 	/*
1261 	 * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
1262 	 * large number to distinguish between newly flashed and used images.
1263 	 */
1264 	if (ai->max_sqnum > (1 << 18)) {
1265 		int min = ubi->beb_rsvd_level / 10;
1266 
1267 		if (!min)
1268 			min = 1;
1269 		if (ubi->beb_rsvd_pebs > min)
1270 			return;
1271 	}
1272 
1273 	ubi_warn(ubi, "cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d",
1274 		 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1275 	if (ubi->corr_peb_count)
1276 		ubi_warn(ubi, "%d PEBs are corrupted and not used",
1277 			 ubi->corr_peb_count);
1278 }
1279 
1280 /**
1281  * self_check_eba - run a self check on the EBA table constructed by fastmap.
1282  * @ubi: UBI device description object
1283  * @ai_fastmap: UBI attach info object created by fastmap
1284  * @ai_scan: UBI attach info object created by scanning
1285  *
1286  * Returns < 0 in case of an internal error, 0 otherwise.
1287  * If a bad EBA table entry was found it will be printed out and
1288  * ubi_assert() triggers.
1289  */
1290 int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap,
1291 		   struct ubi_attach_info *ai_scan)
1292 {
1293 	int i, j, num_volumes, ret = 0;
1294 	int **scan_eba, **fm_eba;
1295 	struct ubi_ainf_volume *av;
1296 	struct ubi_volume *vol;
1297 	struct ubi_ainf_peb *aeb;
1298 	struct rb_node *rb;
1299 
1300 	num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1301 
1302 	scan_eba = kmalloc(sizeof(*scan_eba) * num_volumes, GFP_KERNEL);
1303 	if (!scan_eba)
1304 		return -ENOMEM;
1305 
1306 	fm_eba = kmalloc(sizeof(*fm_eba) * num_volumes, GFP_KERNEL);
1307 	if (!fm_eba) {
1308 		kfree(scan_eba);
1309 		return -ENOMEM;
1310 	}
1311 
1312 	for (i = 0; i < num_volumes; i++) {
1313 		vol = ubi->volumes[i];
1314 		if (!vol)
1315 			continue;
1316 
1317 		scan_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**scan_eba),
1318 				      GFP_KERNEL);
1319 		if (!scan_eba[i]) {
1320 			ret = -ENOMEM;
1321 			goto out_free;
1322 		}
1323 
1324 		fm_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**fm_eba),
1325 				    GFP_KERNEL);
1326 		if (!fm_eba[i]) {
1327 			ret = -ENOMEM;
1328 			goto out_free;
1329 		}
1330 
1331 		for (j = 0; j < vol->reserved_pebs; j++)
1332 			scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED;
1333 
1334 		av = ubi_find_av(ai_scan, idx2vol_id(ubi, i));
1335 		if (!av)
1336 			continue;
1337 
1338 		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1339 			scan_eba[i][aeb->lnum] = aeb->pnum;
1340 
1341 		av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i));
1342 		if (!av)
1343 			continue;
1344 
1345 		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1346 			fm_eba[i][aeb->lnum] = aeb->pnum;
1347 
1348 		for (j = 0; j < vol->reserved_pebs; j++) {
1349 			if (scan_eba[i][j] != fm_eba[i][j]) {
1350 				if (scan_eba[i][j] == UBI_LEB_UNMAPPED ||
1351 					fm_eba[i][j] == UBI_LEB_UNMAPPED)
1352 					continue;
1353 
1354 				ubi_err(ubi, "LEB:%i:%i is PEB:%i instead of %i!",
1355 					vol->vol_id, i, fm_eba[i][j],
1356 					scan_eba[i][j]);
1357 				ubi_assert(0);
1358 			}
1359 		}
1360 	}
1361 
1362 out_free:
1363 	for (i = 0; i < num_volumes; i++) {
1364 		if (!ubi->volumes[i])
1365 			continue;
1366 
1367 		kfree(scan_eba[i]);
1368 		kfree(fm_eba[i]);
1369 	}
1370 
1371 	kfree(scan_eba);
1372 	kfree(fm_eba);
1373 	return ret;
1374 }
1375 
1376 /**
1377  * ubi_eba_init - initialize the EBA sub-system using attaching information.
1378  * @ubi: UBI device description object
1379  * @ai: attaching information
1380  *
1381  * This function returns zero in case of success and a negative error code in
1382  * case of failure.
1383  */
1384 int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1385 {
1386 	int i, j, err, num_volumes;
1387 	struct ubi_ainf_volume *av;
1388 	struct ubi_volume *vol;
1389 	struct ubi_ainf_peb *aeb;
1390 	struct rb_node *rb;
1391 
1392 	dbg_eba("initialize EBA sub-system");
1393 
1394 	spin_lock_init(&ubi->ltree_lock);
1395 	mutex_init(&ubi->alc_mutex);
1396 	ubi->ltree = RB_ROOT;
1397 
1398 	ubi->global_sqnum = ai->max_sqnum + 1;
1399 	num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1400 
1401 	for (i = 0; i < num_volumes; i++) {
1402 		vol = ubi->volumes[i];
1403 		if (!vol)
1404 			continue;
1405 
1406 		cond_resched();
1407 
1408 		vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int),
1409 				       GFP_KERNEL);
1410 		if (!vol->eba_tbl) {
1411 			err = -ENOMEM;
1412 			goto out_free;
1413 		}
1414 
1415 		for (j = 0; j < vol->reserved_pebs; j++)
1416 			vol->eba_tbl[j] = UBI_LEB_UNMAPPED;
1417 
1418 		av = ubi_find_av(ai, idx2vol_id(ubi, i));
1419 		if (!av)
1420 			continue;
1421 
1422 		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
1423 			if (aeb->lnum >= vol->reserved_pebs)
1424 				/*
1425 				 * This may happen in case of an unclean reboot
1426 				 * during re-size.
1427 				 */
1428 				ubi_move_aeb_to_list(av, aeb, &ai->erase);
1429 			else
1430 				vol->eba_tbl[aeb->lnum] = aeb->pnum;
1431 		}
1432 	}
1433 
1434 	if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1435 		ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1436 			ubi->avail_pebs, EBA_RESERVED_PEBS);
1437 		if (ubi->corr_peb_count)
1438 			ubi_err(ubi, "%d PEBs are corrupted and not used",
1439 				ubi->corr_peb_count);
1440 		err = -ENOSPC;
1441 		goto out_free;
1442 	}
1443 	ubi->avail_pebs -= EBA_RESERVED_PEBS;
1444 	ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1445 
1446 	if (ubi->bad_allowed) {
1447 		ubi_calculate_reserved(ubi);
1448 
1449 		if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1450 			/* No enough free physical eraseblocks */
1451 			ubi->beb_rsvd_pebs = ubi->avail_pebs;
1452 			print_rsvd_warning(ubi, ai);
1453 		} else
1454 			ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1455 
1456 		ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1457 		ubi->rsvd_pebs  += ubi->beb_rsvd_pebs;
1458 	}
1459 
1460 	dbg_eba("EBA sub-system is initialized");
1461 	return 0;
1462 
1463 out_free:
1464 	for (i = 0; i < num_volumes; i++) {
1465 		if (!ubi->volumes[i])
1466 			continue;
1467 		kfree(ubi->volumes[i]->eba_tbl);
1468 		ubi->volumes[i]->eba_tbl = NULL;
1469 	}
1470 	return err;
1471 }
1472