1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2016-2017 Micron Technology, Inc. 4 * 5 * Authors: 6 * Peter Pan <peterpandong@micron.com> 7 * Boris Brezillon <boris.brezillon@bootlin.com> 8 */ 9 10 #define pr_fmt(fmt) "spi-nand: " fmt 11 12 #ifndef __UBOOT__ 13 #include <linux/device.h> 14 #include <linux/jiffies.h> 15 #include <linux/kernel.h> 16 #include <linux/module.h> 17 #include <linux/mtd/spinand.h> 18 #include <linux/of.h> 19 #include <linux/slab.h> 20 #include <linux/spi/spi.h> 21 #include <linux/spi/spi-mem.h> 22 #else 23 #include <common.h> 24 #include <errno.h> 25 #include <spi.h> 26 #include <spi-mem.h> 27 #include <linux/mtd/spinand.h> 28 #endif 29 30 /* SPI NAND index visible in MTD names */ 31 static int spi_nand_idx; 32 33 static void spinand_cache_op_adjust_colum(struct spinand_device *spinand, 34 const struct nand_page_io_req *req, 35 u16 *column) 36 { 37 struct nand_device *nand = spinand_to_nand(spinand); 38 unsigned int shift; 39 40 if (nand->memorg.planes_per_lun < 2) 41 return; 42 43 /* The plane number is passed in MSB just above the column address */ 44 shift = fls(nand->memorg.pagesize); 45 *column |= req->pos.plane << shift; 46 } 47 48 static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val) 49 { 50 struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg, 51 spinand->scratchbuf); 52 int ret; 53 54 ret = spi_mem_exec_op(spinand->slave, &op); 55 if (ret) 56 return ret; 57 58 *val = *spinand->scratchbuf; 59 return 0; 60 } 61 62 static int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val) 63 { 64 struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg, 65 spinand->scratchbuf); 66 67 *spinand->scratchbuf = val; 68 return spi_mem_exec_op(spinand->slave, &op); 69 } 70 71 static int spinand_read_status(struct spinand_device *spinand, u8 *status) 72 { 73 return spinand_read_reg_op(spinand, REG_STATUS, status); 74 } 75 76 static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg) 77 { 78 struct nand_device *nand = spinand_to_nand(spinand); 79 80 if (WARN_ON(spinand->cur_target < 0 || 81 spinand->cur_target >= nand->memorg.ntargets)) 82 return -EINVAL; 83 84 *cfg = spinand->cfg_cache[spinand->cur_target]; 85 return 0; 86 } 87 88 static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg) 89 { 90 struct nand_device *nand = spinand_to_nand(spinand); 91 int ret; 92 93 if (WARN_ON(spinand->cur_target < 0 || 94 spinand->cur_target >= nand->memorg.ntargets)) 95 return -EINVAL; 96 97 if (spinand->cfg_cache[spinand->cur_target] == cfg) 98 return 0; 99 100 ret = spinand_write_reg_op(spinand, REG_CFG, cfg); 101 if (ret) 102 return ret; 103 104 spinand->cfg_cache[spinand->cur_target] = cfg; 105 return 0; 106 } 107 108 /** 109 * spinand_upd_cfg() - Update the configuration register 110 * @spinand: the spinand device 111 * @mask: the mask encoding the bits to update in the config reg 112 * @val: the new value to apply 113 * 114 * Update the configuration register. 115 * 116 * Return: 0 on success, a negative error code otherwise. 117 */ 118 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val) 119 { 120 int ret; 121 u8 cfg; 122 123 ret = spinand_get_cfg(spinand, &cfg); 124 if (ret) 125 return ret; 126 127 cfg &= ~mask; 128 cfg |= val; 129 130 return spinand_set_cfg(spinand, cfg); 131 } 132 133 /** 134 * spinand_select_target() - Select a specific NAND target/die 135 * @spinand: the spinand device 136 * @target: the target/die to select 137 * 138 * Select a new target/die. If chip only has one die, this function is a NOOP. 139 * 140 * Return: 0 on success, a negative error code otherwise. 141 */ 142 int spinand_select_target(struct spinand_device *spinand, unsigned int target) 143 { 144 struct nand_device *nand = spinand_to_nand(spinand); 145 int ret; 146 147 if (WARN_ON(target >= nand->memorg.ntargets)) 148 return -EINVAL; 149 150 if (spinand->cur_target == target) 151 return 0; 152 153 if (nand->memorg.ntargets == 1) { 154 spinand->cur_target = target; 155 return 0; 156 } 157 158 ret = spinand->select_target(spinand, target); 159 if (ret) 160 return ret; 161 162 spinand->cur_target = target; 163 return 0; 164 } 165 166 static int spinand_init_cfg_cache(struct spinand_device *spinand) 167 { 168 struct nand_device *nand = spinand_to_nand(spinand); 169 struct udevice *dev = spinand->slave->dev; 170 unsigned int target; 171 int ret; 172 173 spinand->cfg_cache = devm_kzalloc(dev, 174 sizeof(*spinand->cfg_cache) * 175 nand->memorg.ntargets, 176 GFP_KERNEL); 177 if (!spinand->cfg_cache) 178 return -ENOMEM; 179 180 for (target = 0; target < nand->memorg.ntargets; target++) { 181 ret = spinand_select_target(spinand, target); 182 if (ret) 183 return ret; 184 185 /* 186 * We use spinand_read_reg_op() instead of spinand_get_cfg() 187 * here to bypass the config cache. 188 */ 189 ret = spinand_read_reg_op(spinand, REG_CFG, 190 &spinand->cfg_cache[target]); 191 if (ret) 192 return ret; 193 } 194 195 return 0; 196 } 197 198 static int spinand_init_quad_enable(struct spinand_device *spinand) 199 { 200 bool enable = false; 201 202 if (!(spinand->flags & SPINAND_HAS_QE_BIT)) 203 return 0; 204 205 if (spinand->op_templates.read_cache->data.buswidth == 4 || 206 spinand->op_templates.write_cache->data.buswidth == 4 || 207 spinand->op_templates.update_cache->data.buswidth == 4) 208 enable = true; 209 210 return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE, 211 enable ? CFG_QUAD_ENABLE : 0); 212 } 213 214 static int spinand_ecc_enable(struct spinand_device *spinand, 215 bool enable) 216 { 217 return spinand_upd_cfg(spinand, CFG_ECC_ENABLE, 218 enable ? CFG_ECC_ENABLE : 0); 219 } 220 221 static int spinand_write_enable_op(struct spinand_device *spinand) 222 { 223 struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true); 224 225 return spi_mem_exec_op(spinand->slave, &op); 226 } 227 228 static int spinand_load_page_op(struct spinand_device *spinand, 229 const struct nand_page_io_req *req) 230 { 231 struct nand_device *nand = spinand_to_nand(spinand); 232 unsigned int row = nanddev_pos_to_row(nand, &req->pos); 233 struct spi_mem_op op = SPINAND_PAGE_READ_OP(row); 234 235 return spi_mem_exec_op(spinand->slave, &op); 236 } 237 238 static int spinand_read_from_cache_op(struct spinand_device *spinand, 239 const struct nand_page_io_req *req) 240 { 241 struct spi_mem_op op = *spinand->op_templates.read_cache; 242 struct nand_device *nand = spinand_to_nand(spinand); 243 struct mtd_info *mtd = nanddev_to_mtd(nand); 244 struct nand_page_io_req adjreq = *req; 245 unsigned int nbytes = 0; 246 void *buf = NULL; 247 u16 column = 0; 248 int ret; 249 250 if (req->datalen) { 251 adjreq.datalen = nanddev_page_size(nand); 252 adjreq.dataoffs = 0; 253 adjreq.databuf.in = spinand->databuf; 254 buf = spinand->databuf; 255 nbytes = adjreq.datalen; 256 } 257 258 if (req->ooblen) { 259 adjreq.ooblen = nanddev_per_page_oobsize(nand); 260 adjreq.ooboffs = 0; 261 adjreq.oobbuf.in = spinand->oobbuf; 262 nbytes += nanddev_per_page_oobsize(nand); 263 if (!buf) { 264 buf = spinand->oobbuf; 265 column = nanddev_page_size(nand); 266 } 267 } 268 269 spinand_cache_op_adjust_colum(spinand, &adjreq, &column); 270 op.addr.val = column; 271 272 /* 273 * Some controllers are limited in term of max RX data size. In this 274 * case, just repeat the READ_CACHE operation after updating the 275 * column. 276 */ 277 while (nbytes) { 278 op.data.buf.in = buf; 279 op.data.nbytes = nbytes; 280 ret = spi_mem_adjust_op_size(spinand->slave, &op); 281 if (ret) 282 return ret; 283 284 ret = spi_mem_exec_op(spinand->slave, &op); 285 if (ret) 286 return ret; 287 288 buf += op.data.nbytes; 289 nbytes -= op.data.nbytes; 290 op.addr.val += op.data.nbytes; 291 } 292 293 if (req->datalen) 294 memcpy(req->databuf.in, spinand->databuf + req->dataoffs, 295 req->datalen); 296 297 if (req->ooblen) { 298 if (req->mode == MTD_OPS_AUTO_OOB) 299 mtd_ooblayout_get_databytes(mtd, req->oobbuf.in, 300 spinand->oobbuf, 301 req->ooboffs, 302 req->ooblen); 303 else 304 memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs, 305 req->ooblen); 306 } 307 308 return 0; 309 } 310 311 static int spinand_write_to_cache_op(struct spinand_device *spinand, 312 const struct nand_page_io_req *req) 313 { 314 struct spi_mem_op op = *spinand->op_templates.write_cache; 315 struct nand_device *nand = spinand_to_nand(spinand); 316 struct mtd_info *mtd = nanddev_to_mtd(nand); 317 struct nand_page_io_req adjreq = *req; 318 unsigned int nbytes = 0; 319 void *buf = NULL; 320 u16 column = 0; 321 int ret; 322 323 memset(spinand->databuf, 0xff, 324 nanddev_page_size(nand) + 325 nanddev_per_page_oobsize(nand)); 326 327 if (req->datalen) { 328 memcpy(spinand->databuf + req->dataoffs, req->databuf.out, 329 req->datalen); 330 adjreq.dataoffs = 0; 331 adjreq.datalen = nanddev_page_size(nand); 332 adjreq.databuf.out = spinand->databuf; 333 nbytes = adjreq.datalen; 334 buf = spinand->databuf; 335 } 336 337 if (req->ooblen) { 338 if (req->mode == MTD_OPS_AUTO_OOB) 339 mtd_ooblayout_set_databytes(mtd, req->oobbuf.out, 340 spinand->oobbuf, 341 req->ooboffs, 342 req->ooblen); 343 else 344 memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out, 345 req->ooblen); 346 347 adjreq.ooblen = nanddev_per_page_oobsize(nand); 348 adjreq.ooboffs = 0; 349 nbytes += nanddev_per_page_oobsize(nand); 350 if (!buf) { 351 buf = spinand->oobbuf; 352 column = nanddev_page_size(nand); 353 } 354 } 355 356 spinand_cache_op_adjust_colum(spinand, &adjreq, &column); 357 358 op = *spinand->op_templates.write_cache; 359 op.addr.val = column; 360 361 /* 362 * Some controllers are limited in term of max TX data size. In this 363 * case, split the operation into one LOAD CACHE and one or more 364 * LOAD RANDOM CACHE. 365 */ 366 while (nbytes) { 367 op.data.buf.out = buf; 368 op.data.nbytes = nbytes; 369 370 ret = spi_mem_adjust_op_size(spinand->slave, &op); 371 if (ret) 372 return ret; 373 374 ret = spi_mem_exec_op(spinand->slave, &op); 375 if (ret) 376 return ret; 377 378 buf += op.data.nbytes; 379 nbytes -= op.data.nbytes; 380 op.addr.val += op.data.nbytes; 381 382 /* 383 * We need to use the RANDOM LOAD CACHE operation if there's 384 * more than one iteration, because the LOAD operation resets 385 * the cache to 0xff. 386 */ 387 if (nbytes) { 388 column = op.addr.val; 389 op = *spinand->op_templates.update_cache; 390 op.addr.val = column; 391 } 392 } 393 394 return 0; 395 } 396 397 static int spinand_program_op(struct spinand_device *spinand, 398 const struct nand_page_io_req *req) 399 { 400 struct nand_device *nand = spinand_to_nand(spinand); 401 unsigned int row = nanddev_pos_to_row(nand, &req->pos); 402 struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row); 403 404 return spi_mem_exec_op(spinand->slave, &op); 405 } 406 407 static int spinand_erase_op(struct spinand_device *spinand, 408 const struct nand_pos *pos) 409 { 410 struct nand_device *nand = &spinand->base; 411 unsigned int row = nanddev_pos_to_row(nand, pos); 412 struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row); 413 414 return spi_mem_exec_op(spinand->slave, &op); 415 } 416 417 static int spinand_wait(struct spinand_device *spinand, u8 *s) 418 { 419 unsigned long start, stop; 420 u8 status; 421 int ret; 422 423 start = get_timer(0); 424 stop = 400; 425 do { 426 ret = spinand_read_status(spinand, &status); 427 if (ret) 428 return ret; 429 430 if (!(status & STATUS_BUSY)) 431 goto out; 432 } while (get_timer(start) < stop); 433 434 /* 435 * Extra read, just in case the STATUS_READY bit has changed 436 * since our last check 437 */ 438 ret = spinand_read_status(spinand, &status); 439 if (ret) 440 return ret; 441 442 out: 443 if (s) 444 *s = status; 445 446 return status & STATUS_BUSY ? -ETIMEDOUT : 0; 447 } 448 449 static int spinand_read_id_op(struct spinand_device *spinand, u8 *buf) 450 { 451 struct spi_mem_op op = SPINAND_READID_OP(0, spinand->scratchbuf, 452 SPINAND_MAX_ID_LEN); 453 int ret; 454 455 ret = spi_mem_exec_op(spinand->slave, &op); 456 if (!ret) 457 memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN); 458 459 return ret; 460 } 461 462 static int spinand_reset_op(struct spinand_device *spinand) 463 { 464 struct spi_mem_op op = SPINAND_RESET_OP; 465 int ret; 466 467 ret = spi_mem_exec_op(spinand->slave, &op); 468 if (ret) 469 return ret; 470 471 return spinand_wait(spinand, NULL); 472 } 473 474 static int spinand_lock_block(struct spinand_device *spinand, u8 lock) 475 { 476 return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock); 477 } 478 479 static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status) 480 { 481 struct nand_device *nand = spinand_to_nand(spinand); 482 483 if (spinand->eccinfo.get_status) 484 return spinand->eccinfo.get_status(spinand, status); 485 486 switch (status & STATUS_ECC_MASK) { 487 case STATUS_ECC_NO_BITFLIPS: 488 return 0; 489 490 case STATUS_ECC_HAS_BITFLIPS: 491 /* 492 * We have no way to know exactly how many bitflips have been 493 * fixed, so let's return the maximum possible value so that 494 * wear-leveling layers move the data immediately. 495 */ 496 return nand->eccreq.strength; 497 498 case STATUS_ECC_UNCOR_ERROR: 499 return -EBADMSG; 500 501 default: 502 break; 503 } 504 505 return -EINVAL; 506 } 507 508 static int spinand_read_page(struct spinand_device *spinand, 509 const struct nand_page_io_req *req, 510 bool ecc_enabled) 511 { 512 u8 status; 513 int ret; 514 515 ret = spinand_load_page_op(spinand, req); 516 if (ret) 517 return ret; 518 519 ret = spinand_wait(spinand, &status); 520 if (ret < 0) 521 return ret; 522 523 ret = spinand_read_from_cache_op(spinand, req); 524 if (ret) 525 return ret; 526 527 if (!ecc_enabled) 528 return 0; 529 530 return spinand_check_ecc_status(spinand, status); 531 } 532 533 static int spinand_write_page(struct spinand_device *spinand, 534 const struct nand_page_io_req *req) 535 { 536 u8 status; 537 int ret; 538 539 ret = spinand_write_enable_op(spinand); 540 if (ret) 541 return ret; 542 543 ret = spinand_write_to_cache_op(spinand, req); 544 if (ret) 545 return ret; 546 547 ret = spinand_program_op(spinand, req); 548 if (ret) 549 return ret; 550 551 ret = spinand_wait(spinand, &status); 552 if (!ret && (status & STATUS_PROG_FAILED)) 553 ret = -EIO; 554 555 return ret; 556 } 557 558 static int spinand_mtd_read(struct mtd_info *mtd, loff_t from, 559 struct mtd_oob_ops *ops) 560 { 561 struct spinand_device *spinand = mtd_to_spinand(mtd); 562 struct nand_device *nand = mtd_to_nanddev(mtd); 563 unsigned int max_bitflips = 0; 564 struct nand_io_iter iter; 565 bool enable_ecc = false; 566 bool ecc_failed = false; 567 int ret = 0; 568 569 if (ops->mode != MTD_OPS_RAW && spinand->eccinfo.ooblayout) 570 enable_ecc = true; 571 572 #ifndef __UBOOT__ 573 mutex_lock(&spinand->lock); 574 #endif 575 576 nanddev_io_for_each_page(nand, from, ops, &iter) { 577 ret = spinand_select_target(spinand, iter.req.pos.target); 578 if (ret) 579 break; 580 581 ret = spinand_ecc_enable(spinand, enable_ecc); 582 if (ret) 583 break; 584 585 ret = spinand_read_page(spinand, &iter.req, enable_ecc); 586 if (ret < 0 && ret != -EBADMSG) 587 break; 588 589 if (ret == -EBADMSG) { 590 ecc_failed = true; 591 mtd->ecc_stats.failed++; 592 ret = 0; 593 } else { 594 mtd->ecc_stats.corrected += ret; 595 max_bitflips = max_t(unsigned int, max_bitflips, ret); 596 } 597 598 ops->retlen += iter.req.datalen; 599 ops->oobretlen += iter.req.ooblen; 600 } 601 602 #ifndef __UBOOT__ 603 mutex_unlock(&spinand->lock); 604 #endif 605 if (ecc_failed && !ret) 606 ret = -EBADMSG; 607 608 return ret ? ret : max_bitflips; 609 } 610 611 static int spinand_mtd_write(struct mtd_info *mtd, loff_t to, 612 struct mtd_oob_ops *ops) 613 { 614 struct spinand_device *spinand = mtd_to_spinand(mtd); 615 struct nand_device *nand = mtd_to_nanddev(mtd); 616 struct nand_io_iter iter; 617 bool enable_ecc = false; 618 int ret = 0; 619 620 if (ops->mode != MTD_OPS_RAW && mtd->ooblayout) 621 enable_ecc = true; 622 623 #ifndef __UBOOT__ 624 mutex_lock(&spinand->lock); 625 #endif 626 627 nanddev_io_for_each_page(nand, to, ops, &iter) { 628 ret = spinand_select_target(spinand, iter.req.pos.target); 629 if (ret) 630 break; 631 632 ret = spinand_ecc_enable(spinand, enable_ecc); 633 if (ret) 634 break; 635 636 ret = spinand_write_page(spinand, &iter.req); 637 if (ret) 638 break; 639 640 ops->retlen += iter.req.datalen; 641 ops->oobretlen += iter.req.ooblen; 642 } 643 644 #ifndef __UBOOT__ 645 mutex_unlock(&spinand->lock); 646 #endif 647 648 return ret; 649 } 650 651 static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos) 652 { 653 struct spinand_device *spinand = nand_to_spinand(nand); 654 struct nand_page_io_req req = { 655 .pos = *pos, 656 .ooblen = 2, 657 .ooboffs = 0, 658 .oobbuf.in = spinand->oobbuf, 659 .mode = MTD_OPS_RAW, 660 }; 661 int ret; 662 663 memset(spinand->oobbuf, 0, 2); 664 ret = spinand_select_target(spinand, pos->target); 665 if (ret) 666 return ret; 667 668 ret = spinand_read_page(spinand, &req, false); 669 if (ret) 670 return ret; 671 672 if (spinand->oobbuf[0] != 0xff || spinand->oobbuf[1] != 0xff) 673 return true; 674 675 return false; 676 } 677 678 static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs) 679 { 680 struct nand_device *nand = mtd_to_nanddev(mtd); 681 #ifndef __UBOOT__ 682 struct spinand_device *spinand = nand_to_spinand(nand); 683 #endif 684 struct nand_pos pos; 685 int ret; 686 687 nanddev_offs_to_pos(nand, offs, &pos); 688 #ifndef __UBOOT__ 689 mutex_lock(&spinand->lock); 690 #endif 691 ret = nanddev_isbad(nand, &pos); 692 #ifndef __UBOOT__ 693 mutex_unlock(&spinand->lock); 694 #endif 695 return ret; 696 } 697 698 static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos) 699 { 700 struct spinand_device *spinand = nand_to_spinand(nand); 701 struct nand_page_io_req req = { 702 .pos = *pos, 703 .ooboffs = 0, 704 .ooblen = 2, 705 .oobbuf.out = spinand->oobbuf, 706 }; 707 int ret; 708 709 /* Erase block before marking it bad. */ 710 ret = spinand_select_target(spinand, pos->target); 711 if (ret) 712 return ret; 713 714 ret = spinand_write_enable_op(spinand); 715 if (ret) 716 return ret; 717 718 ret = spinand_erase_op(spinand, pos); 719 if (ret) 720 return ret; 721 722 memset(spinand->oobbuf, 0, 2); 723 return spinand_write_page(spinand, &req); 724 } 725 726 static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs) 727 { 728 struct nand_device *nand = mtd_to_nanddev(mtd); 729 #ifndef __UBOOT__ 730 struct spinand_device *spinand = nand_to_spinand(nand); 731 #endif 732 struct nand_pos pos; 733 int ret; 734 735 nanddev_offs_to_pos(nand, offs, &pos); 736 #ifndef __UBOOT__ 737 mutex_lock(&spinand->lock); 738 #endif 739 ret = nanddev_markbad(nand, &pos); 740 #ifndef __UBOOT__ 741 mutex_unlock(&spinand->lock); 742 #endif 743 return ret; 744 } 745 746 static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos) 747 { 748 struct spinand_device *spinand = nand_to_spinand(nand); 749 u8 status; 750 int ret; 751 752 ret = spinand_select_target(spinand, pos->target); 753 if (ret) 754 return ret; 755 756 ret = spinand_write_enable_op(spinand); 757 if (ret) 758 return ret; 759 760 ret = spinand_erase_op(spinand, pos); 761 if (ret) 762 return ret; 763 764 ret = spinand_wait(spinand, &status); 765 if (!ret && (status & STATUS_ERASE_FAILED)) 766 ret = -EIO; 767 768 return ret; 769 } 770 771 static int spinand_mtd_erase(struct mtd_info *mtd, 772 struct erase_info *einfo) 773 { 774 #ifndef __UBOOT__ 775 struct spinand_device *spinand = mtd_to_spinand(mtd); 776 #endif 777 int ret; 778 779 #ifndef __UBOOT__ 780 mutex_lock(&spinand->lock); 781 #endif 782 ret = nanddev_mtd_erase(mtd, einfo); 783 #ifndef __UBOOT__ 784 mutex_unlock(&spinand->lock); 785 #endif 786 787 return ret; 788 } 789 790 static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs) 791 { 792 #ifndef __UBOOT__ 793 struct spinand_device *spinand = mtd_to_spinand(mtd); 794 #endif 795 struct nand_device *nand = mtd_to_nanddev(mtd); 796 struct nand_pos pos; 797 int ret; 798 799 nanddev_offs_to_pos(nand, offs, &pos); 800 #ifndef __UBOOT__ 801 mutex_lock(&spinand->lock); 802 #endif 803 ret = nanddev_isreserved(nand, &pos); 804 #ifndef __UBOOT__ 805 mutex_unlock(&spinand->lock); 806 #endif 807 808 return ret; 809 } 810 811 const struct spi_mem_op * 812 spinand_find_supported_op(struct spinand_device *spinand, 813 const struct spi_mem_op *ops, 814 unsigned int nops) 815 { 816 unsigned int i; 817 818 for (i = 0; i < nops; i++) { 819 if (spi_mem_supports_op(spinand->slave, &ops[i])) 820 return &ops[i]; 821 } 822 823 return NULL; 824 } 825 826 static const struct nand_ops spinand_ops = { 827 .erase = spinand_erase, 828 .markbad = spinand_markbad, 829 .isbad = spinand_isbad, 830 }; 831 832 static const struct spinand_manufacturer *spinand_manufacturers[] = { 833 ¯onix_spinand_manufacturer, 834 µn_spinand_manufacturer, 835 &winbond_spinand_manufacturer, 836 }; 837 838 static int spinand_manufacturer_detect(struct spinand_device *spinand) 839 { 840 unsigned int i; 841 int ret; 842 843 for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) { 844 ret = spinand_manufacturers[i]->ops->detect(spinand); 845 if (ret > 0) { 846 spinand->manufacturer = spinand_manufacturers[i]; 847 return 0; 848 } else if (ret < 0) { 849 return ret; 850 } 851 } 852 853 return -ENOTSUPP; 854 } 855 856 static int spinand_manufacturer_init(struct spinand_device *spinand) 857 { 858 if (spinand->manufacturer->ops->init) 859 return spinand->manufacturer->ops->init(spinand); 860 861 return 0; 862 } 863 864 static void spinand_manufacturer_cleanup(struct spinand_device *spinand) 865 { 866 /* Release manufacturer private data */ 867 if (spinand->manufacturer->ops->cleanup) 868 return spinand->manufacturer->ops->cleanup(spinand); 869 } 870 871 static const struct spi_mem_op * 872 spinand_select_op_variant(struct spinand_device *spinand, 873 const struct spinand_op_variants *variants) 874 { 875 struct nand_device *nand = spinand_to_nand(spinand); 876 unsigned int i; 877 878 for (i = 0; i < variants->nops; i++) { 879 struct spi_mem_op op = variants->ops[i]; 880 unsigned int nbytes; 881 int ret; 882 883 nbytes = nanddev_per_page_oobsize(nand) + 884 nanddev_page_size(nand); 885 886 while (nbytes) { 887 op.data.nbytes = nbytes; 888 ret = spi_mem_adjust_op_size(spinand->slave, &op); 889 if (ret) 890 break; 891 892 if (!spi_mem_supports_op(spinand->slave, &op)) 893 break; 894 895 nbytes -= op.data.nbytes; 896 } 897 898 if (!nbytes) 899 return &variants->ops[i]; 900 } 901 902 return NULL; 903 } 904 905 /** 906 * spinand_match_and_init() - Try to find a match between a device ID and an 907 * entry in a spinand_info table 908 * @spinand: SPI NAND object 909 * @table: SPI NAND device description table 910 * @table_size: size of the device description table 911 * 912 * Should be used by SPI NAND manufacturer drivers when they want to find a 913 * match between a device ID retrieved through the READ_ID command and an 914 * entry in the SPI NAND description table. If a match is found, the spinand 915 * object will be initialized with information provided by the matching 916 * spinand_info entry. 917 * 918 * Return: 0 on success, a negative error code otherwise. 919 */ 920 int spinand_match_and_init(struct spinand_device *spinand, 921 const struct spinand_info *table, 922 unsigned int table_size, u8 devid) 923 { 924 struct nand_device *nand = spinand_to_nand(spinand); 925 unsigned int i; 926 927 for (i = 0; i < table_size; i++) { 928 const struct spinand_info *info = &table[i]; 929 const struct spi_mem_op *op; 930 931 if (devid != info->devid) 932 continue; 933 934 nand->memorg = table[i].memorg; 935 nand->eccreq = table[i].eccreq; 936 spinand->eccinfo = table[i].eccinfo; 937 spinand->flags = table[i].flags; 938 spinand->select_target = table[i].select_target; 939 940 op = spinand_select_op_variant(spinand, 941 info->op_variants.read_cache); 942 if (!op) 943 return -ENOTSUPP; 944 945 spinand->op_templates.read_cache = op; 946 947 op = spinand_select_op_variant(spinand, 948 info->op_variants.write_cache); 949 if (!op) 950 return -ENOTSUPP; 951 952 spinand->op_templates.write_cache = op; 953 954 op = spinand_select_op_variant(spinand, 955 info->op_variants.update_cache); 956 spinand->op_templates.update_cache = op; 957 958 return 0; 959 } 960 961 return -ENOTSUPP; 962 } 963 964 static int spinand_detect(struct spinand_device *spinand) 965 { 966 struct nand_device *nand = spinand_to_nand(spinand); 967 int ret; 968 969 ret = spinand_reset_op(spinand); 970 if (ret) 971 return ret; 972 973 ret = spinand_read_id_op(spinand, spinand->id.data); 974 if (ret) 975 return ret; 976 977 spinand->id.len = SPINAND_MAX_ID_LEN; 978 979 ret = spinand_manufacturer_detect(spinand); 980 if (ret) { 981 dev_err(dev, "unknown raw ID %*phN\n", SPINAND_MAX_ID_LEN, 982 spinand->id.data); 983 return ret; 984 } 985 986 if (nand->memorg.ntargets > 1 && !spinand->select_target) { 987 dev_err(dev, 988 "SPI NANDs with more than one die must implement ->select_target()\n"); 989 return -EINVAL; 990 } 991 992 dev_info(spinand->slave->dev, 993 "%s SPI NAND was found.\n", spinand->manufacturer->name); 994 dev_info(spinand->slave->dev, 995 "%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n", 996 nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10, 997 nanddev_page_size(nand), nanddev_per_page_oobsize(nand)); 998 999 return 0; 1000 } 1001 1002 static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section, 1003 struct mtd_oob_region *region) 1004 { 1005 return -ERANGE; 1006 } 1007 1008 static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section, 1009 struct mtd_oob_region *region) 1010 { 1011 if (section) 1012 return -ERANGE; 1013 1014 /* Reserve 2 bytes for the BBM. */ 1015 region->offset = 2; 1016 region->length = 62; 1017 1018 return 0; 1019 } 1020 1021 static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = { 1022 .ecc = spinand_noecc_ooblayout_ecc, 1023 .free = spinand_noecc_ooblayout_free, 1024 }; 1025 1026 static int spinand_init(struct spinand_device *spinand) 1027 { 1028 struct mtd_info *mtd = spinand_to_mtd(spinand); 1029 struct nand_device *nand = mtd_to_nanddev(mtd); 1030 int ret, i; 1031 1032 /* 1033 * We need a scratch buffer because the spi_mem interface requires that 1034 * buf passed in spi_mem_op->data.buf be DMA-able. 1035 */ 1036 spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL); 1037 if (!spinand->scratchbuf) 1038 return -ENOMEM; 1039 1040 ret = spinand_detect(spinand); 1041 if (ret) 1042 goto err_free_bufs; 1043 1044 /* 1045 * Use kzalloc() instead of devm_kzalloc() here, because some drivers 1046 * may use this buffer for DMA access. 1047 * Memory allocated by devm_ does not guarantee DMA-safe alignment. 1048 */ 1049 spinand->databuf = kzalloc(nanddev_page_size(nand) + 1050 nanddev_per_page_oobsize(nand), 1051 GFP_KERNEL); 1052 if (!spinand->databuf) { 1053 ret = -ENOMEM; 1054 goto err_free_bufs; 1055 } 1056 1057 spinand->oobbuf = spinand->databuf + nanddev_page_size(nand); 1058 1059 ret = spinand_init_cfg_cache(spinand); 1060 if (ret) 1061 goto err_free_bufs; 1062 1063 ret = spinand_init_quad_enable(spinand); 1064 if (ret) 1065 goto err_free_bufs; 1066 1067 ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0); 1068 if (ret) 1069 goto err_free_bufs; 1070 1071 ret = spinand_manufacturer_init(spinand); 1072 if (ret) { 1073 dev_err(dev, 1074 "Failed to initialize the SPI NAND chip (err = %d)\n", 1075 ret); 1076 goto err_free_bufs; 1077 } 1078 1079 /* After power up, all blocks are locked, so unlock them here. */ 1080 for (i = 0; i < nand->memorg.ntargets; i++) { 1081 ret = spinand_select_target(spinand, i); 1082 if (ret) 1083 goto err_free_bufs; 1084 1085 ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED); 1086 if (ret) 1087 goto err_free_bufs; 1088 } 1089 1090 ret = nanddev_init(nand, &spinand_ops, THIS_MODULE); 1091 if (ret) 1092 goto err_manuf_cleanup; 1093 1094 /* 1095 * Right now, we don't support ECC, so let the whole oob 1096 * area is available for user. 1097 */ 1098 mtd->_read_oob = spinand_mtd_read; 1099 mtd->_write_oob = spinand_mtd_write; 1100 mtd->_block_isbad = spinand_mtd_block_isbad; 1101 mtd->_block_markbad = spinand_mtd_block_markbad; 1102 mtd->_block_isreserved = spinand_mtd_block_isreserved; 1103 mtd->_erase = spinand_mtd_erase; 1104 1105 if (spinand->eccinfo.ooblayout) 1106 mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout); 1107 else 1108 mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout); 1109 1110 ret = mtd_ooblayout_count_freebytes(mtd); 1111 if (ret < 0) 1112 goto err_cleanup_nanddev; 1113 1114 mtd->oobavail = ret; 1115 1116 return 0; 1117 1118 err_cleanup_nanddev: 1119 nanddev_cleanup(nand); 1120 1121 err_manuf_cleanup: 1122 spinand_manufacturer_cleanup(spinand); 1123 1124 err_free_bufs: 1125 kfree(spinand->databuf); 1126 kfree(spinand->scratchbuf); 1127 return ret; 1128 } 1129 1130 static void spinand_cleanup(struct spinand_device *spinand) 1131 { 1132 struct nand_device *nand = spinand_to_nand(spinand); 1133 1134 nanddev_cleanup(nand); 1135 spinand_manufacturer_cleanup(spinand); 1136 kfree(spinand->databuf); 1137 kfree(spinand->scratchbuf); 1138 } 1139 1140 static int spinand_probe(struct udevice *dev) 1141 { 1142 struct spinand_device *spinand = dev_get_priv(dev); 1143 struct spi_slave *slave = dev_get_parent_priv(dev); 1144 struct mtd_info *mtd = dev_get_uclass_priv(dev); 1145 struct nand_device *nand = spinand_to_nand(spinand); 1146 int ret; 1147 1148 #ifndef __UBOOT__ 1149 spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand), 1150 GFP_KERNEL); 1151 if (!spinand) 1152 return -ENOMEM; 1153 1154 spinand->spimem = mem; 1155 spi_mem_set_drvdata(mem, spinand); 1156 spinand_set_of_node(spinand, mem->spi->dev.of_node); 1157 mutex_init(&spinand->lock); 1158 1159 mtd = spinand_to_mtd(spinand); 1160 mtd->dev.parent = &mem->spi->dev; 1161 #else 1162 nand->mtd = mtd; 1163 mtd->priv = nand; 1164 mtd->dev = dev; 1165 mtd->name = malloc(20); 1166 if (!mtd->name) 1167 return -ENOMEM; 1168 sprintf(mtd->name, "spi-nand%d", spi_nand_idx++); 1169 spinand->slave = slave; 1170 spinand_set_of_node(spinand, dev->node.np); 1171 #endif 1172 1173 ret = spinand_init(spinand); 1174 if (ret) 1175 return ret; 1176 1177 #ifndef __UBOOT__ 1178 ret = mtd_device_register(mtd, NULL, 0); 1179 #else 1180 ret = add_mtd_device(mtd); 1181 #endif 1182 if (ret) 1183 goto err_spinand_cleanup; 1184 1185 return 0; 1186 1187 err_spinand_cleanup: 1188 spinand_cleanup(spinand); 1189 1190 return ret; 1191 } 1192 1193 #ifndef __UBOOT__ 1194 static int spinand_remove(struct udevice *slave) 1195 { 1196 struct spinand_device *spinand; 1197 struct mtd_info *mtd; 1198 int ret; 1199 1200 spinand = spi_mem_get_drvdata(slave); 1201 mtd = spinand_to_mtd(spinand); 1202 free(mtd->name); 1203 1204 ret = mtd_device_unregister(mtd); 1205 if (ret) 1206 return ret; 1207 1208 spinand_cleanup(spinand); 1209 1210 return 0; 1211 } 1212 1213 static const struct spi_device_id spinand_ids[] = { 1214 { .name = "spi-nand" }, 1215 { /* sentinel */ }, 1216 }; 1217 1218 #ifdef CONFIG_OF 1219 static const struct of_device_id spinand_of_ids[] = { 1220 { .compatible = "spi-nand" }, 1221 { /* sentinel */ }, 1222 }; 1223 #endif 1224 1225 static struct spi_mem_driver spinand_drv = { 1226 .spidrv = { 1227 .id_table = spinand_ids, 1228 .driver = { 1229 .name = "spi-nand", 1230 .of_match_table = of_match_ptr(spinand_of_ids), 1231 }, 1232 }, 1233 .probe = spinand_probe, 1234 .remove = spinand_remove, 1235 }; 1236 module_spi_mem_driver(spinand_drv); 1237 1238 MODULE_DESCRIPTION("SPI NAND framework"); 1239 MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>"); 1240 MODULE_LICENSE("GPL v2"); 1241 #endif /* __UBOOT__ */ 1242 1243 static const struct udevice_id spinand_ids[] = { 1244 { .compatible = "spi-nand" }, 1245 { /* sentinel */ }, 1246 }; 1247 1248 U_BOOT_DRIVER(spinand) = { 1249 .name = "spi_nand", 1250 .id = UCLASS_MTD, 1251 .of_match = spinand_ids, 1252 .priv_auto_alloc_size = sizeof(struct spinand_device), 1253 .probe = spinand_probe, 1254 }; 1255