xref: /openbmc/u-boot/drivers/mtd/mtdpart.c (revision 8bd197770621df19e3eacd3ef83f9616b15b126f)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Simple MTD partitioning layer
4  *
5  * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
6  * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
7  * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
8  *
9  */
10 
11 #ifndef __UBOOT__
12 #include <linux/module.h>
13 #include <linux/types.h>
14 #include <linux/kernel.h>
15 #include <linux/slab.h>
16 #include <linux/list.h>
17 #include <linux/kmod.h>
18 #endif
19 
20 #include <common.h>
21 #include <malloc.h>
22 #include <linux/errno.h>
23 #include <linux/compat.h>
24 #include <ubi_uboot.h>
25 
26 #include <linux/mtd/mtd.h>
27 #include <linux/mtd/partitions.h>
28 #include <linux/err.h>
29 #include <linux/sizes.h>
30 
31 #include "mtdcore.h"
32 
33 #ifndef __UBOOT__
34 static DEFINE_MUTEX(mtd_partitions_mutex);
35 #else
36 DEFINE_MUTEX(mtd_partitions_mutex);
37 #endif
38 
39 #ifdef __UBOOT__
40 /* from mm/util.c */
41 
42 /**
43  * kstrdup - allocate space for and copy an existing string
44  * @s: the string to duplicate
45  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
46  */
47 char *kstrdup(const char *s, gfp_t gfp)
48 {
49 	size_t len;
50 	char *buf;
51 
52 	if (!s)
53 		return NULL;
54 
55 	len = strlen(s) + 1;
56 	buf = kmalloc(len, gfp);
57 	if (buf)
58 		memcpy(buf, s, len);
59 	return buf;
60 }
61 #endif
62 
63 #define MTD_SIZE_REMAINING		(~0LLU)
64 #define MTD_OFFSET_NOT_SPECIFIED	(~0LLU)
65 
66 /**
67  * mtd_parse_partition - Parse @mtdparts partition definition, fill @partition
68  *                       with it and update the @mtdparts string pointer.
69  *
70  * The partition name is allocated and must be freed by the caller.
71  *
72  * This function is widely inspired from part_parse (mtdparts.c).
73  *
74  * @mtdparts: String describing the partition with mtdparts command syntax
75  * @partition: MTD partition structure to fill
76  *
77  * @return 0 on success, an error otherwise.
78  */
79 static int mtd_parse_partition(const char **_mtdparts,
80 			       struct mtd_partition *partition)
81 {
82 	const char *mtdparts = *_mtdparts;
83 	const char *name = NULL;
84 	int name_len;
85 	char *buf;
86 
87 	/* Ensure the partition structure is empty */
88 	memset(partition, 0, sizeof(struct mtd_partition));
89 
90 	/* Fetch the partition size */
91 	if (*mtdparts == '-') {
92 		/* Assign all remaining space to this partition */
93 		partition->size = MTD_SIZE_REMAINING;
94 		mtdparts++;
95 	} else {
96 		partition->size = ustrtoull(mtdparts, (char **)&mtdparts, 0);
97 		if (partition->size < SZ_4K) {
98 			printf("Minimum partition size 4kiB, %lldB requested\n",
99 			       partition->size);
100 			return -EINVAL;
101 		}
102 	}
103 
104 	/* Check for the offset */
105 	partition->offset = MTD_OFFSET_NOT_SPECIFIED;
106 	if (*mtdparts == '@') {
107 		mtdparts++;
108 		partition->offset = ustrtoull(mtdparts, (char **)&mtdparts, 0);
109 	}
110 
111 	/* Now look for the name */
112 	if (*mtdparts == '(') {
113 		name = ++mtdparts;
114 		mtdparts = strchr(name, ')');
115 		if (!mtdparts) {
116 			printf("No closing ')' found in partition name\n");
117 			return -EINVAL;
118 		}
119 		name_len = mtdparts - name + 1;
120 		if ((name_len - 1) == 0) {
121 			printf("Empty partition name\n");
122 			return -EINVAL;
123 		}
124 		mtdparts++;
125 	} else {
126 		/* Name will be of the form size@offset */
127 		name_len = 22;
128 	}
129 
130 	/* Check if the partition is read-only */
131 	if (strncmp(mtdparts, "ro", 2) == 0) {
132 		partition->mask_flags |= MTD_WRITEABLE;
133 		mtdparts += 2;
134 	}
135 
136 	/* Check for a potential next partition definition */
137 	if (*mtdparts == ',') {
138 		if (partition->size == MTD_SIZE_REMAINING) {
139 			printf("No partitions allowed after a fill-up\n");
140 			return -EINVAL;
141 		}
142 		++mtdparts;
143 	} else if ((*mtdparts == ';') || (*mtdparts == '\0')) {
144 		/* NOP */
145 	} else {
146 		printf("Unexpected character '%c' in mtdparts\n", *mtdparts);
147 		return -EINVAL;
148 	}
149 
150 	/*
151 	 * Allocate a buffer for the name and either copy the provided name or
152 	 * auto-generate it with the form 'size@offset'.
153 	 */
154 	buf = malloc(name_len);
155 	if (!buf)
156 		return -ENOMEM;
157 
158 	if (name)
159 		strncpy(buf, name, name_len - 1);
160 	else
161 		snprintf(buf, name_len, "0x%08llx@0x%08llx",
162 			 partition->size, partition->offset);
163 
164 	buf[name_len - 1] = '\0';
165 	partition->name = buf;
166 
167 	*_mtdparts = mtdparts;
168 
169 	return 0;
170 }
171 
172 /**
173  * mtd_parse_partitions - Create a partition array from an mtdparts definition
174  *
175  * Stateless function that takes a @parent MTD device, a string @_mtdparts
176  * describing the partitions (with the "mtdparts" command syntax) and creates
177  * the corresponding MTD partition structure array @_parts. Both the name and
178  * the structure partition itself must be freed freed, the caller may use
179  * @mtd_free_parsed_partitions() for this purpose.
180  *
181  * @parent: MTD device which contains the partitions
182  * @_mtdparts: Pointer to a string describing the partitions with "mtdparts"
183  *             command syntax.
184  * @_parts: Allocated array containing the partitions, must be freed by the
185  *          caller.
186  * @_nparts: Size of @_parts array.
187  *
188  * @return 0 on success, an error otherwise.
189  */
190 int mtd_parse_partitions(struct mtd_info *parent, const char **_mtdparts,
191 			 struct mtd_partition **_parts, int *_nparts)
192 {
193 	struct mtd_partition partition = {}, *parts;
194 	const char *mtdparts = *_mtdparts;
195 	int cur_off = 0, cur_sz = 0;
196 	int nparts = 0;
197 	int ret, idx;
198 	u64 sz;
199 
200 	/* First, iterate over the partitions until we know their number */
201 	while (mtdparts[0] != '\0' && mtdparts[0] != ';') {
202 		ret = mtd_parse_partition(&mtdparts, &partition);
203 		if (ret)
204 			return ret;
205 
206 		free((char *)partition.name);
207 		nparts++;
208 	}
209 
210 	/* Allocate an array of partitions to give back to the caller */
211 	parts = malloc(sizeof(*parts) * nparts);
212 	if (!parts) {
213 		printf("Not enough space to save partitions meta-data\n");
214 		return -ENOMEM;
215 	}
216 
217 	/* Iterate again over each partition to save the data in our array */
218 	for (idx = 0; idx < nparts; idx++) {
219 		ret = mtd_parse_partition(_mtdparts, &parts[idx]);
220 		if (ret)
221 			return ret;
222 
223 		if (parts[idx].size == MTD_SIZE_REMAINING)
224 			parts[idx].size = parent->size - cur_sz;
225 		cur_sz += parts[idx].size;
226 
227 		sz = parts[idx].size;
228 		if (sz < parent->writesize || do_div(sz, parent->writesize)) {
229 			printf("Partition size must be a multiple of %d\n",
230 			       parent->writesize);
231 			return -EINVAL;
232 		}
233 
234 		if (parts[idx].offset == MTD_OFFSET_NOT_SPECIFIED)
235 			parts[idx].offset = cur_off;
236 		cur_off += parts[idx].size;
237 
238 		parts[idx].ecclayout = parent->ecclayout;
239 	}
240 
241 	/* Offset by one mtdparts to point to the next device if any */
242 	if (*_mtdparts[0] == ';')
243 		(*_mtdparts)++;
244 
245 	*_parts = parts;
246 	*_nparts = nparts;
247 
248 	return 0;
249 }
250 
251 /**
252  * mtd_free_parsed_partitions - Free dynamically allocated partitions
253  *
254  * Each successful call to @mtd_parse_partitions must be followed by a call to
255  * @mtd_free_parsed_partitions to free any allocated array during the parsing
256  * process.
257  *
258  * @parts: Array containing the partitions that will be freed.
259  * @nparts: Size of @parts array.
260  */
261 void mtd_free_parsed_partitions(struct mtd_partition *parts,
262 				unsigned int nparts)
263 {
264 	int i;
265 
266 	for (i = 0; i < nparts; i++)
267 		free((char *)parts[i].name);
268 
269 	free(parts);
270 }
271 
272 /*
273  * MTD methods which simply translate the effective address and pass through
274  * to the _real_ device.
275  */
276 
277 static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
278 		size_t *retlen, u_char *buf)
279 {
280 	struct mtd_ecc_stats stats;
281 	int res;
282 
283 	stats = mtd->parent->ecc_stats;
284 	res = mtd->parent->_read(mtd->parent, from + mtd->offset, len,
285 				 retlen, buf);
286 	if (unlikely(mtd_is_eccerr(res)))
287 		mtd->ecc_stats.failed +=
288 			mtd->parent->ecc_stats.failed - stats.failed;
289 	else
290 		mtd->ecc_stats.corrected +=
291 			mtd->parent->ecc_stats.corrected - stats.corrected;
292 	return res;
293 }
294 
295 #ifndef __UBOOT__
296 static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
297 		size_t *retlen, void **virt, resource_size_t *phys)
298 {
299 	return mtd->parent->_point(mtd->parent, from + mtd->offset, len,
300 				   retlen, virt, phys);
301 }
302 
303 static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
304 {
305 	return mtd->parent->_unpoint(mtd->parent, from + mtd->offset, len);
306 }
307 #endif
308 
309 static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
310 					    unsigned long len,
311 					    unsigned long offset,
312 					    unsigned long flags)
313 {
314 	offset += mtd->offset;
315 	return mtd->parent->_get_unmapped_area(mtd->parent, len, offset, flags);
316 }
317 
318 static int part_read_oob(struct mtd_info *mtd, loff_t from,
319 		struct mtd_oob_ops *ops)
320 {
321 	int res;
322 
323 	if (from >= mtd->size)
324 		return -EINVAL;
325 	if (ops->datbuf && from + ops->len > mtd->size)
326 		return -EINVAL;
327 
328 	/*
329 	 * If OOB is also requested, make sure that we do not read past the end
330 	 * of this partition.
331 	 */
332 	if (ops->oobbuf) {
333 		size_t len, pages;
334 
335 		if (ops->mode == MTD_OPS_AUTO_OOB)
336 			len = mtd->oobavail;
337 		else
338 			len = mtd->oobsize;
339 		pages = mtd_div_by_ws(mtd->size, mtd);
340 		pages -= mtd_div_by_ws(from, mtd);
341 		if (ops->ooboffs + ops->ooblen > pages * len)
342 			return -EINVAL;
343 	}
344 
345 	res = mtd->parent->_read_oob(mtd->parent, from + mtd->offset, ops);
346 	if (unlikely(res)) {
347 		if (mtd_is_bitflip(res))
348 			mtd->ecc_stats.corrected++;
349 		if (mtd_is_eccerr(res))
350 			mtd->ecc_stats.failed++;
351 	}
352 	return res;
353 }
354 
355 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
356 		size_t len, size_t *retlen, u_char *buf)
357 {
358 	return mtd->parent->_read_user_prot_reg(mtd->parent, from, len,
359 						retlen, buf);
360 }
361 
362 static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
363 				   size_t *retlen, struct otp_info *buf)
364 {
365 	return mtd->parent->_get_user_prot_info(mtd->parent, len, retlen,
366 						buf);
367 }
368 
369 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
370 		size_t len, size_t *retlen, u_char *buf)
371 {
372 	return mtd->parent->_read_fact_prot_reg(mtd->parent, from, len,
373 						retlen, buf);
374 }
375 
376 static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
377 				   size_t *retlen, struct otp_info *buf)
378 {
379 	return mtd->parent->_get_fact_prot_info(mtd->parent, len, retlen,
380 						buf);
381 }
382 
383 static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
384 		size_t *retlen, const u_char *buf)
385 {
386 	return mtd->parent->_write(mtd->parent, to + mtd->offset, len,
387 				   retlen, buf);
388 }
389 
390 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
391 		size_t *retlen, const u_char *buf)
392 {
393 	return mtd->parent->_panic_write(mtd->parent, to + mtd->offset, len,
394 					 retlen, buf);
395 }
396 
397 static int part_write_oob(struct mtd_info *mtd, loff_t to,
398 		struct mtd_oob_ops *ops)
399 {
400 	if (to >= mtd->size)
401 		return -EINVAL;
402 	if (ops->datbuf && to + ops->len > mtd->size)
403 		return -EINVAL;
404 	return mtd->parent->_write_oob(mtd->parent, to + mtd->offset, ops);
405 }
406 
407 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
408 		size_t len, size_t *retlen, u_char *buf)
409 {
410 	return mtd->parent->_write_user_prot_reg(mtd->parent, from, len,
411 						 retlen, buf);
412 }
413 
414 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
415 		size_t len)
416 {
417 	return mtd->parent->_lock_user_prot_reg(mtd->parent, from, len);
418 }
419 
420 #ifndef __UBOOT__
421 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
422 		unsigned long count, loff_t to, size_t *retlen)
423 {
424 	return mtd->parent->_writev(mtd->parent, vecs, count,
425 				    to + mtd->offset, retlen);
426 }
427 #endif
428 
429 static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
430 {
431 	int ret;
432 
433 	instr->addr += mtd->offset;
434 	ret = mtd->parent->_erase(mtd->parent, instr);
435 	if (ret) {
436 		if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
437 			instr->fail_addr -= mtd->offset;
438 		instr->addr -= mtd->offset;
439 	}
440 	return ret;
441 }
442 
443 void mtd_erase_callback(struct erase_info *instr)
444 {
445 	if (instr->mtd->_erase == part_erase) {
446 		if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
447 			instr->fail_addr -= instr->mtd->offset;
448 		instr->addr -= instr->mtd->offset;
449 	}
450 	if (instr->callback)
451 		instr->callback(instr);
452 }
453 EXPORT_SYMBOL_GPL(mtd_erase_callback);
454 
455 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
456 {
457 	return mtd->parent->_lock(mtd->parent, ofs + mtd->offset, len);
458 }
459 
460 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
461 {
462 	return mtd->parent->_unlock(mtd->parent, ofs + mtd->offset, len);
463 }
464 
465 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
466 {
467 	return mtd->parent->_is_locked(mtd->parent, ofs + mtd->offset, len);
468 }
469 
470 static void part_sync(struct mtd_info *mtd)
471 {
472 	mtd->parent->_sync(mtd->parent);
473 }
474 
475 #ifndef __UBOOT__
476 static int part_suspend(struct mtd_info *mtd)
477 {
478 	return mtd->parent->_suspend(mtd->parent);
479 }
480 
481 static void part_resume(struct mtd_info *mtd)
482 {
483 	mtd->parent->_resume(mtd->parent);
484 }
485 #endif
486 
487 static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
488 {
489 	ofs += mtd->offset;
490 	return mtd->parent->_block_isreserved(mtd->parent, ofs);
491 }
492 
493 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
494 {
495 	ofs += mtd->offset;
496 	return mtd->parent->_block_isbad(mtd->parent, ofs);
497 }
498 
499 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
500 {
501 	int res;
502 
503 	ofs += mtd->offset;
504 	res = mtd->parent->_block_markbad(mtd->parent, ofs);
505 	if (!res)
506 		mtd->ecc_stats.badblocks++;
507 	return res;
508 }
509 
510 static inline void free_partition(struct mtd_info *p)
511 {
512 	kfree(p->name);
513 	kfree(p);
514 }
515 
516 /*
517  * This function unregisters and destroy all slave MTD objects which are
518  * attached to the given master MTD object, recursively.
519  */
520 static int do_del_mtd_partitions(struct mtd_info *master)
521 {
522 	struct mtd_info *slave, *next;
523 	int ret, err = 0;
524 
525 	list_for_each_entry_safe(slave, next, &master->partitions, node) {
526 		if (mtd_has_partitions(slave))
527 			del_mtd_partitions(slave);
528 
529 		debug("Deleting %s MTD partition\n", slave->name);
530 		ret = del_mtd_device(slave);
531 		if (ret < 0) {
532 			printf("Error when deleting partition \"%s\" (%d)\n",
533 			       slave->name, ret);
534 			err = ret;
535 			continue;
536 		}
537 
538 		list_del(&slave->node);
539 		free_partition(slave);
540 	}
541 
542 	return err;
543 }
544 
545 int del_mtd_partitions(struct mtd_info *master)
546 {
547 	int ret;
548 
549 	debug("Deleting MTD partitions on \"%s\":\n", master->name);
550 
551 	mutex_lock(&mtd_partitions_mutex);
552 	ret = do_del_mtd_partitions(master);
553 	mutex_unlock(&mtd_partitions_mutex);
554 
555 	return ret;
556 }
557 
558 static struct mtd_info *allocate_partition(struct mtd_info *master,
559 					   const struct mtd_partition *part,
560 					   int partno, uint64_t cur_offset)
561 {
562 	struct mtd_info *slave;
563 	char *name;
564 
565 	/* allocate the partition structure */
566 	slave = kzalloc(sizeof(*slave), GFP_KERNEL);
567 	name = kstrdup(part->name, GFP_KERNEL);
568 	if (!name || !slave) {
569 		printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
570 		       master->name);
571 		kfree(name);
572 		kfree(slave);
573 		return ERR_PTR(-ENOMEM);
574 	}
575 
576 	/* set up the MTD object for this partition */
577 	slave->type = master->type;
578 	slave->flags = master->flags & ~part->mask_flags;
579 	slave->size = part->size;
580 	slave->writesize = master->writesize;
581 	slave->writebufsize = master->writebufsize;
582 	slave->oobsize = master->oobsize;
583 	slave->oobavail = master->oobavail;
584 	slave->subpage_sft = master->subpage_sft;
585 
586 	slave->name = name;
587 	slave->owner = master->owner;
588 #ifndef __UBOOT__
589 	slave->backing_dev_info = master->backing_dev_info;
590 
591 	/* NOTE:  we don't arrange MTDs as a tree; it'd be error-prone
592 	 * to have the same data be in two different partitions.
593 	 */
594 	slave->dev.parent = master->dev.parent;
595 #endif
596 
597 	if (master->_read)
598 		slave->_read = part_read;
599 	if (master->_write)
600 		slave->_write = part_write;
601 
602 	if (master->_panic_write)
603 		slave->_panic_write = part_panic_write;
604 
605 #ifndef __UBOOT__
606 	if (master->_point && master->_unpoint) {
607 		slave->_point = part_point;
608 		slave->_unpoint = part_unpoint;
609 	}
610 #endif
611 
612 	if (master->_get_unmapped_area)
613 		slave->_get_unmapped_area = part_get_unmapped_area;
614 	if (master->_read_oob)
615 		slave->_read_oob = part_read_oob;
616 	if (master->_write_oob)
617 		slave->_write_oob = part_write_oob;
618 	if (master->_read_user_prot_reg)
619 		slave->_read_user_prot_reg = part_read_user_prot_reg;
620 	if (master->_read_fact_prot_reg)
621 		slave->_read_fact_prot_reg = part_read_fact_prot_reg;
622 	if (master->_write_user_prot_reg)
623 		slave->_write_user_prot_reg = part_write_user_prot_reg;
624 	if (master->_lock_user_prot_reg)
625 		slave->_lock_user_prot_reg = part_lock_user_prot_reg;
626 	if (master->_get_user_prot_info)
627 		slave->_get_user_prot_info = part_get_user_prot_info;
628 	if (master->_get_fact_prot_info)
629 		slave->_get_fact_prot_info = part_get_fact_prot_info;
630 	if (master->_sync)
631 		slave->_sync = part_sync;
632 #ifndef __UBOOT__
633 	if (!partno && !master->dev.class && master->_suspend &&
634 	    master->_resume) {
635 		slave->_suspend = part_suspend;
636 		slave->_resume = part_resume;
637 	}
638 	if (master->_writev)
639 		slave->_writev = part_writev;
640 #endif
641 	if (master->_lock)
642 		slave->_lock = part_lock;
643 	if (master->_unlock)
644 		slave->_unlock = part_unlock;
645 	if (master->_is_locked)
646 		slave->_is_locked = part_is_locked;
647 	if (master->_block_isreserved)
648 		slave->_block_isreserved = part_block_isreserved;
649 	if (master->_block_isbad)
650 		slave->_block_isbad = part_block_isbad;
651 	if (master->_block_markbad)
652 		slave->_block_markbad = part_block_markbad;
653 	slave->_erase = part_erase;
654 	slave->parent = master;
655 	slave->offset = part->offset;
656 	INIT_LIST_HEAD(&slave->partitions);
657 	INIT_LIST_HEAD(&slave->node);
658 
659 	if (slave->offset == MTDPART_OFS_APPEND)
660 		slave->offset = cur_offset;
661 	if (slave->offset == MTDPART_OFS_NXTBLK) {
662 		slave->offset = cur_offset;
663 		if (mtd_mod_by_eb(cur_offset, master) != 0) {
664 			/* Round up to next erasesize */
665 			slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
666 			debug("Moving partition %d: "
667 			       "0x%012llx -> 0x%012llx\n", partno,
668 			       (unsigned long long)cur_offset, (unsigned long long)slave->offset);
669 		}
670 	}
671 	if (slave->offset == MTDPART_OFS_RETAIN) {
672 		slave->offset = cur_offset;
673 		if (master->size - slave->offset >= slave->size) {
674 			slave->size = master->size - slave->offset
675 							- slave->size;
676 		} else {
677 			debug("mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
678 				part->name, master->size - slave->offset,
679 				slave->size);
680 			/* register to preserve ordering */
681 			goto out_register;
682 		}
683 	}
684 	if (slave->size == MTDPART_SIZ_FULL)
685 		slave->size = master->size - slave->offset;
686 
687 	debug("0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
688 		(unsigned long long)(slave->offset + slave->size), slave->name);
689 
690 	/* let's do some sanity checks */
691 	if (slave->offset >= master->size) {
692 		/* let's register it anyway to preserve ordering */
693 		slave->offset = 0;
694 		slave->size = 0;
695 		printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
696 			part->name);
697 		goto out_register;
698 	}
699 	if (slave->offset + slave->size > master->size) {
700 		slave->size = master->size - slave->offset;
701 		printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
702 		       part->name, master->name, slave->size);
703 	}
704 	if (master->numeraseregions > 1) {
705 		/* Deal with variable erase size stuff */
706 		int i, max = master->numeraseregions;
707 		u64 end = slave->offset + slave->size;
708 		struct mtd_erase_region_info *regions = master->eraseregions;
709 
710 		/* Find the first erase regions which is part of this
711 		 * partition. */
712 		for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
713 			;
714 		/* The loop searched for the region _behind_ the first one */
715 		if (i > 0)
716 			i--;
717 
718 		/* Pick biggest erasesize */
719 		for (; i < max && regions[i].offset < end; i++) {
720 			if (slave->erasesize < regions[i].erasesize)
721 				slave->erasesize = regions[i].erasesize;
722 		}
723 		WARN_ON(slave->erasesize == 0);
724 	} else {
725 		/* Single erase size */
726 		slave->erasesize = master->erasesize;
727 	}
728 
729 	if ((slave->flags & MTD_WRITEABLE) &&
730 	    mtd_mod_by_eb(slave->offset, slave)) {
731 		/* Doesn't start on a boundary of major erase size */
732 		/* FIXME: Let it be writable if it is on a boundary of
733 		 * _minor_ erase size though */
734 		slave->flags &= ~MTD_WRITEABLE;
735 		printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
736 			part->name);
737 	}
738 	if ((slave->flags & MTD_WRITEABLE) &&
739 	    mtd_mod_by_eb(slave->size, slave)) {
740 		slave->flags &= ~MTD_WRITEABLE;
741 		printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
742 			part->name);
743 	}
744 
745 	slave->ecclayout = master->ecclayout;
746 	slave->ecc_step_size = master->ecc_step_size;
747 	slave->ecc_strength = master->ecc_strength;
748 	slave->bitflip_threshold = master->bitflip_threshold;
749 
750 	if (master->_block_isbad) {
751 		uint64_t offs = 0;
752 
753 		while (offs < slave->size) {
754 			if (mtd_block_isbad(master, offs + slave->offset))
755 				slave->ecc_stats.badblocks++;
756 			offs += slave->erasesize;
757 		}
758 	}
759 
760 out_register:
761 	return slave;
762 }
763 
764 #ifndef __UBOOT__
765 int mtd_add_partition(struct mtd_info *master, const char *name,
766 		      long long offset, long long length)
767 {
768 	struct mtd_partition part;
769 	struct mtd_info *p, *new;
770 	uint64_t start, end;
771 	int ret = 0;
772 
773 	/* the direct offset is expected */
774 	if (offset == MTDPART_OFS_APPEND ||
775 	    offset == MTDPART_OFS_NXTBLK)
776 		return -EINVAL;
777 
778 	if (length == MTDPART_SIZ_FULL)
779 		length = master->size - offset;
780 
781 	if (length <= 0)
782 		return -EINVAL;
783 
784 	part.name = name;
785 	part.size = length;
786 	part.offset = offset;
787 	part.mask_flags = 0;
788 	part.ecclayout = NULL;
789 
790 	new = allocate_partition(master, &part, -1, offset);
791 	if (IS_ERR(new))
792 		return PTR_ERR(new);
793 
794 	start = offset;
795 	end = offset + length;
796 
797 	mutex_lock(&mtd_partitions_mutex);
798 	list_for_each_entry(p, &master->partitions, node) {
799 		if (start >= p->offset &&
800 		    (start < (p->offset + p->size)))
801 			goto err_inv;
802 
803 		if (end >= p->offset &&
804 		    (end < (p->offset + p->size)))
805 			goto err_inv;
806 	}
807 
808 	list_add_tail(&new->node, &master->partitions);
809 	mutex_unlock(&mtd_partitions_mutex);
810 
811 	add_mtd_device(new);
812 
813 	return ret;
814 err_inv:
815 	mutex_unlock(&mtd_partitions_mutex);
816 	free_partition(new);
817 	return -EINVAL;
818 }
819 EXPORT_SYMBOL_GPL(mtd_add_partition);
820 
821 int mtd_del_partition(struct mtd_info *master, int partno)
822 {
823 	struct mtd_info *slave, *next;
824 	int ret = -EINVAL;
825 
826 	mutex_lock(&mtd_partitions_mutex);
827 	list_for_each_entry_safe(slave, next, &master->partitions, node)
828 		if (slave->index == partno) {
829 			ret = del_mtd_device(slave);
830 			if (ret < 0)
831 				break;
832 
833 			list_del(&slave->node);
834 			free_partition(slave);
835 			break;
836 		}
837 	mutex_unlock(&mtd_partitions_mutex);
838 
839 	return ret;
840 }
841 EXPORT_SYMBOL_GPL(mtd_del_partition);
842 #endif
843 
844 /*
845  * This function, given a master MTD object and a partition table, creates
846  * and registers slave MTD objects which are bound to the master according to
847  * the partition definitions.
848  *
849  * We don't register the master, or expect the caller to have done so,
850  * for reasons of data integrity.
851  */
852 
853 int add_mtd_partitions(struct mtd_info *master,
854 		       const struct mtd_partition *parts,
855 		       int nbparts)
856 {
857 	struct mtd_info *slave;
858 	uint64_t cur_offset = 0;
859 	int i;
860 
861 	debug("Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
862 
863 	for (i = 0; i < nbparts; i++) {
864 		slave = allocate_partition(master, parts + i, i, cur_offset);
865 		if (IS_ERR(slave))
866 			return PTR_ERR(slave);
867 
868 		mutex_lock(&mtd_partitions_mutex);
869 		list_add_tail(&slave->node, &master->partitions);
870 		mutex_unlock(&mtd_partitions_mutex);
871 
872 		add_mtd_device(slave);
873 
874 		cur_offset = slave->offset + slave->size;
875 	}
876 
877 	return 0;
878 }
879 
880 #ifndef __UBOOT__
881 static DEFINE_SPINLOCK(part_parser_lock);
882 static LIST_HEAD(part_parsers);
883 
884 static struct mtd_part_parser *get_partition_parser(const char *name)
885 {
886 	struct mtd_part_parser *p, *ret = NULL;
887 
888 	spin_lock(&part_parser_lock);
889 
890 	list_for_each_entry(p, &part_parsers, list)
891 		if (!strcmp(p->name, name) && try_module_get(p->owner)) {
892 			ret = p;
893 			break;
894 		}
895 
896 	spin_unlock(&part_parser_lock);
897 
898 	return ret;
899 }
900 
901 #define put_partition_parser(p) do { module_put((p)->owner); } while (0)
902 
903 void register_mtd_parser(struct mtd_part_parser *p)
904 {
905 	spin_lock(&part_parser_lock);
906 	list_add(&p->list, &part_parsers);
907 	spin_unlock(&part_parser_lock);
908 }
909 EXPORT_SYMBOL_GPL(register_mtd_parser);
910 
911 void deregister_mtd_parser(struct mtd_part_parser *p)
912 {
913 	spin_lock(&part_parser_lock);
914 	list_del(&p->list);
915 	spin_unlock(&part_parser_lock);
916 }
917 EXPORT_SYMBOL_GPL(deregister_mtd_parser);
918 
919 /*
920  * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
921  * are changing this array!
922  */
923 static const char * const default_mtd_part_types[] = {
924 	"cmdlinepart",
925 	"ofpart",
926 	NULL
927 };
928 
929 /**
930  * parse_mtd_partitions - parse MTD partitions
931  * @master: the master partition (describes whole MTD device)
932  * @types: names of partition parsers to try or %NULL
933  * @pparts: array of partitions found is returned here
934  * @data: MTD partition parser-specific data
935  *
936  * This function tries to find partition on MTD device @master. It uses MTD
937  * partition parsers, specified in @types. However, if @types is %NULL, then
938  * the default list of parsers is used. The default list contains only the
939  * "cmdlinepart" and "ofpart" parsers ATM.
940  * Note: If there are more then one parser in @types, the kernel only takes the
941  * partitions parsed out by the first parser.
942  *
943  * This function may return:
944  * o a negative error code in case of failure
945  * o zero if no partitions were found
946  * o a positive number of found partitions, in which case on exit @pparts will
947  *   point to an array containing this number of &struct mtd_info objects.
948  */
949 int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
950 			 struct mtd_partition **pparts,
951 			 struct mtd_part_parser_data *data)
952 {
953 	struct mtd_part_parser *parser;
954 	int ret = 0;
955 
956 	if (!types)
957 		types = default_mtd_part_types;
958 
959 	for ( ; ret <= 0 && *types; types++) {
960 		parser = get_partition_parser(*types);
961 		if (!parser && !request_module("%s", *types))
962 			parser = get_partition_parser(*types);
963 		if (!parser)
964 			continue;
965 		ret = (*parser->parse_fn)(master, pparts, data);
966 		put_partition_parser(parser);
967 		if (ret > 0) {
968 			printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
969 			       ret, parser->name, master->name);
970 			break;
971 		}
972 	}
973 	return ret;
974 }
975 #endif
976 
977 /* Returns the size of the entire flash chip */
978 uint64_t mtd_get_device_size(const struct mtd_info *mtd)
979 {
980 	if (mtd_is_partition(mtd))
981 		return mtd->parent->size;
982 
983 	return mtd->size;
984 }
985 EXPORT_SYMBOL_GPL(mtd_get_device_size);
986