xref: /openbmc/u-boot/drivers/mtd/mtdpart.c (revision 0dd38a35f462b3ba28a49cda2dc80ef57eb52acd)
1 /*
2  * Simple MTD partitioning layer
3  *
4  * (C) 2000 Nicolas Pitre <nico@cam.org>
5  *
6  * This code is GPL
7  *
8  * 	02-21-2002	Thomas Gleixner <gleixner@autronix.de>
9  *			added support for read_oob, write_oob
10  */
11 
12 #include <common.h>
13 #include <malloc.h>
14 #include <asm/errno.h>
15 
16 #include <linux/types.h>
17 #include <linux/list.h>
18 #include <linux/mtd/mtd.h>
19 #include <linux/mtd/partitions.h>
20 #include <linux/compat.h>
21 
22 /* Our partition linked list */
23 struct list_head mtd_partitions;
24 
25 /* Our partition node structure */
26 struct mtd_part {
27 	struct mtd_info mtd;
28 	struct mtd_info *master;
29 	uint64_t offset;
30 	int index;
31 	struct list_head list;
32 	int registered;
33 };
34 
35 /*
36  * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
37  * the pointer to that structure with this macro.
38  */
39 #define PART(x)  ((struct mtd_part *)(x))
40 
41 
42 /*
43  * MTD methods which simply translate the effective address and pass through
44  * to the _real_ device.
45  */
46 
47 static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
48 		size_t *retlen, u_char *buf)
49 {
50 	struct mtd_part *part = PART(mtd);
51 	struct mtd_ecc_stats stats;
52 	int res;
53 
54 	stats = part->master->ecc_stats;
55 	res = mtd_read(part->master, from + part->offset, len, retlen, buf);
56 	if (unlikely(mtd_is_eccerr(res)))
57 		mtd->ecc_stats.failed +=
58 			part->master->ecc_stats.failed - stats.failed;
59 	else
60 		mtd->ecc_stats.corrected +=
61 			part->master->ecc_stats.corrected - stats.corrected;
62 	return res;
63 }
64 
65 static int part_read_oob(struct mtd_info *mtd, loff_t from,
66 		struct mtd_oob_ops *ops)
67 {
68 	struct mtd_part *part = PART(mtd);
69 	int res;
70 
71 	if (from >= mtd->size)
72 		return -EINVAL;
73 	if (ops->datbuf && from + ops->len > mtd->size)
74 		return -EINVAL;
75 	res = mtd_read_oob(part->master, from + part->offset, ops);
76 
77 	if (unlikely(res)) {
78 		if (mtd_is_bitflip(res))
79 			mtd->ecc_stats.corrected++;
80 		if (mtd_is_eccerr(res))
81 			mtd->ecc_stats.failed++;
82 	}
83 	return res;
84 }
85 
86 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
87 		size_t len, size_t *retlen, u_char *buf)
88 {
89 	struct mtd_part *part = PART(mtd);
90 	return mtd_read_user_prot_reg(part->master, from, len, retlen, buf);
91 }
92 
93 static int part_get_user_prot_info(struct mtd_info *mtd,
94 		struct otp_info *buf, size_t len)
95 {
96 	struct mtd_part *part = PART(mtd);
97 	return mtd_get_user_prot_info(part->master, buf, len);
98 }
99 
100 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
101 		size_t len, size_t *retlen, u_char *buf)
102 {
103 	struct mtd_part *part = PART(mtd);
104 	return mtd_read_fact_prot_reg(part->master, from, len, retlen, buf);
105 }
106 
107 static int part_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
108 		size_t len)
109 {
110 	struct mtd_part *part = PART(mtd);
111 	return mtd_get_fact_prot_info(part->master, buf, len);
112 }
113 
114 static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
115 		size_t *retlen, const u_char *buf)
116 {
117 	struct mtd_part *part = PART(mtd);
118 	return mtd_write(part->master, to + part->offset, len, retlen, buf);
119 }
120 
121 static int part_write_oob(struct mtd_info *mtd, loff_t to,
122 		struct mtd_oob_ops *ops)
123 {
124 	struct mtd_part *part = PART(mtd);
125 
126 	if (to >= mtd->size)
127 		return -EINVAL;
128 	if (ops->datbuf && to + ops->len > mtd->size)
129 		return -EINVAL;
130 	return mtd_write_oob(part->master, to + part->offset, ops);
131 }
132 
133 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
134 		size_t len, size_t *retlen, u_char *buf)
135 {
136 	struct mtd_part *part = PART(mtd);
137 	return mtd_write_user_prot_reg(part->master, from, len, retlen, buf);
138 }
139 
140 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
141 		size_t len)
142 {
143 	struct mtd_part *part = PART(mtd);
144 	return mtd_lock_user_prot_reg(part->master, from, len);
145 }
146 
147 static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
148 {
149 	struct mtd_part *part = PART(mtd);
150 	int ret;
151 
152 	instr->addr += part->offset;
153 	ret = mtd_erase(part->master, instr);
154 	if (ret) {
155 		if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
156 			instr->fail_addr -= part->offset;
157 		instr->addr -= part->offset;
158 	}
159 	return ret;
160 }
161 
162 void mtd_erase_callback(struct erase_info *instr)
163 {
164 	if (instr->mtd->_erase == part_erase) {
165 		struct mtd_part *part = PART(instr->mtd);
166 
167 		if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
168 			instr->fail_addr -= part->offset;
169 		instr->addr -= part->offset;
170 	}
171 	if (instr->callback)
172 		instr->callback(instr);
173 }
174 
175 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
176 {
177 	struct mtd_part *part = PART(mtd);
178 	return mtd_lock(part->master, ofs + part->offset, len);
179 }
180 
181 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
182 {
183 	struct mtd_part *part = PART(mtd);
184 	return mtd_unlock(part->master, ofs + part->offset, len);
185 }
186 
187 static void part_sync(struct mtd_info *mtd)
188 {
189 	struct mtd_part *part = PART(mtd);
190 	mtd_sync(part->master);
191 }
192 
193 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
194 {
195 	struct mtd_part *part = PART(mtd);
196 	ofs += part->offset;
197 	return mtd_block_isbad(part->master, ofs);
198 }
199 
200 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
201 {
202 	struct mtd_part *part = PART(mtd);
203 	int res;
204 
205 	ofs += part->offset;
206 	res = mtd_block_markbad(part->master, ofs);
207 	if (!res)
208 		mtd->ecc_stats.badblocks++;
209 	return res;
210 }
211 
212 /*
213  * This function unregisters and destroy all slave MTD objects which are
214  * attached to the given master MTD object.
215  */
216 
217 int del_mtd_partitions(struct mtd_info *master)
218 {
219 	struct mtd_part *slave, *next;
220 
221 	list_for_each_entry_safe(slave, next, &mtd_partitions, list)
222 		if (slave->master == master) {
223 			list_del(&slave->list);
224 			if (slave->registered)
225 				del_mtd_device(&slave->mtd);
226 			kfree(slave);
227 		}
228 
229 	return 0;
230 }
231 
232 static struct mtd_part *add_one_partition(struct mtd_info *master,
233 		const struct mtd_partition *part, int partno,
234 		uint64_t cur_offset)
235 {
236 	struct mtd_part *slave;
237 
238 	/* allocate the partition structure */
239 	slave = kzalloc(sizeof(*slave), GFP_KERNEL);
240 	if (!slave) {
241 		printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
242 			master->name);
243 		del_mtd_partitions(master);
244 		return NULL;
245 	}
246 	list_add(&slave->list, &mtd_partitions);
247 
248 	/* set up the MTD object for this partition */
249 	slave->mtd.type = master->type;
250 	slave->mtd.flags = master->flags & ~part->mask_flags;
251 	slave->mtd.size = part->size;
252 	slave->mtd.writesize = master->writesize;
253 	slave->mtd.oobsize = master->oobsize;
254 	slave->mtd.oobavail = master->oobavail;
255 	slave->mtd.subpage_sft = master->subpage_sft;
256 
257 	slave->mtd.name = part->name;
258 	slave->mtd.owner = master->owner;
259 
260 	slave->mtd._read = part_read;
261 	slave->mtd._write = part_write;
262 
263 	if (master->_read_oob)
264 		slave->mtd._read_oob = part_read_oob;
265 	if (master->_write_oob)
266 		slave->mtd._write_oob = part_write_oob;
267 	if (master->_read_user_prot_reg)
268 		slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
269 	if (master->_read_fact_prot_reg)
270 		slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
271 	if (master->_write_user_prot_reg)
272 		slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
273 	if (master->_lock_user_prot_reg)
274 		slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
275 	if (master->_get_user_prot_info)
276 		slave->mtd._get_user_prot_info = part_get_user_prot_info;
277 	if (master->_get_fact_prot_info)
278 		slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
279 	if (master->_sync)
280 		slave->mtd._sync = part_sync;
281 	if (master->_lock)
282 		slave->mtd._lock = part_lock;
283 	if (master->_unlock)
284 		slave->mtd._unlock = part_unlock;
285 	if (master->_block_isbad)
286 		slave->mtd._block_isbad = part_block_isbad;
287 	if (master->_block_markbad)
288 		slave->mtd._block_markbad = part_block_markbad;
289 	slave->mtd._erase = part_erase;
290 	slave->master = master;
291 	slave->offset = part->offset;
292 	slave->index = partno;
293 
294 	if (slave->offset == MTDPART_OFS_APPEND)
295 		slave->offset = cur_offset;
296 	if (slave->offset == MTDPART_OFS_NXTBLK) {
297 		slave->offset = cur_offset;
298 		if (mtd_mod_by_eb(cur_offset, master) != 0) {
299 			/* Round up to next erasesize */
300 			slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
301 			debug("Moving partition %d: 0x%012llx -> 0x%012llx\n",
302 			      partno, (unsigned long long)cur_offset,
303 			      (unsigned long long)slave->offset);
304 		}
305 	}
306 	if (slave->mtd.size == MTDPART_SIZ_FULL)
307 		slave->mtd.size = master->size - slave->offset;
308 
309 	debug("0x%012llx-0x%012llx : \"%s\"\n",
310 	      (unsigned long long)slave->offset,
311 	      (unsigned long long)(slave->offset + slave->mtd.size),
312 	      slave->mtd.name);
313 
314 	/* let's do some sanity checks */
315 	if (slave->offset >= master->size) {
316 		/* let's register it anyway to preserve ordering */
317 		slave->offset = 0;
318 		slave->mtd.size = 0;
319 		printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
320 			part->name);
321 		goto out_register;
322 	}
323 	if (slave->offset + slave->mtd.size > master->size) {
324 		slave->mtd.size = master->size - slave->offset;
325 		printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
326 			part->name, master->name, (unsigned long long)slave->mtd.size);
327 	}
328 	if (master->numeraseregions > 1) {
329 		/* Deal with variable erase size stuff */
330 		int i, max = master->numeraseregions;
331 		u64 end = slave->offset + slave->mtd.size;
332 		struct mtd_erase_region_info *regions = master->eraseregions;
333 
334 		/* Find the first erase regions which is part of this
335 		 * partition. */
336 		for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
337 			;
338 		/* The loop searched for the region _behind_ the first one */
339 		i--;
340 
341 		/* Pick biggest erasesize */
342 		for (; i < max && regions[i].offset < end; i++) {
343 			if (slave->mtd.erasesize < regions[i].erasesize) {
344 				slave->mtd.erasesize = regions[i].erasesize;
345 			}
346 		}
347 		BUG_ON(slave->mtd.erasesize == 0);
348 	} else {
349 		/* Single erase size */
350 		slave->mtd.erasesize = master->erasesize;
351 	}
352 
353 	if ((slave->mtd.flags & MTD_WRITEABLE) &&
354 	    mtd_mod_by_eb(slave->offset, &slave->mtd)) {
355 		/* Doesn't start on a boundary of major erase size */
356 		/* FIXME: Let it be writable if it is on a boundary of
357 		 * _minor_ erase size though */
358 		slave->mtd.flags &= ~MTD_WRITEABLE;
359 		printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
360 			part->name);
361 	}
362 	if ((slave->mtd.flags & MTD_WRITEABLE) &&
363 	    mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
364 		slave->mtd.flags &= ~MTD_WRITEABLE;
365 		printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
366 			part->name);
367 	}
368 
369 	slave->mtd.ecclayout = master->ecclayout;
370 	if (master->_block_isbad) {
371 		uint64_t offs = 0;
372 
373 		while (offs < slave->mtd.size) {
374 			if (mtd_block_isbad(master, offs + slave->offset))
375 				slave->mtd.ecc_stats.badblocks++;
376 			offs += slave->mtd.erasesize;
377 		}
378 	}
379 
380 out_register:
381 	if (part->mtdp) {
382 		/* store the object pointer (caller may or may not register it*/
383 		*part->mtdp = &slave->mtd;
384 		slave->registered = 0;
385 	} else {
386 		/* register our partition */
387 		add_mtd_device(&slave->mtd);
388 		slave->registered = 1;
389 	}
390 	return slave;
391 }
392 
393 /*
394  * This function, given a master MTD object and a partition table, creates
395  * and registers slave MTD objects which are bound to the master according to
396  * the partition definitions.
397  *
398  * We don't register the master, or expect the caller to have done so,
399  * for reasons of data integrity.
400  */
401 
402 int add_mtd_partitions(struct mtd_info *master,
403 		       const struct mtd_partition *parts,
404 		       int nbparts)
405 {
406 	struct mtd_part *slave;
407 	uint64_t cur_offset = 0;
408 	int i;
409 
410 	/*
411 	 * Need to init the list here, since LIST_INIT() does not
412 	 * work on platforms where relocation has problems (like MIPS
413 	 * & PPC).
414 	 */
415 	if (mtd_partitions.next == NULL)
416 		INIT_LIST_HEAD(&mtd_partitions);
417 
418 	debug("Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
419 
420 	for (i = 0; i < nbparts; i++) {
421 		slave = add_one_partition(master, parts + i, i, cur_offset);
422 		if (!slave)
423 			return -ENOMEM;
424 		cur_offset = slave->offset + slave->mtd.size;
425 	}
426 
427 	return 0;
428 }
429