xref: /openbmc/u-boot/drivers/mtd/mtdcore.c (revision ff94bc40af3481d47546595ba73c136de6af6929)
1 /*
2  * Core registration and callback routines for MTD
3  * drivers and users.
4  *
5  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6  * Copyright © 2006      Red Hat UK Limited
7  *
8  * SPDX-License-Identifier:	GPL-2.0+
9  *
10  */
11 
12 #define __UBOOT__
13 #ifndef __UBOOT__
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/ptrace.h>
17 #include <linux/seq_file.h>
18 #include <linux/string.h>
19 #include <linux/timer.h>
20 #include <linux/major.h>
21 #include <linux/fs.h>
22 #include <linux/err.h>
23 #include <linux/ioctl.h>
24 #include <linux/init.h>
25 #include <linux/proc_fs.h>
26 #include <linux/idr.h>
27 #include <linux/backing-dev.h>
28 #include <linux/gfp.h>
29 #include <linux/slab.h>
30 #else
31 #include <linux/compat.h>
32 #include <linux/err.h>
33 #include <ubi_uboot.h>
34 #endif
35 
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/partitions.h>
38 
39 #include "mtdcore.h"
40 
41 #ifndef __UBOOT__
42 /*
43  * backing device capabilities for non-mappable devices (such as NAND flash)
44  * - permits private mappings, copies are taken of the data
45  */
46 static struct backing_dev_info mtd_bdi_unmappable = {
47 	.capabilities	= BDI_CAP_MAP_COPY,
48 };
49 
50 /*
51  * backing device capabilities for R/O mappable devices (such as ROM)
52  * - permits private mappings, copies are taken of the data
53  * - permits non-writable shared mappings
54  */
55 static struct backing_dev_info mtd_bdi_ro_mappable = {
56 	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
57 			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
58 };
59 
60 /*
61  * backing device capabilities for writable mappable devices (such as RAM)
62  * - permits private mappings, copies are taken of the data
63  * - permits non-writable shared mappings
64  */
65 static struct backing_dev_info mtd_bdi_rw_mappable = {
66 	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
67 			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
68 			   BDI_CAP_WRITE_MAP),
69 };
70 
71 static int mtd_cls_suspend(struct device *dev, pm_message_t state);
72 static int mtd_cls_resume(struct device *dev);
73 
74 static struct class mtd_class = {
75 	.name = "mtd",
76 	.owner = THIS_MODULE,
77 	.suspend = mtd_cls_suspend,
78 	.resume = mtd_cls_resume,
79 };
80 #else
81 struct mtd_info *mtd_table[MAX_MTD_DEVICES];
82 
83 #define MAX_IDR_ID	64
84 
85 struct idr_layer {
86 	int	used;
87 	void	*ptr;
88 };
89 
90 struct idr {
91 	struct idr_layer id[MAX_IDR_ID];
92 };
93 
94 #define DEFINE_IDR(name)	struct idr name;
95 
96 void idr_remove(struct idr *idp, int id)
97 {
98 	if (idp->id[id].used)
99 		idp->id[id].used = 0;
100 
101 	return;
102 }
103 void *idr_find(struct idr *idp, int id)
104 {
105 	if (idp->id[id].used)
106 		return idp->id[id].ptr;
107 
108 	return NULL;
109 }
110 
111 void *idr_get_next(struct idr *idp, int *next)
112 {
113 	void *ret;
114 	int id = *next;
115 
116 	ret = idr_find(idp, id);
117 	if (ret) {
118 		id ++;
119 		if (!idp->id[id].used)
120 			id = 0;
121 		*next = id;
122 	} else {
123 		*next = 0;
124 	}
125 
126 	return ret;
127 }
128 
129 int idr_alloc(struct idr *idp, void *ptr, int start, int end, gfp_t gfp_mask)
130 {
131 	struct idr_layer *idl;
132 	int i = 0;
133 
134 	while (i < MAX_IDR_ID) {
135 		idl = &idp->id[i];
136 		if (idl->used == 0) {
137 			idl->used = 1;
138 			idl->ptr = ptr;
139 			return i;
140 		}
141 		i++;
142 	}
143 	return -ENOSPC;
144 }
145 #endif
146 
147 static DEFINE_IDR(mtd_idr);
148 
149 /* These are exported solely for the purpose of mtd_blkdevs.c. You
150    should not use them for _anything_ else */
151 DEFINE_MUTEX(mtd_table_mutex);
152 EXPORT_SYMBOL_GPL(mtd_table_mutex);
153 
154 struct mtd_info *__mtd_next_device(int i)
155 {
156 	return idr_get_next(&mtd_idr, &i);
157 }
158 EXPORT_SYMBOL_GPL(__mtd_next_device);
159 
160 #ifndef __UBOOT__
161 static LIST_HEAD(mtd_notifiers);
162 
163 
164 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
165 
166 /* REVISIT once MTD uses the driver model better, whoever allocates
167  * the mtd_info will probably want to use the release() hook...
168  */
169 static void mtd_release(struct device *dev)
170 {
171 	struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
172 	dev_t index = MTD_DEVT(mtd->index);
173 
174 	/* remove /dev/mtdXro node if needed */
175 	if (index)
176 		device_destroy(&mtd_class, index + 1);
177 }
178 
179 static int mtd_cls_suspend(struct device *dev, pm_message_t state)
180 {
181 	struct mtd_info *mtd = dev_get_drvdata(dev);
182 
183 	return mtd ? mtd_suspend(mtd) : 0;
184 }
185 
186 static int mtd_cls_resume(struct device *dev)
187 {
188 	struct mtd_info *mtd = dev_get_drvdata(dev);
189 
190 	if (mtd)
191 		mtd_resume(mtd);
192 	return 0;
193 }
194 
195 static ssize_t mtd_type_show(struct device *dev,
196 		struct device_attribute *attr, char *buf)
197 {
198 	struct mtd_info *mtd = dev_get_drvdata(dev);
199 	char *type;
200 
201 	switch (mtd->type) {
202 	case MTD_ABSENT:
203 		type = "absent";
204 		break;
205 	case MTD_RAM:
206 		type = "ram";
207 		break;
208 	case MTD_ROM:
209 		type = "rom";
210 		break;
211 	case MTD_NORFLASH:
212 		type = "nor";
213 		break;
214 	case MTD_NANDFLASH:
215 		type = "nand";
216 		break;
217 	case MTD_DATAFLASH:
218 		type = "dataflash";
219 		break;
220 	case MTD_UBIVOLUME:
221 		type = "ubi";
222 		break;
223 	case MTD_MLCNANDFLASH:
224 		type = "mlc-nand";
225 		break;
226 	default:
227 		type = "unknown";
228 	}
229 
230 	return snprintf(buf, PAGE_SIZE, "%s\n", type);
231 }
232 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
233 
234 static ssize_t mtd_flags_show(struct device *dev,
235 		struct device_attribute *attr, char *buf)
236 {
237 	struct mtd_info *mtd = dev_get_drvdata(dev);
238 
239 	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
240 
241 }
242 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
243 
244 static ssize_t mtd_size_show(struct device *dev,
245 		struct device_attribute *attr, char *buf)
246 {
247 	struct mtd_info *mtd = dev_get_drvdata(dev);
248 
249 	return snprintf(buf, PAGE_SIZE, "%llu\n",
250 		(unsigned long long)mtd->size);
251 
252 }
253 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
254 
255 static ssize_t mtd_erasesize_show(struct device *dev,
256 		struct device_attribute *attr, char *buf)
257 {
258 	struct mtd_info *mtd = dev_get_drvdata(dev);
259 
260 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
261 
262 }
263 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
264 
265 static ssize_t mtd_writesize_show(struct device *dev,
266 		struct device_attribute *attr, char *buf)
267 {
268 	struct mtd_info *mtd = dev_get_drvdata(dev);
269 
270 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
271 
272 }
273 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
274 
275 static ssize_t mtd_subpagesize_show(struct device *dev,
276 		struct device_attribute *attr, char *buf)
277 {
278 	struct mtd_info *mtd = dev_get_drvdata(dev);
279 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
280 
281 	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
282 
283 }
284 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
285 
286 static ssize_t mtd_oobsize_show(struct device *dev,
287 		struct device_attribute *attr, char *buf)
288 {
289 	struct mtd_info *mtd = dev_get_drvdata(dev);
290 
291 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
292 
293 }
294 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
295 
296 static ssize_t mtd_numeraseregions_show(struct device *dev,
297 		struct device_attribute *attr, char *buf)
298 {
299 	struct mtd_info *mtd = dev_get_drvdata(dev);
300 
301 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
302 
303 }
304 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
305 	NULL);
306 
307 static ssize_t mtd_name_show(struct device *dev,
308 		struct device_attribute *attr, char *buf)
309 {
310 	struct mtd_info *mtd = dev_get_drvdata(dev);
311 
312 	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
313 
314 }
315 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
316 
317 static ssize_t mtd_ecc_strength_show(struct device *dev,
318 				     struct device_attribute *attr, char *buf)
319 {
320 	struct mtd_info *mtd = dev_get_drvdata(dev);
321 
322 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
323 }
324 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
325 
326 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
327 					  struct device_attribute *attr,
328 					  char *buf)
329 {
330 	struct mtd_info *mtd = dev_get_drvdata(dev);
331 
332 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
333 }
334 
335 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
336 					   struct device_attribute *attr,
337 					   const char *buf, size_t count)
338 {
339 	struct mtd_info *mtd = dev_get_drvdata(dev);
340 	unsigned int bitflip_threshold;
341 	int retval;
342 
343 	retval = kstrtouint(buf, 0, &bitflip_threshold);
344 	if (retval)
345 		return retval;
346 
347 	mtd->bitflip_threshold = bitflip_threshold;
348 	return count;
349 }
350 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
351 		   mtd_bitflip_threshold_show,
352 		   mtd_bitflip_threshold_store);
353 
354 static ssize_t mtd_ecc_step_size_show(struct device *dev,
355 		struct device_attribute *attr, char *buf)
356 {
357 	struct mtd_info *mtd = dev_get_drvdata(dev);
358 
359 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
360 
361 }
362 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
363 
364 static struct attribute *mtd_attrs[] = {
365 	&dev_attr_type.attr,
366 	&dev_attr_flags.attr,
367 	&dev_attr_size.attr,
368 	&dev_attr_erasesize.attr,
369 	&dev_attr_writesize.attr,
370 	&dev_attr_subpagesize.attr,
371 	&dev_attr_oobsize.attr,
372 	&dev_attr_numeraseregions.attr,
373 	&dev_attr_name.attr,
374 	&dev_attr_ecc_strength.attr,
375 	&dev_attr_ecc_step_size.attr,
376 	&dev_attr_bitflip_threshold.attr,
377 	NULL,
378 };
379 ATTRIBUTE_GROUPS(mtd);
380 
381 static struct device_type mtd_devtype = {
382 	.name		= "mtd",
383 	.groups		= mtd_groups,
384 	.release	= mtd_release,
385 };
386 #endif
387 
388 /**
389  *	add_mtd_device - register an MTD device
390  *	@mtd: pointer to new MTD device info structure
391  *
392  *	Add a device to the list of MTD devices present in the system, and
393  *	notify each currently active MTD 'user' of its arrival. Returns
394  *	zero on success or 1 on failure, which currently will only happen
395  *	if there is insufficient memory or a sysfs error.
396  */
397 
398 int add_mtd_device(struct mtd_info *mtd)
399 {
400 #ifndef __UBOOT__
401 	struct mtd_notifier *not;
402 #endif
403 	int i, error;
404 
405 #ifndef __UBOOT__
406 	if (!mtd->backing_dev_info) {
407 		switch (mtd->type) {
408 		case MTD_RAM:
409 			mtd->backing_dev_info = &mtd_bdi_rw_mappable;
410 			break;
411 		case MTD_ROM:
412 			mtd->backing_dev_info = &mtd_bdi_ro_mappable;
413 			break;
414 		default:
415 			mtd->backing_dev_info = &mtd_bdi_unmappable;
416 			break;
417 		}
418 	}
419 #endif
420 
421 	BUG_ON(mtd->writesize == 0);
422 	mutex_lock(&mtd_table_mutex);
423 
424 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
425 	if (i < 0)
426 		goto fail_locked;
427 
428 	mtd->index = i;
429 	mtd->usecount = 0;
430 
431 	/* default value if not set by driver */
432 	if (mtd->bitflip_threshold == 0)
433 		mtd->bitflip_threshold = mtd->ecc_strength;
434 
435 	if (is_power_of_2(mtd->erasesize))
436 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
437 	else
438 		mtd->erasesize_shift = 0;
439 
440 	if (is_power_of_2(mtd->writesize))
441 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
442 	else
443 		mtd->writesize_shift = 0;
444 
445 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
446 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
447 
448 	/* Some chips always power up locked. Unlock them now */
449 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
450 		error = mtd_unlock(mtd, 0, mtd->size);
451 		if (error && error != -EOPNOTSUPP)
452 			printk(KERN_WARNING
453 			       "%s: unlock failed, writes may not work\n",
454 			       mtd->name);
455 	}
456 
457 #ifndef __UBOOT__
458 	/* Caller should have set dev.parent to match the
459 	 * physical device.
460 	 */
461 	mtd->dev.type = &mtd_devtype;
462 	mtd->dev.class = &mtd_class;
463 	mtd->dev.devt = MTD_DEVT(i);
464 	dev_set_name(&mtd->dev, "mtd%d", i);
465 	dev_set_drvdata(&mtd->dev, mtd);
466 	if (device_register(&mtd->dev) != 0)
467 		goto fail_added;
468 
469 	if (MTD_DEVT(i))
470 		device_create(&mtd_class, mtd->dev.parent,
471 			      MTD_DEVT(i) + 1,
472 			      NULL, "mtd%dro", i);
473 
474 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
475 	/* No need to get a refcount on the module containing
476 	   the notifier, since we hold the mtd_table_mutex */
477 	list_for_each_entry(not, &mtd_notifiers, list)
478 		not->add(mtd);
479 #endif
480 
481 	mutex_unlock(&mtd_table_mutex);
482 	/* We _know_ we aren't being removed, because
483 	   our caller is still holding us here. So none
484 	   of this try_ nonsense, and no bitching about it
485 	   either. :) */
486 	__module_get(THIS_MODULE);
487 	return 0;
488 
489 #ifndef __UBOOT__
490 fail_added:
491 	idr_remove(&mtd_idr, i);
492 #endif
493 fail_locked:
494 	mutex_unlock(&mtd_table_mutex);
495 	return 1;
496 }
497 
498 /**
499  *	del_mtd_device - unregister an MTD device
500  *	@mtd: pointer to MTD device info structure
501  *
502  *	Remove a device from the list of MTD devices present in the system,
503  *	and notify each currently active MTD 'user' of its departure.
504  *	Returns zero on success or 1 on failure, which currently will happen
505  *	if the requested device does not appear to be present in the list.
506  */
507 
508 int del_mtd_device(struct mtd_info *mtd)
509 {
510 	int ret;
511 #ifndef __UBOOT__
512 	struct mtd_notifier *not;
513 #endif
514 
515 	mutex_lock(&mtd_table_mutex);
516 
517 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
518 		ret = -ENODEV;
519 		goto out_error;
520 	}
521 
522 #ifndef __UBOOT__
523 	/* No need to get a refcount on the module containing
524 		the notifier, since we hold the mtd_table_mutex */
525 	list_for_each_entry(not, &mtd_notifiers, list)
526 		not->remove(mtd);
527 #endif
528 
529 	if (mtd->usecount) {
530 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
531 		       mtd->index, mtd->name, mtd->usecount);
532 		ret = -EBUSY;
533 	} else {
534 #ifndef __UBOOT__
535 		device_unregister(&mtd->dev);
536 #endif
537 
538 		idr_remove(&mtd_idr, mtd->index);
539 
540 		module_put(THIS_MODULE);
541 		ret = 0;
542 	}
543 
544 out_error:
545 	mutex_unlock(&mtd_table_mutex);
546 	return ret;
547 }
548 
549 #ifndef __UBOOT__
550 /**
551  * mtd_device_parse_register - parse partitions and register an MTD device.
552  *
553  * @mtd: the MTD device to register
554  * @types: the list of MTD partition probes to try, see
555  *         'parse_mtd_partitions()' for more information
556  * @parser_data: MTD partition parser-specific data
557  * @parts: fallback partition information to register, if parsing fails;
558  *         only valid if %nr_parts > %0
559  * @nr_parts: the number of partitions in parts, if zero then the full
560  *            MTD device is registered if no partition info is found
561  *
562  * This function aggregates MTD partitions parsing (done by
563  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
564  * basically follows the most common pattern found in many MTD drivers:
565  *
566  * * It first tries to probe partitions on MTD device @mtd using parsers
567  *   specified in @types (if @types is %NULL, then the default list of parsers
568  *   is used, see 'parse_mtd_partitions()' for more information). If none are
569  *   found this functions tries to fallback to information specified in
570  *   @parts/@nr_parts.
571  * * If any partitioning info was found, this function registers the found
572  *   partitions.
573  * * If no partitions were found this function just registers the MTD device
574  *   @mtd and exits.
575  *
576  * Returns zero in case of success and a negative error code in case of failure.
577  */
578 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
579 			      struct mtd_part_parser_data *parser_data,
580 			      const struct mtd_partition *parts,
581 			      int nr_parts)
582 {
583 	int err;
584 	struct mtd_partition *real_parts;
585 
586 	err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
587 	if (err <= 0 && nr_parts && parts) {
588 		real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
589 				     GFP_KERNEL);
590 		if (!real_parts)
591 			err = -ENOMEM;
592 		else
593 			err = nr_parts;
594 	}
595 
596 	if (err > 0) {
597 		err = add_mtd_partitions(mtd, real_parts, err);
598 		kfree(real_parts);
599 	} else if (err == 0) {
600 		err = add_mtd_device(mtd);
601 		if (err == 1)
602 			err = -ENODEV;
603 	}
604 
605 	return err;
606 }
607 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
608 
609 /**
610  * mtd_device_unregister - unregister an existing MTD device.
611  *
612  * @master: the MTD device to unregister.  This will unregister both the master
613  *          and any partitions if registered.
614  */
615 int mtd_device_unregister(struct mtd_info *master)
616 {
617 	int err;
618 
619 	err = del_mtd_partitions(master);
620 	if (err)
621 		return err;
622 
623 	if (!device_is_registered(&master->dev))
624 		return 0;
625 
626 	return del_mtd_device(master);
627 }
628 EXPORT_SYMBOL_GPL(mtd_device_unregister);
629 
630 /**
631  *	register_mtd_user - register a 'user' of MTD devices.
632  *	@new: pointer to notifier info structure
633  *
634  *	Registers a pair of callbacks function to be called upon addition
635  *	or removal of MTD devices. Causes the 'add' callback to be immediately
636  *	invoked for each MTD device currently present in the system.
637  */
638 void register_mtd_user (struct mtd_notifier *new)
639 {
640 	struct mtd_info *mtd;
641 
642 	mutex_lock(&mtd_table_mutex);
643 
644 	list_add(&new->list, &mtd_notifiers);
645 
646 	__module_get(THIS_MODULE);
647 
648 	mtd_for_each_device(mtd)
649 		new->add(mtd);
650 
651 	mutex_unlock(&mtd_table_mutex);
652 }
653 EXPORT_SYMBOL_GPL(register_mtd_user);
654 
655 /**
656  *	unregister_mtd_user - unregister a 'user' of MTD devices.
657  *	@old: pointer to notifier info structure
658  *
659  *	Removes a callback function pair from the list of 'users' to be
660  *	notified upon addition or removal of MTD devices. Causes the
661  *	'remove' callback to be immediately invoked for each MTD device
662  *	currently present in the system.
663  */
664 int unregister_mtd_user (struct mtd_notifier *old)
665 {
666 	struct mtd_info *mtd;
667 
668 	mutex_lock(&mtd_table_mutex);
669 
670 	module_put(THIS_MODULE);
671 
672 	mtd_for_each_device(mtd)
673 		old->remove(mtd);
674 
675 	list_del(&old->list);
676 	mutex_unlock(&mtd_table_mutex);
677 	return 0;
678 }
679 EXPORT_SYMBOL_GPL(unregister_mtd_user);
680 #endif
681 
682 /**
683  *	get_mtd_device - obtain a validated handle for an MTD device
684  *	@mtd: last known address of the required MTD device
685  *	@num: internal device number of the required MTD device
686  *
687  *	Given a number and NULL address, return the num'th entry in the device
688  *	table, if any.	Given an address and num == -1, search the device table
689  *	for a device with that address and return if it's still present. Given
690  *	both, return the num'th driver only if its address matches. Return
691  *	error code if not.
692  */
693 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
694 {
695 	struct mtd_info *ret = NULL, *other;
696 	int err = -ENODEV;
697 
698 	mutex_lock(&mtd_table_mutex);
699 
700 	if (num == -1) {
701 		mtd_for_each_device(other) {
702 			if (other == mtd) {
703 				ret = mtd;
704 				break;
705 			}
706 		}
707 	} else if (num >= 0) {
708 		ret = idr_find(&mtd_idr, num);
709 		if (mtd && mtd != ret)
710 			ret = NULL;
711 	}
712 
713 	if (!ret) {
714 		ret = ERR_PTR(err);
715 		goto out;
716 	}
717 
718 	err = __get_mtd_device(ret);
719 	if (err)
720 		ret = ERR_PTR(err);
721 out:
722 	mutex_unlock(&mtd_table_mutex);
723 	return ret;
724 }
725 EXPORT_SYMBOL_GPL(get_mtd_device);
726 
727 
728 int __get_mtd_device(struct mtd_info *mtd)
729 {
730 	int err;
731 
732 	if (!try_module_get(mtd->owner))
733 		return -ENODEV;
734 
735 	if (mtd->_get_device) {
736 		err = mtd->_get_device(mtd);
737 
738 		if (err) {
739 			module_put(mtd->owner);
740 			return err;
741 		}
742 	}
743 	mtd->usecount++;
744 	return 0;
745 }
746 EXPORT_SYMBOL_GPL(__get_mtd_device);
747 
748 /**
749  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
750  *	device name
751  *	@name: MTD device name to open
752  *
753  * 	This function returns MTD device description structure in case of
754  * 	success and an error code in case of failure.
755  */
756 struct mtd_info *get_mtd_device_nm(const char *name)
757 {
758 	int err = -ENODEV;
759 	struct mtd_info *mtd = NULL, *other;
760 
761 	mutex_lock(&mtd_table_mutex);
762 
763 	mtd_for_each_device(other) {
764 		if (!strcmp(name, other->name)) {
765 			mtd = other;
766 			break;
767 		}
768 	}
769 
770 	if (!mtd)
771 		goto out_unlock;
772 
773 	err = __get_mtd_device(mtd);
774 	if (err)
775 		goto out_unlock;
776 
777 	mutex_unlock(&mtd_table_mutex);
778 	return mtd;
779 
780 out_unlock:
781 	mutex_unlock(&mtd_table_mutex);
782 	return ERR_PTR(err);
783 }
784 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
785 
786 #if defined(CONFIG_CMD_MTDPARTS_SPREAD)
787 /**
788  * mtd_get_len_incl_bad
789  *
790  * Check if length including bad blocks fits into device.
791  *
792  * @param mtd an MTD device
793  * @param offset offset in flash
794  * @param length image length
795  * @return image length including bad blocks in *len_incl_bad and whether or not
796  *         the length returned was truncated in *truncated
797  */
798 void mtd_get_len_incl_bad(struct mtd_info *mtd, uint64_t offset,
799 			  const uint64_t length, uint64_t *len_incl_bad,
800 			  int *truncated)
801 {
802 	*truncated = 0;
803 	*len_incl_bad = 0;
804 
805 	if (!mtd->block_isbad) {
806 		*len_incl_bad = length;
807 		return;
808 	}
809 
810 	uint64_t len_excl_bad = 0;
811 	uint64_t block_len;
812 
813 	while (len_excl_bad < length) {
814 		if (offset >= mtd->size) {
815 			*truncated = 1;
816 			return;
817 		}
818 
819 		block_len = mtd->erasesize - (offset & (mtd->erasesize - 1));
820 
821 		if (!mtd->block_isbad(mtd, offset & ~(mtd->erasesize - 1)))
822 			len_excl_bad += block_len;
823 
824 		*len_incl_bad += block_len;
825 		offset       += block_len;
826 	}
827 }
828 #endif /* defined(CONFIG_CMD_MTDPARTS_SPREAD) */
829 
830 void put_mtd_device(struct mtd_info *mtd)
831 {
832 	mutex_lock(&mtd_table_mutex);
833 	__put_mtd_device(mtd);
834 	mutex_unlock(&mtd_table_mutex);
835 
836 }
837 EXPORT_SYMBOL_GPL(put_mtd_device);
838 
839 void __put_mtd_device(struct mtd_info *mtd)
840 {
841 	--mtd->usecount;
842 	BUG_ON(mtd->usecount < 0);
843 
844 	if (mtd->_put_device)
845 		mtd->_put_device(mtd);
846 
847 	module_put(mtd->owner);
848 }
849 EXPORT_SYMBOL_GPL(__put_mtd_device);
850 
851 /*
852  * Erase is an asynchronous operation.  Device drivers are supposed
853  * to call instr->callback() whenever the operation completes, even
854  * if it completes with a failure.
855  * Callers are supposed to pass a callback function and wait for it
856  * to be called before writing to the block.
857  */
858 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
859 {
860 	if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
861 		return -EINVAL;
862 	if (!(mtd->flags & MTD_WRITEABLE))
863 		return -EROFS;
864 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
865 	if (!instr->len) {
866 		instr->state = MTD_ERASE_DONE;
867 		mtd_erase_callback(instr);
868 		return 0;
869 	}
870 	return mtd->_erase(mtd, instr);
871 }
872 EXPORT_SYMBOL_GPL(mtd_erase);
873 
874 #ifndef __UBOOT__
875 /*
876  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
877  */
878 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
879 	      void **virt, resource_size_t *phys)
880 {
881 	*retlen = 0;
882 	*virt = NULL;
883 	if (phys)
884 		*phys = 0;
885 	if (!mtd->_point)
886 		return -EOPNOTSUPP;
887 	if (from < 0 || from > mtd->size || len > mtd->size - from)
888 		return -EINVAL;
889 	if (!len)
890 		return 0;
891 	return mtd->_point(mtd, from, len, retlen, virt, phys);
892 }
893 EXPORT_SYMBOL_GPL(mtd_point);
894 
895 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
896 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
897 {
898 	if (!mtd->_point)
899 		return -EOPNOTSUPP;
900 	if (from < 0 || from > mtd->size || len > mtd->size - from)
901 		return -EINVAL;
902 	if (!len)
903 		return 0;
904 	return mtd->_unpoint(mtd, from, len);
905 }
906 EXPORT_SYMBOL_GPL(mtd_unpoint);
907 #endif
908 
909 /*
910  * Allow NOMMU mmap() to directly map the device (if not NULL)
911  * - return the address to which the offset maps
912  * - return -ENOSYS to indicate refusal to do the mapping
913  */
914 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
915 				    unsigned long offset, unsigned long flags)
916 {
917 	if (!mtd->_get_unmapped_area)
918 		return -EOPNOTSUPP;
919 	if (offset > mtd->size || len > mtd->size - offset)
920 		return -EINVAL;
921 	return mtd->_get_unmapped_area(mtd, len, offset, flags);
922 }
923 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
924 
925 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
926 	     u_char *buf)
927 {
928 	int ret_code;
929 	*retlen = 0;
930 	if (from < 0 || from > mtd->size || len > mtd->size - from)
931 		return -EINVAL;
932 	if (!len)
933 		return 0;
934 
935 	/*
936 	 * In the absence of an error, drivers return a non-negative integer
937 	 * representing the maximum number of bitflips that were corrected on
938 	 * any one ecc region (if applicable; zero otherwise).
939 	 */
940 	ret_code = mtd->_read(mtd, from, len, retlen, buf);
941 	if (unlikely(ret_code < 0))
942 		return ret_code;
943 	if (mtd->ecc_strength == 0)
944 		return 0;	/* device lacks ecc */
945 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
946 }
947 EXPORT_SYMBOL_GPL(mtd_read);
948 
949 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
950 	      const u_char *buf)
951 {
952 	*retlen = 0;
953 	if (to < 0 || to > mtd->size || len > mtd->size - to)
954 		return -EINVAL;
955 	if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
956 		return -EROFS;
957 	if (!len)
958 		return 0;
959 	return mtd->_write(mtd, to, len, retlen, buf);
960 }
961 EXPORT_SYMBOL_GPL(mtd_write);
962 
963 /*
964  * In blackbox flight recorder like scenarios we want to make successful writes
965  * in interrupt context. panic_write() is only intended to be called when its
966  * known the kernel is about to panic and we need the write to succeed. Since
967  * the kernel is not going to be running for much longer, this function can
968  * break locks and delay to ensure the write succeeds (but not sleep).
969  */
970 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
971 		    const u_char *buf)
972 {
973 	*retlen = 0;
974 	if (!mtd->_panic_write)
975 		return -EOPNOTSUPP;
976 	if (to < 0 || to > mtd->size || len > mtd->size - to)
977 		return -EINVAL;
978 	if (!(mtd->flags & MTD_WRITEABLE))
979 		return -EROFS;
980 	if (!len)
981 		return 0;
982 	return mtd->_panic_write(mtd, to, len, retlen, buf);
983 }
984 EXPORT_SYMBOL_GPL(mtd_panic_write);
985 
986 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
987 {
988 	int ret_code;
989 	ops->retlen = ops->oobretlen = 0;
990 	if (!mtd->_read_oob)
991 		return -EOPNOTSUPP;
992 	/*
993 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
994 	 * similar to mtd->_read(), returning a non-negative integer
995 	 * representing max bitflips. In other cases, mtd->_read_oob() may
996 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
997 	 */
998 	ret_code = mtd->_read_oob(mtd, from, ops);
999 	if (unlikely(ret_code < 0))
1000 		return ret_code;
1001 	if (mtd->ecc_strength == 0)
1002 		return 0;	/* device lacks ecc */
1003 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1004 }
1005 EXPORT_SYMBOL_GPL(mtd_read_oob);
1006 
1007 /*
1008  * Method to access the protection register area, present in some flash
1009  * devices. The user data is one time programmable but the factory data is read
1010  * only.
1011  */
1012 int mtd_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
1013 			   size_t len)
1014 {
1015 	if (!mtd->_get_fact_prot_info)
1016 		return -EOPNOTSUPP;
1017 	if (!len)
1018 		return 0;
1019 	return mtd->_get_fact_prot_info(mtd, buf, len);
1020 }
1021 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1022 
1023 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1024 			   size_t *retlen, u_char *buf)
1025 {
1026 	*retlen = 0;
1027 	if (!mtd->_read_fact_prot_reg)
1028 		return -EOPNOTSUPP;
1029 	if (!len)
1030 		return 0;
1031 	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1032 }
1033 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1034 
1035 int mtd_get_user_prot_info(struct mtd_info *mtd, struct otp_info *buf,
1036 			   size_t len)
1037 {
1038 	if (!mtd->_get_user_prot_info)
1039 		return -EOPNOTSUPP;
1040 	if (!len)
1041 		return 0;
1042 	return mtd->_get_user_prot_info(mtd, buf, len);
1043 }
1044 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1045 
1046 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1047 			   size_t *retlen, u_char *buf)
1048 {
1049 	*retlen = 0;
1050 	if (!mtd->_read_user_prot_reg)
1051 		return -EOPNOTSUPP;
1052 	if (!len)
1053 		return 0;
1054 	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1055 }
1056 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1057 
1058 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1059 			    size_t *retlen, u_char *buf)
1060 {
1061 	*retlen = 0;
1062 	if (!mtd->_write_user_prot_reg)
1063 		return -EOPNOTSUPP;
1064 	if (!len)
1065 		return 0;
1066 	return mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1067 }
1068 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1069 
1070 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1071 {
1072 	if (!mtd->_lock_user_prot_reg)
1073 		return -EOPNOTSUPP;
1074 	if (!len)
1075 		return 0;
1076 	return mtd->_lock_user_prot_reg(mtd, from, len);
1077 }
1078 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1079 
1080 /* Chip-supported device locking */
1081 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1082 {
1083 	if (!mtd->_lock)
1084 		return -EOPNOTSUPP;
1085 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1086 		return -EINVAL;
1087 	if (!len)
1088 		return 0;
1089 	return mtd->_lock(mtd, ofs, len);
1090 }
1091 EXPORT_SYMBOL_GPL(mtd_lock);
1092 
1093 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1094 {
1095 	if (!mtd->_unlock)
1096 		return -EOPNOTSUPP;
1097 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1098 		return -EINVAL;
1099 	if (!len)
1100 		return 0;
1101 	return mtd->_unlock(mtd, ofs, len);
1102 }
1103 EXPORT_SYMBOL_GPL(mtd_unlock);
1104 
1105 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1106 {
1107 	if (!mtd->_is_locked)
1108 		return -EOPNOTSUPP;
1109 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1110 		return -EINVAL;
1111 	if (!len)
1112 		return 0;
1113 	return mtd->_is_locked(mtd, ofs, len);
1114 }
1115 EXPORT_SYMBOL_GPL(mtd_is_locked);
1116 
1117 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1118 {
1119 	if (!mtd->_block_isbad)
1120 		return 0;
1121 	if (ofs < 0 || ofs > mtd->size)
1122 		return -EINVAL;
1123 	return mtd->_block_isbad(mtd, ofs);
1124 }
1125 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1126 
1127 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1128 {
1129 	if (!mtd->_block_markbad)
1130 		return -EOPNOTSUPP;
1131 	if (ofs < 0 || ofs > mtd->size)
1132 		return -EINVAL;
1133 	if (!(mtd->flags & MTD_WRITEABLE))
1134 		return -EROFS;
1135 	return mtd->_block_markbad(mtd, ofs);
1136 }
1137 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1138 
1139 #ifndef __UBOOT__
1140 /*
1141  * default_mtd_writev - the default writev method
1142  * @mtd: mtd device description object pointer
1143  * @vecs: the vectors to write
1144  * @count: count of vectors in @vecs
1145  * @to: the MTD device offset to write to
1146  * @retlen: on exit contains the count of bytes written to the MTD device.
1147  *
1148  * This function returns zero in case of success and a negative error code in
1149  * case of failure.
1150  */
1151 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1152 			      unsigned long count, loff_t to, size_t *retlen)
1153 {
1154 	unsigned long i;
1155 	size_t totlen = 0, thislen;
1156 	int ret = 0;
1157 
1158 	for (i = 0; i < count; i++) {
1159 		if (!vecs[i].iov_len)
1160 			continue;
1161 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1162 				vecs[i].iov_base);
1163 		totlen += thislen;
1164 		if (ret || thislen != vecs[i].iov_len)
1165 			break;
1166 		to += vecs[i].iov_len;
1167 	}
1168 	*retlen = totlen;
1169 	return ret;
1170 }
1171 
1172 /*
1173  * mtd_writev - the vector-based MTD write method
1174  * @mtd: mtd device description object pointer
1175  * @vecs: the vectors to write
1176  * @count: count of vectors in @vecs
1177  * @to: the MTD device offset to write to
1178  * @retlen: on exit contains the count of bytes written to the MTD device.
1179  *
1180  * This function returns zero in case of success and a negative error code in
1181  * case of failure.
1182  */
1183 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1184 	       unsigned long count, loff_t to, size_t *retlen)
1185 {
1186 	*retlen = 0;
1187 	if (!(mtd->flags & MTD_WRITEABLE))
1188 		return -EROFS;
1189 	if (!mtd->_writev)
1190 		return default_mtd_writev(mtd, vecs, count, to, retlen);
1191 	return mtd->_writev(mtd, vecs, count, to, retlen);
1192 }
1193 EXPORT_SYMBOL_GPL(mtd_writev);
1194 
1195 /**
1196  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1197  * @mtd: mtd device description object pointer
1198  * @size: a pointer to the ideal or maximum size of the allocation, points
1199  *        to the actual allocation size on success.
1200  *
1201  * This routine attempts to allocate a contiguous kernel buffer up to
1202  * the specified size, backing off the size of the request exponentially
1203  * until the request succeeds or until the allocation size falls below
1204  * the system page size. This attempts to make sure it does not adversely
1205  * impact system performance, so when allocating more than one page, we
1206  * ask the memory allocator to avoid re-trying, swapping, writing back
1207  * or performing I/O.
1208  *
1209  * Note, this function also makes sure that the allocated buffer is aligned to
1210  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1211  *
1212  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1213  * to handle smaller (i.e. degraded) buffer allocations under low- or
1214  * fragmented-memory situations where such reduced allocations, from a
1215  * requested ideal, are allowed.
1216  *
1217  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1218  */
1219 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1220 {
1221 	gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1222 		       __GFP_NORETRY | __GFP_NO_KSWAPD;
1223 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1224 	void *kbuf;
1225 
1226 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1227 
1228 	while (*size > min_alloc) {
1229 		kbuf = kmalloc(*size, flags);
1230 		if (kbuf)
1231 			return kbuf;
1232 
1233 		*size >>= 1;
1234 		*size = ALIGN(*size, mtd->writesize);
1235 	}
1236 
1237 	/*
1238 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1239 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1240 	 */
1241 	return kmalloc(*size, GFP_KERNEL);
1242 }
1243 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1244 #endif
1245 
1246 #ifdef CONFIG_PROC_FS
1247 
1248 /*====================================================================*/
1249 /* Support for /proc/mtd */
1250 
1251 static int mtd_proc_show(struct seq_file *m, void *v)
1252 {
1253 	struct mtd_info *mtd;
1254 
1255 	seq_puts(m, "dev:    size   erasesize  name\n");
1256 	mutex_lock(&mtd_table_mutex);
1257 	mtd_for_each_device(mtd) {
1258 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1259 			   mtd->index, (unsigned long long)mtd->size,
1260 			   mtd->erasesize, mtd->name);
1261 	}
1262 	mutex_unlock(&mtd_table_mutex);
1263 	return 0;
1264 }
1265 
1266 static int mtd_proc_open(struct inode *inode, struct file *file)
1267 {
1268 	return single_open(file, mtd_proc_show, NULL);
1269 }
1270 
1271 static const struct file_operations mtd_proc_ops = {
1272 	.open		= mtd_proc_open,
1273 	.read		= seq_read,
1274 	.llseek		= seq_lseek,
1275 	.release	= single_release,
1276 };
1277 #endif /* CONFIG_PROC_FS */
1278 
1279 /*====================================================================*/
1280 /* Init code */
1281 
1282 #ifndef __UBOOT__
1283 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1284 {
1285 	int ret;
1286 
1287 	ret = bdi_init(bdi);
1288 	if (!ret)
1289 		ret = bdi_register(bdi, NULL, "%s", name);
1290 
1291 	if (ret)
1292 		bdi_destroy(bdi);
1293 
1294 	return ret;
1295 }
1296 
1297 static struct proc_dir_entry *proc_mtd;
1298 
1299 static int __init init_mtd(void)
1300 {
1301 	int ret;
1302 
1303 	ret = class_register(&mtd_class);
1304 	if (ret)
1305 		goto err_reg;
1306 
1307 	ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
1308 	if (ret)
1309 		goto err_bdi1;
1310 
1311 	ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
1312 	if (ret)
1313 		goto err_bdi2;
1314 
1315 	ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
1316 	if (ret)
1317 		goto err_bdi3;
1318 
1319 	proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1320 
1321 	ret = init_mtdchar();
1322 	if (ret)
1323 		goto out_procfs;
1324 
1325 	return 0;
1326 
1327 out_procfs:
1328 	if (proc_mtd)
1329 		remove_proc_entry("mtd", NULL);
1330 err_bdi3:
1331 	bdi_destroy(&mtd_bdi_ro_mappable);
1332 err_bdi2:
1333 	bdi_destroy(&mtd_bdi_unmappable);
1334 err_bdi1:
1335 	class_unregister(&mtd_class);
1336 err_reg:
1337 	pr_err("Error registering mtd class or bdi: %d\n", ret);
1338 	return ret;
1339 }
1340 
1341 static void __exit cleanup_mtd(void)
1342 {
1343 	cleanup_mtdchar();
1344 	if (proc_mtd)
1345 		remove_proc_entry("mtd", NULL);
1346 	class_unregister(&mtd_class);
1347 	bdi_destroy(&mtd_bdi_unmappable);
1348 	bdi_destroy(&mtd_bdi_ro_mappable);
1349 	bdi_destroy(&mtd_bdi_rw_mappable);
1350 }
1351 
1352 module_init(init_mtd);
1353 module_exit(cleanup_mtd);
1354 #endif
1355 
1356 MODULE_LICENSE("GPL");
1357 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1358 MODULE_DESCRIPTION("Core MTD registration and access routines");
1359