1 /* 2 * Core registration and callback routines for MTD 3 * drivers and users. 4 * 5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 6 * Copyright © 2006 Red Hat UK Limited 7 * 8 * SPDX-License-Identifier: GPL-2.0+ 9 * 10 */ 11 12 #define __UBOOT__ 13 #ifndef __UBOOT__ 14 #include <linux/module.h> 15 #include <linux/kernel.h> 16 #include <linux/ptrace.h> 17 #include <linux/seq_file.h> 18 #include <linux/string.h> 19 #include <linux/timer.h> 20 #include <linux/major.h> 21 #include <linux/fs.h> 22 #include <linux/err.h> 23 #include <linux/ioctl.h> 24 #include <linux/init.h> 25 #include <linux/proc_fs.h> 26 #include <linux/idr.h> 27 #include <linux/backing-dev.h> 28 #include <linux/gfp.h> 29 #include <linux/slab.h> 30 #else 31 #include <linux/compat.h> 32 #include <linux/err.h> 33 #include <ubi_uboot.h> 34 #endif 35 36 #include <linux/mtd/mtd.h> 37 #include <linux/mtd/partitions.h> 38 39 #include "mtdcore.h" 40 41 #ifndef __UBOOT__ 42 /* 43 * backing device capabilities for non-mappable devices (such as NAND flash) 44 * - permits private mappings, copies are taken of the data 45 */ 46 static struct backing_dev_info mtd_bdi_unmappable = { 47 .capabilities = BDI_CAP_MAP_COPY, 48 }; 49 50 /* 51 * backing device capabilities for R/O mappable devices (such as ROM) 52 * - permits private mappings, copies are taken of the data 53 * - permits non-writable shared mappings 54 */ 55 static struct backing_dev_info mtd_bdi_ro_mappable = { 56 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT | 57 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP), 58 }; 59 60 /* 61 * backing device capabilities for writable mappable devices (such as RAM) 62 * - permits private mappings, copies are taken of the data 63 * - permits non-writable shared mappings 64 */ 65 static struct backing_dev_info mtd_bdi_rw_mappable = { 66 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT | 67 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP | 68 BDI_CAP_WRITE_MAP), 69 }; 70 71 static int mtd_cls_suspend(struct device *dev, pm_message_t state); 72 static int mtd_cls_resume(struct device *dev); 73 74 static struct class mtd_class = { 75 .name = "mtd", 76 .owner = THIS_MODULE, 77 .suspend = mtd_cls_suspend, 78 .resume = mtd_cls_resume, 79 }; 80 #else 81 struct mtd_info *mtd_table[MAX_MTD_DEVICES]; 82 83 #define MAX_IDR_ID 64 84 85 struct idr_layer { 86 int used; 87 void *ptr; 88 }; 89 90 struct idr { 91 struct idr_layer id[MAX_IDR_ID]; 92 }; 93 94 #define DEFINE_IDR(name) struct idr name; 95 96 void idr_remove(struct idr *idp, int id) 97 { 98 if (idp->id[id].used) 99 idp->id[id].used = 0; 100 101 return; 102 } 103 void *idr_find(struct idr *idp, int id) 104 { 105 if (idp->id[id].used) 106 return idp->id[id].ptr; 107 108 return NULL; 109 } 110 111 void *idr_get_next(struct idr *idp, int *next) 112 { 113 void *ret; 114 int id = *next; 115 116 ret = idr_find(idp, id); 117 if (ret) { 118 id ++; 119 if (!idp->id[id].used) 120 id = 0; 121 *next = id; 122 } else { 123 *next = 0; 124 } 125 126 return ret; 127 } 128 129 int idr_alloc(struct idr *idp, void *ptr, int start, int end, gfp_t gfp_mask) 130 { 131 struct idr_layer *idl; 132 int i = 0; 133 134 while (i < MAX_IDR_ID) { 135 idl = &idp->id[i]; 136 if (idl->used == 0) { 137 idl->used = 1; 138 idl->ptr = ptr; 139 return i; 140 } 141 i++; 142 } 143 return -ENOSPC; 144 } 145 #endif 146 147 static DEFINE_IDR(mtd_idr); 148 149 /* These are exported solely for the purpose of mtd_blkdevs.c. You 150 should not use them for _anything_ else */ 151 DEFINE_MUTEX(mtd_table_mutex); 152 EXPORT_SYMBOL_GPL(mtd_table_mutex); 153 154 struct mtd_info *__mtd_next_device(int i) 155 { 156 return idr_get_next(&mtd_idr, &i); 157 } 158 EXPORT_SYMBOL_GPL(__mtd_next_device); 159 160 #ifndef __UBOOT__ 161 static LIST_HEAD(mtd_notifiers); 162 163 164 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 165 166 /* REVISIT once MTD uses the driver model better, whoever allocates 167 * the mtd_info will probably want to use the release() hook... 168 */ 169 static void mtd_release(struct device *dev) 170 { 171 struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev); 172 dev_t index = MTD_DEVT(mtd->index); 173 174 /* remove /dev/mtdXro node if needed */ 175 if (index) 176 device_destroy(&mtd_class, index + 1); 177 } 178 179 static int mtd_cls_suspend(struct device *dev, pm_message_t state) 180 { 181 struct mtd_info *mtd = dev_get_drvdata(dev); 182 183 return mtd ? mtd_suspend(mtd) : 0; 184 } 185 186 static int mtd_cls_resume(struct device *dev) 187 { 188 struct mtd_info *mtd = dev_get_drvdata(dev); 189 190 if (mtd) 191 mtd_resume(mtd); 192 return 0; 193 } 194 195 static ssize_t mtd_type_show(struct device *dev, 196 struct device_attribute *attr, char *buf) 197 { 198 struct mtd_info *mtd = dev_get_drvdata(dev); 199 char *type; 200 201 switch (mtd->type) { 202 case MTD_ABSENT: 203 type = "absent"; 204 break; 205 case MTD_RAM: 206 type = "ram"; 207 break; 208 case MTD_ROM: 209 type = "rom"; 210 break; 211 case MTD_NORFLASH: 212 type = "nor"; 213 break; 214 case MTD_NANDFLASH: 215 type = "nand"; 216 break; 217 case MTD_DATAFLASH: 218 type = "dataflash"; 219 break; 220 case MTD_UBIVOLUME: 221 type = "ubi"; 222 break; 223 case MTD_MLCNANDFLASH: 224 type = "mlc-nand"; 225 break; 226 default: 227 type = "unknown"; 228 } 229 230 return snprintf(buf, PAGE_SIZE, "%s\n", type); 231 } 232 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL); 233 234 static ssize_t mtd_flags_show(struct device *dev, 235 struct device_attribute *attr, char *buf) 236 { 237 struct mtd_info *mtd = dev_get_drvdata(dev); 238 239 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags); 240 241 } 242 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL); 243 244 static ssize_t mtd_size_show(struct device *dev, 245 struct device_attribute *attr, char *buf) 246 { 247 struct mtd_info *mtd = dev_get_drvdata(dev); 248 249 return snprintf(buf, PAGE_SIZE, "%llu\n", 250 (unsigned long long)mtd->size); 251 252 } 253 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL); 254 255 static ssize_t mtd_erasesize_show(struct device *dev, 256 struct device_attribute *attr, char *buf) 257 { 258 struct mtd_info *mtd = dev_get_drvdata(dev); 259 260 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize); 261 262 } 263 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL); 264 265 static ssize_t mtd_writesize_show(struct device *dev, 266 struct device_attribute *attr, char *buf) 267 { 268 struct mtd_info *mtd = dev_get_drvdata(dev); 269 270 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize); 271 272 } 273 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL); 274 275 static ssize_t mtd_subpagesize_show(struct device *dev, 276 struct device_attribute *attr, char *buf) 277 { 278 struct mtd_info *mtd = dev_get_drvdata(dev); 279 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 280 281 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize); 282 283 } 284 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL); 285 286 static ssize_t mtd_oobsize_show(struct device *dev, 287 struct device_attribute *attr, char *buf) 288 { 289 struct mtd_info *mtd = dev_get_drvdata(dev); 290 291 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize); 292 293 } 294 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL); 295 296 static ssize_t mtd_numeraseregions_show(struct device *dev, 297 struct device_attribute *attr, char *buf) 298 { 299 struct mtd_info *mtd = dev_get_drvdata(dev); 300 301 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions); 302 303 } 304 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show, 305 NULL); 306 307 static ssize_t mtd_name_show(struct device *dev, 308 struct device_attribute *attr, char *buf) 309 { 310 struct mtd_info *mtd = dev_get_drvdata(dev); 311 312 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name); 313 314 } 315 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL); 316 317 static ssize_t mtd_ecc_strength_show(struct device *dev, 318 struct device_attribute *attr, char *buf) 319 { 320 struct mtd_info *mtd = dev_get_drvdata(dev); 321 322 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength); 323 } 324 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL); 325 326 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 327 struct device_attribute *attr, 328 char *buf) 329 { 330 struct mtd_info *mtd = dev_get_drvdata(dev); 331 332 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold); 333 } 334 335 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 336 struct device_attribute *attr, 337 const char *buf, size_t count) 338 { 339 struct mtd_info *mtd = dev_get_drvdata(dev); 340 unsigned int bitflip_threshold; 341 int retval; 342 343 retval = kstrtouint(buf, 0, &bitflip_threshold); 344 if (retval) 345 return retval; 346 347 mtd->bitflip_threshold = bitflip_threshold; 348 return count; 349 } 350 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR, 351 mtd_bitflip_threshold_show, 352 mtd_bitflip_threshold_store); 353 354 static ssize_t mtd_ecc_step_size_show(struct device *dev, 355 struct device_attribute *attr, char *buf) 356 { 357 struct mtd_info *mtd = dev_get_drvdata(dev); 358 359 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size); 360 361 } 362 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL); 363 364 static struct attribute *mtd_attrs[] = { 365 &dev_attr_type.attr, 366 &dev_attr_flags.attr, 367 &dev_attr_size.attr, 368 &dev_attr_erasesize.attr, 369 &dev_attr_writesize.attr, 370 &dev_attr_subpagesize.attr, 371 &dev_attr_oobsize.attr, 372 &dev_attr_numeraseregions.attr, 373 &dev_attr_name.attr, 374 &dev_attr_ecc_strength.attr, 375 &dev_attr_ecc_step_size.attr, 376 &dev_attr_bitflip_threshold.attr, 377 NULL, 378 }; 379 ATTRIBUTE_GROUPS(mtd); 380 381 static struct device_type mtd_devtype = { 382 .name = "mtd", 383 .groups = mtd_groups, 384 .release = mtd_release, 385 }; 386 #endif 387 388 /** 389 * add_mtd_device - register an MTD device 390 * @mtd: pointer to new MTD device info structure 391 * 392 * Add a device to the list of MTD devices present in the system, and 393 * notify each currently active MTD 'user' of its arrival. Returns 394 * zero on success or 1 on failure, which currently will only happen 395 * if there is insufficient memory or a sysfs error. 396 */ 397 398 int add_mtd_device(struct mtd_info *mtd) 399 { 400 #ifndef __UBOOT__ 401 struct mtd_notifier *not; 402 #endif 403 int i, error; 404 405 #ifndef __UBOOT__ 406 if (!mtd->backing_dev_info) { 407 switch (mtd->type) { 408 case MTD_RAM: 409 mtd->backing_dev_info = &mtd_bdi_rw_mappable; 410 break; 411 case MTD_ROM: 412 mtd->backing_dev_info = &mtd_bdi_ro_mappable; 413 break; 414 default: 415 mtd->backing_dev_info = &mtd_bdi_unmappable; 416 break; 417 } 418 } 419 #endif 420 421 BUG_ON(mtd->writesize == 0); 422 mutex_lock(&mtd_table_mutex); 423 424 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 425 if (i < 0) 426 goto fail_locked; 427 428 mtd->index = i; 429 mtd->usecount = 0; 430 431 /* default value if not set by driver */ 432 if (mtd->bitflip_threshold == 0) 433 mtd->bitflip_threshold = mtd->ecc_strength; 434 435 if (is_power_of_2(mtd->erasesize)) 436 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 437 else 438 mtd->erasesize_shift = 0; 439 440 if (is_power_of_2(mtd->writesize)) 441 mtd->writesize_shift = ffs(mtd->writesize) - 1; 442 else 443 mtd->writesize_shift = 0; 444 445 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 446 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 447 448 /* Some chips always power up locked. Unlock them now */ 449 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 450 error = mtd_unlock(mtd, 0, mtd->size); 451 if (error && error != -EOPNOTSUPP) 452 printk(KERN_WARNING 453 "%s: unlock failed, writes may not work\n", 454 mtd->name); 455 } 456 457 #ifndef __UBOOT__ 458 /* Caller should have set dev.parent to match the 459 * physical device. 460 */ 461 mtd->dev.type = &mtd_devtype; 462 mtd->dev.class = &mtd_class; 463 mtd->dev.devt = MTD_DEVT(i); 464 dev_set_name(&mtd->dev, "mtd%d", i); 465 dev_set_drvdata(&mtd->dev, mtd); 466 if (device_register(&mtd->dev) != 0) 467 goto fail_added; 468 469 if (MTD_DEVT(i)) 470 device_create(&mtd_class, mtd->dev.parent, 471 MTD_DEVT(i) + 1, 472 NULL, "mtd%dro", i); 473 474 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 475 /* No need to get a refcount on the module containing 476 the notifier, since we hold the mtd_table_mutex */ 477 list_for_each_entry(not, &mtd_notifiers, list) 478 not->add(mtd); 479 #endif 480 481 mutex_unlock(&mtd_table_mutex); 482 /* We _know_ we aren't being removed, because 483 our caller is still holding us here. So none 484 of this try_ nonsense, and no bitching about it 485 either. :) */ 486 __module_get(THIS_MODULE); 487 return 0; 488 489 #ifndef __UBOOT__ 490 fail_added: 491 idr_remove(&mtd_idr, i); 492 #endif 493 fail_locked: 494 mutex_unlock(&mtd_table_mutex); 495 return 1; 496 } 497 498 /** 499 * del_mtd_device - unregister an MTD device 500 * @mtd: pointer to MTD device info structure 501 * 502 * Remove a device from the list of MTD devices present in the system, 503 * and notify each currently active MTD 'user' of its departure. 504 * Returns zero on success or 1 on failure, which currently will happen 505 * if the requested device does not appear to be present in the list. 506 */ 507 508 int del_mtd_device(struct mtd_info *mtd) 509 { 510 int ret; 511 #ifndef __UBOOT__ 512 struct mtd_notifier *not; 513 #endif 514 515 mutex_lock(&mtd_table_mutex); 516 517 if (idr_find(&mtd_idr, mtd->index) != mtd) { 518 ret = -ENODEV; 519 goto out_error; 520 } 521 522 #ifndef __UBOOT__ 523 /* No need to get a refcount on the module containing 524 the notifier, since we hold the mtd_table_mutex */ 525 list_for_each_entry(not, &mtd_notifiers, list) 526 not->remove(mtd); 527 #endif 528 529 if (mtd->usecount) { 530 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 531 mtd->index, mtd->name, mtd->usecount); 532 ret = -EBUSY; 533 } else { 534 #ifndef __UBOOT__ 535 device_unregister(&mtd->dev); 536 #endif 537 538 idr_remove(&mtd_idr, mtd->index); 539 540 module_put(THIS_MODULE); 541 ret = 0; 542 } 543 544 out_error: 545 mutex_unlock(&mtd_table_mutex); 546 return ret; 547 } 548 549 #ifndef __UBOOT__ 550 /** 551 * mtd_device_parse_register - parse partitions and register an MTD device. 552 * 553 * @mtd: the MTD device to register 554 * @types: the list of MTD partition probes to try, see 555 * 'parse_mtd_partitions()' for more information 556 * @parser_data: MTD partition parser-specific data 557 * @parts: fallback partition information to register, if parsing fails; 558 * only valid if %nr_parts > %0 559 * @nr_parts: the number of partitions in parts, if zero then the full 560 * MTD device is registered if no partition info is found 561 * 562 * This function aggregates MTD partitions parsing (done by 563 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 564 * basically follows the most common pattern found in many MTD drivers: 565 * 566 * * It first tries to probe partitions on MTD device @mtd using parsers 567 * specified in @types (if @types is %NULL, then the default list of parsers 568 * is used, see 'parse_mtd_partitions()' for more information). If none are 569 * found this functions tries to fallback to information specified in 570 * @parts/@nr_parts. 571 * * If any partitioning info was found, this function registers the found 572 * partitions. 573 * * If no partitions were found this function just registers the MTD device 574 * @mtd and exits. 575 * 576 * Returns zero in case of success and a negative error code in case of failure. 577 */ 578 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 579 struct mtd_part_parser_data *parser_data, 580 const struct mtd_partition *parts, 581 int nr_parts) 582 { 583 int err; 584 struct mtd_partition *real_parts; 585 586 err = parse_mtd_partitions(mtd, types, &real_parts, parser_data); 587 if (err <= 0 && nr_parts && parts) { 588 real_parts = kmemdup(parts, sizeof(*parts) * nr_parts, 589 GFP_KERNEL); 590 if (!real_parts) 591 err = -ENOMEM; 592 else 593 err = nr_parts; 594 } 595 596 if (err > 0) { 597 err = add_mtd_partitions(mtd, real_parts, err); 598 kfree(real_parts); 599 } else if (err == 0) { 600 err = add_mtd_device(mtd); 601 if (err == 1) 602 err = -ENODEV; 603 } 604 605 return err; 606 } 607 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 608 609 /** 610 * mtd_device_unregister - unregister an existing MTD device. 611 * 612 * @master: the MTD device to unregister. This will unregister both the master 613 * and any partitions if registered. 614 */ 615 int mtd_device_unregister(struct mtd_info *master) 616 { 617 int err; 618 619 err = del_mtd_partitions(master); 620 if (err) 621 return err; 622 623 if (!device_is_registered(&master->dev)) 624 return 0; 625 626 return del_mtd_device(master); 627 } 628 EXPORT_SYMBOL_GPL(mtd_device_unregister); 629 630 /** 631 * register_mtd_user - register a 'user' of MTD devices. 632 * @new: pointer to notifier info structure 633 * 634 * Registers a pair of callbacks function to be called upon addition 635 * or removal of MTD devices. Causes the 'add' callback to be immediately 636 * invoked for each MTD device currently present in the system. 637 */ 638 void register_mtd_user (struct mtd_notifier *new) 639 { 640 struct mtd_info *mtd; 641 642 mutex_lock(&mtd_table_mutex); 643 644 list_add(&new->list, &mtd_notifiers); 645 646 __module_get(THIS_MODULE); 647 648 mtd_for_each_device(mtd) 649 new->add(mtd); 650 651 mutex_unlock(&mtd_table_mutex); 652 } 653 EXPORT_SYMBOL_GPL(register_mtd_user); 654 655 /** 656 * unregister_mtd_user - unregister a 'user' of MTD devices. 657 * @old: pointer to notifier info structure 658 * 659 * Removes a callback function pair from the list of 'users' to be 660 * notified upon addition or removal of MTD devices. Causes the 661 * 'remove' callback to be immediately invoked for each MTD device 662 * currently present in the system. 663 */ 664 int unregister_mtd_user (struct mtd_notifier *old) 665 { 666 struct mtd_info *mtd; 667 668 mutex_lock(&mtd_table_mutex); 669 670 module_put(THIS_MODULE); 671 672 mtd_for_each_device(mtd) 673 old->remove(mtd); 674 675 list_del(&old->list); 676 mutex_unlock(&mtd_table_mutex); 677 return 0; 678 } 679 EXPORT_SYMBOL_GPL(unregister_mtd_user); 680 #endif 681 682 /** 683 * get_mtd_device - obtain a validated handle for an MTD device 684 * @mtd: last known address of the required MTD device 685 * @num: internal device number of the required MTD device 686 * 687 * Given a number and NULL address, return the num'th entry in the device 688 * table, if any. Given an address and num == -1, search the device table 689 * for a device with that address and return if it's still present. Given 690 * both, return the num'th driver only if its address matches. Return 691 * error code if not. 692 */ 693 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 694 { 695 struct mtd_info *ret = NULL, *other; 696 int err = -ENODEV; 697 698 mutex_lock(&mtd_table_mutex); 699 700 if (num == -1) { 701 mtd_for_each_device(other) { 702 if (other == mtd) { 703 ret = mtd; 704 break; 705 } 706 } 707 } else if (num >= 0) { 708 ret = idr_find(&mtd_idr, num); 709 if (mtd && mtd != ret) 710 ret = NULL; 711 } 712 713 if (!ret) { 714 ret = ERR_PTR(err); 715 goto out; 716 } 717 718 err = __get_mtd_device(ret); 719 if (err) 720 ret = ERR_PTR(err); 721 out: 722 mutex_unlock(&mtd_table_mutex); 723 return ret; 724 } 725 EXPORT_SYMBOL_GPL(get_mtd_device); 726 727 728 int __get_mtd_device(struct mtd_info *mtd) 729 { 730 int err; 731 732 if (!try_module_get(mtd->owner)) 733 return -ENODEV; 734 735 if (mtd->_get_device) { 736 err = mtd->_get_device(mtd); 737 738 if (err) { 739 module_put(mtd->owner); 740 return err; 741 } 742 } 743 mtd->usecount++; 744 return 0; 745 } 746 EXPORT_SYMBOL_GPL(__get_mtd_device); 747 748 /** 749 * get_mtd_device_nm - obtain a validated handle for an MTD device by 750 * device name 751 * @name: MTD device name to open 752 * 753 * This function returns MTD device description structure in case of 754 * success and an error code in case of failure. 755 */ 756 struct mtd_info *get_mtd_device_nm(const char *name) 757 { 758 int err = -ENODEV; 759 struct mtd_info *mtd = NULL, *other; 760 761 mutex_lock(&mtd_table_mutex); 762 763 mtd_for_each_device(other) { 764 if (!strcmp(name, other->name)) { 765 mtd = other; 766 break; 767 } 768 } 769 770 if (!mtd) 771 goto out_unlock; 772 773 err = __get_mtd_device(mtd); 774 if (err) 775 goto out_unlock; 776 777 mutex_unlock(&mtd_table_mutex); 778 return mtd; 779 780 out_unlock: 781 mutex_unlock(&mtd_table_mutex); 782 return ERR_PTR(err); 783 } 784 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 785 786 #if defined(CONFIG_CMD_MTDPARTS_SPREAD) 787 /** 788 * mtd_get_len_incl_bad 789 * 790 * Check if length including bad blocks fits into device. 791 * 792 * @param mtd an MTD device 793 * @param offset offset in flash 794 * @param length image length 795 * @return image length including bad blocks in *len_incl_bad and whether or not 796 * the length returned was truncated in *truncated 797 */ 798 void mtd_get_len_incl_bad(struct mtd_info *mtd, uint64_t offset, 799 const uint64_t length, uint64_t *len_incl_bad, 800 int *truncated) 801 { 802 *truncated = 0; 803 *len_incl_bad = 0; 804 805 if (!mtd->block_isbad) { 806 *len_incl_bad = length; 807 return; 808 } 809 810 uint64_t len_excl_bad = 0; 811 uint64_t block_len; 812 813 while (len_excl_bad < length) { 814 if (offset >= mtd->size) { 815 *truncated = 1; 816 return; 817 } 818 819 block_len = mtd->erasesize - (offset & (mtd->erasesize - 1)); 820 821 if (!mtd->block_isbad(mtd, offset & ~(mtd->erasesize - 1))) 822 len_excl_bad += block_len; 823 824 *len_incl_bad += block_len; 825 offset += block_len; 826 } 827 } 828 #endif /* defined(CONFIG_CMD_MTDPARTS_SPREAD) */ 829 830 void put_mtd_device(struct mtd_info *mtd) 831 { 832 mutex_lock(&mtd_table_mutex); 833 __put_mtd_device(mtd); 834 mutex_unlock(&mtd_table_mutex); 835 836 } 837 EXPORT_SYMBOL_GPL(put_mtd_device); 838 839 void __put_mtd_device(struct mtd_info *mtd) 840 { 841 --mtd->usecount; 842 BUG_ON(mtd->usecount < 0); 843 844 if (mtd->_put_device) 845 mtd->_put_device(mtd); 846 847 module_put(mtd->owner); 848 } 849 EXPORT_SYMBOL_GPL(__put_mtd_device); 850 851 /* 852 * Erase is an asynchronous operation. Device drivers are supposed 853 * to call instr->callback() whenever the operation completes, even 854 * if it completes with a failure. 855 * Callers are supposed to pass a callback function and wait for it 856 * to be called before writing to the block. 857 */ 858 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 859 { 860 if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr) 861 return -EINVAL; 862 if (!(mtd->flags & MTD_WRITEABLE)) 863 return -EROFS; 864 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 865 if (!instr->len) { 866 instr->state = MTD_ERASE_DONE; 867 mtd_erase_callback(instr); 868 return 0; 869 } 870 return mtd->_erase(mtd, instr); 871 } 872 EXPORT_SYMBOL_GPL(mtd_erase); 873 874 #ifndef __UBOOT__ 875 /* 876 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 877 */ 878 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 879 void **virt, resource_size_t *phys) 880 { 881 *retlen = 0; 882 *virt = NULL; 883 if (phys) 884 *phys = 0; 885 if (!mtd->_point) 886 return -EOPNOTSUPP; 887 if (from < 0 || from > mtd->size || len > mtd->size - from) 888 return -EINVAL; 889 if (!len) 890 return 0; 891 return mtd->_point(mtd, from, len, retlen, virt, phys); 892 } 893 EXPORT_SYMBOL_GPL(mtd_point); 894 895 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 896 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 897 { 898 if (!mtd->_point) 899 return -EOPNOTSUPP; 900 if (from < 0 || from > mtd->size || len > mtd->size - from) 901 return -EINVAL; 902 if (!len) 903 return 0; 904 return mtd->_unpoint(mtd, from, len); 905 } 906 EXPORT_SYMBOL_GPL(mtd_unpoint); 907 #endif 908 909 /* 910 * Allow NOMMU mmap() to directly map the device (if not NULL) 911 * - return the address to which the offset maps 912 * - return -ENOSYS to indicate refusal to do the mapping 913 */ 914 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 915 unsigned long offset, unsigned long flags) 916 { 917 if (!mtd->_get_unmapped_area) 918 return -EOPNOTSUPP; 919 if (offset > mtd->size || len > mtd->size - offset) 920 return -EINVAL; 921 return mtd->_get_unmapped_area(mtd, len, offset, flags); 922 } 923 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 924 925 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 926 u_char *buf) 927 { 928 int ret_code; 929 *retlen = 0; 930 if (from < 0 || from > mtd->size || len > mtd->size - from) 931 return -EINVAL; 932 if (!len) 933 return 0; 934 935 /* 936 * In the absence of an error, drivers return a non-negative integer 937 * representing the maximum number of bitflips that were corrected on 938 * any one ecc region (if applicable; zero otherwise). 939 */ 940 ret_code = mtd->_read(mtd, from, len, retlen, buf); 941 if (unlikely(ret_code < 0)) 942 return ret_code; 943 if (mtd->ecc_strength == 0) 944 return 0; /* device lacks ecc */ 945 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 946 } 947 EXPORT_SYMBOL_GPL(mtd_read); 948 949 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 950 const u_char *buf) 951 { 952 *retlen = 0; 953 if (to < 0 || to > mtd->size || len > mtd->size - to) 954 return -EINVAL; 955 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE)) 956 return -EROFS; 957 if (!len) 958 return 0; 959 return mtd->_write(mtd, to, len, retlen, buf); 960 } 961 EXPORT_SYMBOL_GPL(mtd_write); 962 963 /* 964 * In blackbox flight recorder like scenarios we want to make successful writes 965 * in interrupt context. panic_write() is only intended to be called when its 966 * known the kernel is about to panic and we need the write to succeed. Since 967 * the kernel is not going to be running for much longer, this function can 968 * break locks and delay to ensure the write succeeds (but not sleep). 969 */ 970 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 971 const u_char *buf) 972 { 973 *retlen = 0; 974 if (!mtd->_panic_write) 975 return -EOPNOTSUPP; 976 if (to < 0 || to > mtd->size || len > mtd->size - to) 977 return -EINVAL; 978 if (!(mtd->flags & MTD_WRITEABLE)) 979 return -EROFS; 980 if (!len) 981 return 0; 982 return mtd->_panic_write(mtd, to, len, retlen, buf); 983 } 984 EXPORT_SYMBOL_GPL(mtd_panic_write); 985 986 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 987 { 988 int ret_code; 989 ops->retlen = ops->oobretlen = 0; 990 if (!mtd->_read_oob) 991 return -EOPNOTSUPP; 992 /* 993 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 994 * similar to mtd->_read(), returning a non-negative integer 995 * representing max bitflips. In other cases, mtd->_read_oob() may 996 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 997 */ 998 ret_code = mtd->_read_oob(mtd, from, ops); 999 if (unlikely(ret_code < 0)) 1000 return ret_code; 1001 if (mtd->ecc_strength == 0) 1002 return 0; /* device lacks ecc */ 1003 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1004 } 1005 EXPORT_SYMBOL_GPL(mtd_read_oob); 1006 1007 /* 1008 * Method to access the protection register area, present in some flash 1009 * devices. The user data is one time programmable but the factory data is read 1010 * only. 1011 */ 1012 int mtd_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf, 1013 size_t len) 1014 { 1015 if (!mtd->_get_fact_prot_info) 1016 return -EOPNOTSUPP; 1017 if (!len) 1018 return 0; 1019 return mtd->_get_fact_prot_info(mtd, buf, len); 1020 } 1021 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 1022 1023 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1024 size_t *retlen, u_char *buf) 1025 { 1026 *retlen = 0; 1027 if (!mtd->_read_fact_prot_reg) 1028 return -EOPNOTSUPP; 1029 if (!len) 1030 return 0; 1031 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf); 1032 } 1033 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 1034 1035 int mtd_get_user_prot_info(struct mtd_info *mtd, struct otp_info *buf, 1036 size_t len) 1037 { 1038 if (!mtd->_get_user_prot_info) 1039 return -EOPNOTSUPP; 1040 if (!len) 1041 return 0; 1042 return mtd->_get_user_prot_info(mtd, buf, len); 1043 } 1044 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 1045 1046 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1047 size_t *retlen, u_char *buf) 1048 { 1049 *retlen = 0; 1050 if (!mtd->_read_user_prot_reg) 1051 return -EOPNOTSUPP; 1052 if (!len) 1053 return 0; 1054 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf); 1055 } 1056 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 1057 1058 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 1059 size_t *retlen, u_char *buf) 1060 { 1061 *retlen = 0; 1062 if (!mtd->_write_user_prot_reg) 1063 return -EOPNOTSUPP; 1064 if (!len) 1065 return 0; 1066 return mtd->_write_user_prot_reg(mtd, to, len, retlen, buf); 1067 } 1068 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 1069 1070 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 1071 { 1072 if (!mtd->_lock_user_prot_reg) 1073 return -EOPNOTSUPP; 1074 if (!len) 1075 return 0; 1076 return mtd->_lock_user_prot_reg(mtd, from, len); 1077 } 1078 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 1079 1080 /* Chip-supported device locking */ 1081 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1082 { 1083 if (!mtd->_lock) 1084 return -EOPNOTSUPP; 1085 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs) 1086 return -EINVAL; 1087 if (!len) 1088 return 0; 1089 return mtd->_lock(mtd, ofs, len); 1090 } 1091 EXPORT_SYMBOL_GPL(mtd_lock); 1092 1093 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1094 { 1095 if (!mtd->_unlock) 1096 return -EOPNOTSUPP; 1097 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs) 1098 return -EINVAL; 1099 if (!len) 1100 return 0; 1101 return mtd->_unlock(mtd, ofs, len); 1102 } 1103 EXPORT_SYMBOL_GPL(mtd_unlock); 1104 1105 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1106 { 1107 if (!mtd->_is_locked) 1108 return -EOPNOTSUPP; 1109 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs) 1110 return -EINVAL; 1111 if (!len) 1112 return 0; 1113 return mtd->_is_locked(mtd, ofs, len); 1114 } 1115 EXPORT_SYMBOL_GPL(mtd_is_locked); 1116 1117 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 1118 { 1119 if (!mtd->_block_isbad) 1120 return 0; 1121 if (ofs < 0 || ofs > mtd->size) 1122 return -EINVAL; 1123 return mtd->_block_isbad(mtd, ofs); 1124 } 1125 EXPORT_SYMBOL_GPL(mtd_block_isbad); 1126 1127 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 1128 { 1129 if (!mtd->_block_markbad) 1130 return -EOPNOTSUPP; 1131 if (ofs < 0 || ofs > mtd->size) 1132 return -EINVAL; 1133 if (!(mtd->flags & MTD_WRITEABLE)) 1134 return -EROFS; 1135 return mtd->_block_markbad(mtd, ofs); 1136 } 1137 EXPORT_SYMBOL_GPL(mtd_block_markbad); 1138 1139 #ifndef __UBOOT__ 1140 /* 1141 * default_mtd_writev - the default writev method 1142 * @mtd: mtd device description object pointer 1143 * @vecs: the vectors to write 1144 * @count: count of vectors in @vecs 1145 * @to: the MTD device offset to write to 1146 * @retlen: on exit contains the count of bytes written to the MTD device. 1147 * 1148 * This function returns zero in case of success and a negative error code in 1149 * case of failure. 1150 */ 1151 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1152 unsigned long count, loff_t to, size_t *retlen) 1153 { 1154 unsigned long i; 1155 size_t totlen = 0, thislen; 1156 int ret = 0; 1157 1158 for (i = 0; i < count; i++) { 1159 if (!vecs[i].iov_len) 1160 continue; 1161 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 1162 vecs[i].iov_base); 1163 totlen += thislen; 1164 if (ret || thislen != vecs[i].iov_len) 1165 break; 1166 to += vecs[i].iov_len; 1167 } 1168 *retlen = totlen; 1169 return ret; 1170 } 1171 1172 /* 1173 * mtd_writev - the vector-based MTD write method 1174 * @mtd: mtd device description object pointer 1175 * @vecs: the vectors to write 1176 * @count: count of vectors in @vecs 1177 * @to: the MTD device offset to write to 1178 * @retlen: on exit contains the count of bytes written to the MTD device. 1179 * 1180 * This function returns zero in case of success and a negative error code in 1181 * case of failure. 1182 */ 1183 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1184 unsigned long count, loff_t to, size_t *retlen) 1185 { 1186 *retlen = 0; 1187 if (!(mtd->flags & MTD_WRITEABLE)) 1188 return -EROFS; 1189 if (!mtd->_writev) 1190 return default_mtd_writev(mtd, vecs, count, to, retlen); 1191 return mtd->_writev(mtd, vecs, count, to, retlen); 1192 } 1193 EXPORT_SYMBOL_GPL(mtd_writev); 1194 1195 /** 1196 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 1197 * @mtd: mtd device description object pointer 1198 * @size: a pointer to the ideal or maximum size of the allocation, points 1199 * to the actual allocation size on success. 1200 * 1201 * This routine attempts to allocate a contiguous kernel buffer up to 1202 * the specified size, backing off the size of the request exponentially 1203 * until the request succeeds or until the allocation size falls below 1204 * the system page size. This attempts to make sure it does not adversely 1205 * impact system performance, so when allocating more than one page, we 1206 * ask the memory allocator to avoid re-trying, swapping, writing back 1207 * or performing I/O. 1208 * 1209 * Note, this function also makes sure that the allocated buffer is aligned to 1210 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 1211 * 1212 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 1213 * to handle smaller (i.e. degraded) buffer allocations under low- or 1214 * fragmented-memory situations where such reduced allocations, from a 1215 * requested ideal, are allowed. 1216 * 1217 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 1218 */ 1219 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 1220 { 1221 gfp_t flags = __GFP_NOWARN | __GFP_WAIT | 1222 __GFP_NORETRY | __GFP_NO_KSWAPD; 1223 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 1224 void *kbuf; 1225 1226 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 1227 1228 while (*size > min_alloc) { 1229 kbuf = kmalloc(*size, flags); 1230 if (kbuf) 1231 return kbuf; 1232 1233 *size >>= 1; 1234 *size = ALIGN(*size, mtd->writesize); 1235 } 1236 1237 /* 1238 * For the last resort allocation allow 'kmalloc()' to do all sorts of 1239 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 1240 */ 1241 return kmalloc(*size, GFP_KERNEL); 1242 } 1243 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 1244 #endif 1245 1246 #ifdef CONFIG_PROC_FS 1247 1248 /*====================================================================*/ 1249 /* Support for /proc/mtd */ 1250 1251 static int mtd_proc_show(struct seq_file *m, void *v) 1252 { 1253 struct mtd_info *mtd; 1254 1255 seq_puts(m, "dev: size erasesize name\n"); 1256 mutex_lock(&mtd_table_mutex); 1257 mtd_for_each_device(mtd) { 1258 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 1259 mtd->index, (unsigned long long)mtd->size, 1260 mtd->erasesize, mtd->name); 1261 } 1262 mutex_unlock(&mtd_table_mutex); 1263 return 0; 1264 } 1265 1266 static int mtd_proc_open(struct inode *inode, struct file *file) 1267 { 1268 return single_open(file, mtd_proc_show, NULL); 1269 } 1270 1271 static const struct file_operations mtd_proc_ops = { 1272 .open = mtd_proc_open, 1273 .read = seq_read, 1274 .llseek = seq_lseek, 1275 .release = single_release, 1276 }; 1277 #endif /* CONFIG_PROC_FS */ 1278 1279 /*====================================================================*/ 1280 /* Init code */ 1281 1282 #ifndef __UBOOT__ 1283 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name) 1284 { 1285 int ret; 1286 1287 ret = bdi_init(bdi); 1288 if (!ret) 1289 ret = bdi_register(bdi, NULL, "%s", name); 1290 1291 if (ret) 1292 bdi_destroy(bdi); 1293 1294 return ret; 1295 } 1296 1297 static struct proc_dir_entry *proc_mtd; 1298 1299 static int __init init_mtd(void) 1300 { 1301 int ret; 1302 1303 ret = class_register(&mtd_class); 1304 if (ret) 1305 goto err_reg; 1306 1307 ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap"); 1308 if (ret) 1309 goto err_bdi1; 1310 1311 ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap"); 1312 if (ret) 1313 goto err_bdi2; 1314 1315 ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap"); 1316 if (ret) 1317 goto err_bdi3; 1318 1319 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops); 1320 1321 ret = init_mtdchar(); 1322 if (ret) 1323 goto out_procfs; 1324 1325 return 0; 1326 1327 out_procfs: 1328 if (proc_mtd) 1329 remove_proc_entry("mtd", NULL); 1330 err_bdi3: 1331 bdi_destroy(&mtd_bdi_ro_mappable); 1332 err_bdi2: 1333 bdi_destroy(&mtd_bdi_unmappable); 1334 err_bdi1: 1335 class_unregister(&mtd_class); 1336 err_reg: 1337 pr_err("Error registering mtd class or bdi: %d\n", ret); 1338 return ret; 1339 } 1340 1341 static void __exit cleanup_mtd(void) 1342 { 1343 cleanup_mtdchar(); 1344 if (proc_mtd) 1345 remove_proc_entry("mtd", NULL); 1346 class_unregister(&mtd_class); 1347 bdi_destroy(&mtd_bdi_unmappable); 1348 bdi_destroy(&mtd_bdi_ro_mappable); 1349 bdi_destroy(&mtd_bdi_rw_mappable); 1350 } 1351 1352 module_init(init_mtd); 1353 module_exit(cleanup_mtd); 1354 #endif 1355 1356 MODULE_LICENSE("GPL"); 1357 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 1358 MODULE_DESCRIPTION("Core MTD registration and access routines"); 1359