1 /* 2 * Chromium OS cros_ec driver 3 * 4 * Copyright (c) 2012 The Chromium OS Authors. 5 * 6 * SPDX-License-Identifier: GPL-2.0+ 7 */ 8 9 /* 10 * This is the interface to the Chrome OS EC. It provides keyboard functions, 11 * power control and battery management. Quite a few other functions are 12 * provided to enable the EC software to be updated, talk to the EC's I2C bus 13 * and store a small amount of data in a memory which persists while the EC 14 * is not reset. 15 */ 16 17 #include <common.h> 18 #include <command.h> 19 #include <dm.h> 20 #include <i2c.h> 21 #include <cros_ec.h> 22 #include <fdtdec.h> 23 #include <malloc.h> 24 #include <spi.h> 25 #include <asm/errno.h> 26 #include <asm/io.h> 27 #include <asm-generic/gpio.h> 28 #include <dm/device-internal.h> 29 #include <dm/uclass-internal.h> 30 31 #ifdef DEBUG_TRACE 32 #define debug_trace(fmt, b...) debug(fmt, #b) 33 #else 34 #define debug_trace(fmt, b...) 35 #endif 36 37 enum { 38 /* Timeout waiting for a flash erase command to complete */ 39 CROS_EC_CMD_TIMEOUT_MS = 5000, 40 /* Timeout waiting for a synchronous hash to be recomputed */ 41 CROS_EC_CMD_HASH_TIMEOUT_MS = 2000, 42 }; 43 44 DECLARE_GLOBAL_DATA_PTR; 45 46 /* Note: depends on enum ec_current_image */ 47 static const char * const ec_current_image_name[] = {"unknown", "RO", "RW"}; 48 49 void cros_ec_dump_data(const char *name, int cmd, const uint8_t *data, int len) 50 { 51 #ifdef DEBUG 52 int i; 53 54 printf("%s: ", name); 55 if (cmd != -1) 56 printf("cmd=%#x: ", cmd); 57 for (i = 0; i < len; i++) 58 printf("%02x ", data[i]); 59 printf("\n"); 60 #endif 61 } 62 63 /* 64 * Calculate a simple 8-bit checksum of a data block 65 * 66 * @param data Data block to checksum 67 * @param size Size of data block in bytes 68 * @return checksum value (0 to 255) 69 */ 70 int cros_ec_calc_checksum(const uint8_t *data, int size) 71 { 72 int csum, i; 73 74 for (i = csum = 0; i < size; i++) 75 csum += data[i]; 76 return csum & 0xff; 77 } 78 79 /** 80 * Create a request packet for protocol version 3. 81 * 82 * The packet is stored in the device's internal output buffer. 83 * 84 * @param dev CROS-EC device 85 * @param cmd Command to send (EC_CMD_...) 86 * @param cmd_version Version of command to send (EC_VER_...) 87 * @param dout Output data (may be NULL If dout_len=0) 88 * @param dout_len Size of output data in bytes 89 * @return packet size in bytes, or <0 if error. 90 */ 91 static int create_proto3_request(struct cros_ec_dev *dev, 92 int cmd, int cmd_version, 93 const void *dout, int dout_len) 94 { 95 struct ec_host_request *rq = (struct ec_host_request *)dev->dout; 96 int out_bytes = dout_len + sizeof(*rq); 97 98 /* Fail if output size is too big */ 99 if (out_bytes > (int)sizeof(dev->dout)) { 100 debug("%s: Cannot send %d bytes\n", __func__, dout_len); 101 return -EC_RES_REQUEST_TRUNCATED; 102 } 103 104 /* Fill in request packet */ 105 rq->struct_version = EC_HOST_REQUEST_VERSION; 106 rq->checksum = 0; 107 rq->command = cmd; 108 rq->command_version = cmd_version; 109 rq->reserved = 0; 110 rq->data_len = dout_len; 111 112 /* Copy data after header */ 113 memcpy(rq + 1, dout, dout_len); 114 115 /* Write checksum field so the entire packet sums to 0 */ 116 rq->checksum = (uint8_t)(-cros_ec_calc_checksum(dev->dout, out_bytes)); 117 118 cros_ec_dump_data("out", cmd, dev->dout, out_bytes); 119 120 /* Return size of request packet */ 121 return out_bytes; 122 } 123 124 /** 125 * Prepare the device to receive a protocol version 3 response. 126 * 127 * @param dev CROS-EC device 128 * @param din_len Maximum size of response in bytes 129 * @return maximum expected number of bytes in response, or <0 if error. 130 */ 131 static int prepare_proto3_response_buffer(struct cros_ec_dev *dev, int din_len) 132 { 133 int in_bytes = din_len + sizeof(struct ec_host_response); 134 135 /* Fail if input size is too big */ 136 if (in_bytes > (int)sizeof(dev->din)) { 137 debug("%s: Cannot receive %d bytes\n", __func__, din_len); 138 return -EC_RES_RESPONSE_TOO_BIG; 139 } 140 141 /* Return expected size of response packet */ 142 return in_bytes; 143 } 144 145 /** 146 * Handle a protocol version 3 response packet. 147 * 148 * The packet must already be stored in the device's internal input buffer. 149 * 150 * @param dev CROS-EC device 151 * @param dinp Returns pointer to response data 152 * @param din_len Maximum size of response in bytes 153 * @return number of bytes of response data, or <0 if error. Note that error 154 * codes can be from errno.h or -ve EC_RES_INVALID_CHECKSUM values (and they 155 * overlap!) 156 */ 157 static int handle_proto3_response(struct cros_ec_dev *dev, 158 uint8_t **dinp, int din_len) 159 { 160 struct ec_host_response *rs = (struct ec_host_response *)dev->din; 161 int in_bytes; 162 int csum; 163 164 cros_ec_dump_data("in-header", -1, dev->din, sizeof(*rs)); 165 166 /* Check input data */ 167 if (rs->struct_version != EC_HOST_RESPONSE_VERSION) { 168 debug("%s: EC response version mismatch\n", __func__); 169 return -EC_RES_INVALID_RESPONSE; 170 } 171 172 if (rs->reserved) { 173 debug("%s: EC response reserved != 0\n", __func__); 174 return -EC_RES_INVALID_RESPONSE; 175 } 176 177 if (rs->data_len > din_len) { 178 debug("%s: EC returned too much data\n", __func__); 179 return -EC_RES_RESPONSE_TOO_BIG; 180 } 181 182 cros_ec_dump_data("in-data", -1, dev->din + sizeof(*rs), rs->data_len); 183 184 /* Update in_bytes to actual data size */ 185 in_bytes = sizeof(*rs) + rs->data_len; 186 187 /* Verify checksum */ 188 csum = cros_ec_calc_checksum(dev->din, in_bytes); 189 if (csum) { 190 debug("%s: EC response checksum invalid: 0x%02x\n", __func__, 191 csum); 192 return -EC_RES_INVALID_CHECKSUM; 193 } 194 195 /* Return error result, if any */ 196 if (rs->result) 197 return -(int)rs->result; 198 199 /* If we're still here, set response data pointer and return length */ 200 *dinp = (uint8_t *)(rs + 1); 201 202 return rs->data_len; 203 } 204 205 static int send_command_proto3(struct cros_ec_dev *dev, 206 int cmd, int cmd_version, 207 const void *dout, int dout_len, 208 uint8_t **dinp, int din_len) 209 { 210 struct dm_cros_ec_ops *ops; 211 int out_bytes, in_bytes; 212 int rv; 213 214 /* Create request packet */ 215 out_bytes = create_proto3_request(dev, cmd, cmd_version, 216 dout, dout_len); 217 if (out_bytes < 0) 218 return out_bytes; 219 220 /* Prepare response buffer */ 221 in_bytes = prepare_proto3_response_buffer(dev, din_len); 222 if (in_bytes < 0) 223 return in_bytes; 224 225 ops = dm_cros_ec_get_ops(dev->dev); 226 rv = ops->packet ? ops->packet(dev->dev, out_bytes, in_bytes) : -ENOSYS; 227 if (rv < 0) 228 return rv; 229 230 /* Process the response */ 231 return handle_proto3_response(dev, dinp, din_len); 232 } 233 234 static int send_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version, 235 const void *dout, int dout_len, 236 uint8_t **dinp, int din_len) 237 { 238 struct dm_cros_ec_ops *ops; 239 int ret = -1; 240 241 /* Handle protocol version 3 support */ 242 if (dev->protocol_version == 3) { 243 return send_command_proto3(dev, cmd, cmd_version, 244 dout, dout_len, dinp, din_len); 245 } 246 247 ops = dm_cros_ec_get_ops(dev->dev); 248 ret = ops->command(dev->dev, cmd, cmd_version, 249 (const uint8_t *)dout, dout_len, dinp, din_len); 250 251 return ret; 252 } 253 254 /** 255 * Send a command to the CROS-EC device and return the reply. 256 * 257 * The device's internal input/output buffers are used. 258 * 259 * @param dev CROS-EC device 260 * @param cmd Command to send (EC_CMD_...) 261 * @param cmd_version Version of command to send (EC_VER_...) 262 * @param dout Output data (may be NULL If dout_len=0) 263 * @param dout_len Size of output data in bytes 264 * @param dinp Response data (may be NULL If din_len=0). 265 * If not NULL, it will be updated to point to the data 266 * and will always be double word aligned (64-bits) 267 * @param din_len Maximum size of response in bytes 268 * @return number of bytes in response, or -ve on error 269 */ 270 static int ec_command_inptr(struct cros_ec_dev *dev, uint8_t cmd, 271 int cmd_version, const void *dout, int dout_len, uint8_t **dinp, 272 int din_len) 273 { 274 uint8_t *din = NULL; 275 int len; 276 277 len = send_command(dev, cmd, cmd_version, dout, dout_len, 278 &din, din_len); 279 280 /* If the command doesn't complete, wait a while */ 281 if (len == -EC_RES_IN_PROGRESS) { 282 struct ec_response_get_comms_status *resp = NULL; 283 ulong start; 284 285 /* Wait for command to complete */ 286 start = get_timer(0); 287 do { 288 int ret; 289 290 mdelay(50); /* Insert some reasonable delay */ 291 ret = send_command(dev, EC_CMD_GET_COMMS_STATUS, 0, 292 NULL, 0, 293 (uint8_t **)&resp, sizeof(*resp)); 294 if (ret < 0) 295 return ret; 296 297 if (get_timer(start) > CROS_EC_CMD_TIMEOUT_MS) { 298 debug("%s: Command %#02x timeout\n", 299 __func__, cmd); 300 return -EC_RES_TIMEOUT; 301 } 302 } while (resp->flags & EC_COMMS_STATUS_PROCESSING); 303 304 /* OK it completed, so read the status response */ 305 /* not sure why it was 0 for the last argument */ 306 len = send_command(dev, EC_CMD_RESEND_RESPONSE, 0, 307 NULL, 0, &din, din_len); 308 } 309 310 debug("%s: len=%d, dinp=%p, *dinp=%p\n", __func__, len, dinp, 311 dinp ? *dinp : NULL); 312 if (dinp) { 313 /* If we have any data to return, it must be 64bit-aligned */ 314 assert(len <= 0 || !((uintptr_t)din & 7)); 315 *dinp = din; 316 } 317 318 return len; 319 } 320 321 /** 322 * Send a command to the CROS-EC device and return the reply. 323 * 324 * The device's internal input/output buffers are used. 325 * 326 * @param dev CROS-EC device 327 * @param cmd Command to send (EC_CMD_...) 328 * @param cmd_version Version of command to send (EC_VER_...) 329 * @param dout Output data (may be NULL If dout_len=0) 330 * @param dout_len Size of output data in bytes 331 * @param din Response data (may be NULL If din_len=0). 332 * It not NULL, it is a place for ec_command() to copy the 333 * data to. 334 * @param din_len Maximum size of response in bytes 335 * @return number of bytes in response, or -ve on error 336 */ 337 static int ec_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version, 338 const void *dout, int dout_len, 339 void *din, int din_len) 340 { 341 uint8_t *in_buffer; 342 int len; 343 344 assert((din_len == 0) || din); 345 len = ec_command_inptr(dev, cmd, cmd_version, dout, dout_len, 346 &in_buffer, din_len); 347 if (len > 0) { 348 /* 349 * If we were asked to put it somewhere, do so, otherwise just 350 * disregard the result. 351 */ 352 if (din && in_buffer) { 353 assert(len <= din_len); 354 memmove(din, in_buffer, len); 355 } 356 } 357 return len; 358 } 359 360 int cros_ec_scan_keyboard(struct udevice *dev, struct mbkp_keyscan *scan) 361 { 362 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev); 363 364 if (ec_command(cdev, EC_CMD_MKBP_STATE, 0, NULL, 0, scan, 365 sizeof(scan->data)) != sizeof(scan->data)) 366 return -1; 367 368 return 0; 369 } 370 371 int cros_ec_read_id(struct cros_ec_dev *dev, char *id, int maxlen) 372 { 373 struct ec_response_get_version *r; 374 375 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0, 376 (uint8_t **)&r, sizeof(*r)) != sizeof(*r)) 377 return -1; 378 379 if (maxlen > (int)sizeof(r->version_string_ro)) 380 maxlen = sizeof(r->version_string_ro); 381 382 switch (r->current_image) { 383 case EC_IMAGE_RO: 384 memcpy(id, r->version_string_ro, maxlen); 385 break; 386 case EC_IMAGE_RW: 387 memcpy(id, r->version_string_rw, maxlen); 388 break; 389 default: 390 return -1; 391 } 392 393 id[maxlen - 1] = '\0'; 394 return 0; 395 } 396 397 int cros_ec_read_version(struct cros_ec_dev *dev, 398 struct ec_response_get_version **versionp) 399 { 400 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0, 401 (uint8_t **)versionp, sizeof(**versionp)) 402 != sizeof(**versionp)) 403 return -1; 404 405 return 0; 406 } 407 408 int cros_ec_read_build_info(struct cros_ec_dev *dev, char **strp) 409 { 410 if (ec_command_inptr(dev, EC_CMD_GET_BUILD_INFO, 0, NULL, 0, 411 (uint8_t **)strp, EC_PROTO2_MAX_PARAM_SIZE) < 0) 412 return -1; 413 414 return 0; 415 } 416 417 int cros_ec_read_current_image(struct cros_ec_dev *dev, 418 enum ec_current_image *image) 419 { 420 struct ec_response_get_version *r; 421 422 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0, 423 (uint8_t **)&r, sizeof(*r)) != sizeof(*r)) 424 return -1; 425 426 *image = r->current_image; 427 return 0; 428 } 429 430 static int cros_ec_wait_on_hash_done(struct cros_ec_dev *dev, 431 struct ec_response_vboot_hash *hash) 432 { 433 struct ec_params_vboot_hash p; 434 ulong start; 435 436 start = get_timer(0); 437 while (hash->status == EC_VBOOT_HASH_STATUS_BUSY) { 438 mdelay(50); /* Insert some reasonable delay */ 439 440 p.cmd = EC_VBOOT_HASH_GET; 441 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), 442 hash, sizeof(*hash)) < 0) 443 return -1; 444 445 if (get_timer(start) > CROS_EC_CMD_HASH_TIMEOUT_MS) { 446 debug("%s: EC_VBOOT_HASH_GET timeout\n", __func__); 447 return -EC_RES_TIMEOUT; 448 } 449 } 450 return 0; 451 } 452 453 454 int cros_ec_read_hash(struct cros_ec_dev *dev, 455 struct ec_response_vboot_hash *hash) 456 { 457 struct ec_params_vboot_hash p; 458 int rv; 459 460 p.cmd = EC_VBOOT_HASH_GET; 461 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), 462 hash, sizeof(*hash)) < 0) 463 return -1; 464 465 /* If the EC is busy calculating the hash, fidget until it's done. */ 466 rv = cros_ec_wait_on_hash_done(dev, hash); 467 if (rv) 468 return rv; 469 470 /* If the hash is valid, we're done. Otherwise, we have to kick it off 471 * again and wait for it to complete. Note that we explicitly assume 472 * that hashing zero bytes is always wrong, even though that would 473 * produce a valid hash value. */ 474 if (hash->status == EC_VBOOT_HASH_STATUS_DONE && hash->size) 475 return 0; 476 477 debug("%s: No valid hash (status=%d size=%d). Compute one...\n", 478 __func__, hash->status, hash->size); 479 480 p.cmd = EC_VBOOT_HASH_START; 481 p.hash_type = EC_VBOOT_HASH_TYPE_SHA256; 482 p.nonce_size = 0; 483 p.offset = EC_VBOOT_HASH_OFFSET_RW; 484 485 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), 486 hash, sizeof(*hash)) < 0) 487 return -1; 488 489 rv = cros_ec_wait_on_hash_done(dev, hash); 490 if (rv) 491 return rv; 492 493 debug("%s: hash done\n", __func__); 494 495 return 0; 496 } 497 498 static int cros_ec_invalidate_hash(struct cros_ec_dev *dev) 499 { 500 struct ec_params_vboot_hash p; 501 struct ec_response_vboot_hash *hash; 502 503 /* We don't have an explict command for the EC to discard its current 504 * hash value, so we'll just tell it to calculate one that we know is 505 * wrong (we claim that hashing zero bytes is always invalid). 506 */ 507 p.cmd = EC_VBOOT_HASH_RECALC; 508 p.hash_type = EC_VBOOT_HASH_TYPE_SHA256; 509 p.nonce_size = 0; 510 p.offset = 0; 511 p.size = 0; 512 513 debug("%s:\n", __func__); 514 515 if (ec_command_inptr(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), 516 (uint8_t **)&hash, sizeof(*hash)) < 0) 517 return -1; 518 519 /* No need to wait for it to finish */ 520 return 0; 521 } 522 523 int cros_ec_reboot(struct cros_ec_dev *dev, enum ec_reboot_cmd cmd, 524 uint8_t flags) 525 { 526 struct ec_params_reboot_ec p; 527 528 p.cmd = cmd; 529 p.flags = flags; 530 531 if (ec_command_inptr(dev, EC_CMD_REBOOT_EC, 0, &p, sizeof(p), NULL, 0) 532 < 0) 533 return -1; 534 535 if (!(flags & EC_REBOOT_FLAG_ON_AP_SHUTDOWN)) { 536 /* 537 * EC reboot will take place immediately so delay to allow it 538 * to complete. Note that some reboot types (EC_REBOOT_COLD) 539 * will reboot the AP as well, in which case we won't actually 540 * get to this point. 541 */ 542 /* 543 * TODO(rspangler@chromium.org): Would be nice if we had a 544 * better way to determine when the reboot is complete. Could 545 * we poll a memory-mapped LPC value? 546 */ 547 udelay(50000); 548 } 549 550 return 0; 551 } 552 553 int cros_ec_interrupt_pending(struct udevice *dev) 554 { 555 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev); 556 557 /* no interrupt support : always poll */ 558 if (!dm_gpio_is_valid(&cdev->ec_int)) 559 return -ENOENT; 560 561 return dm_gpio_get_value(&cdev->ec_int); 562 } 563 564 int cros_ec_info(struct cros_ec_dev *dev, struct ec_response_mkbp_info *info) 565 { 566 if (ec_command(dev, EC_CMD_MKBP_INFO, 0, NULL, 0, info, 567 sizeof(*info)) != sizeof(*info)) 568 return -1; 569 570 return 0; 571 } 572 573 int cros_ec_get_host_events(struct cros_ec_dev *dev, uint32_t *events_ptr) 574 { 575 struct ec_response_host_event_mask *resp; 576 577 /* 578 * Use the B copy of the event flags, because the main copy is already 579 * used by ACPI/SMI. 580 */ 581 if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_GET_B, 0, NULL, 0, 582 (uint8_t **)&resp, sizeof(*resp)) < (int)sizeof(*resp)) 583 return -1; 584 585 if (resp->mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_INVALID)) 586 return -1; 587 588 *events_ptr = resp->mask; 589 return 0; 590 } 591 592 int cros_ec_clear_host_events(struct cros_ec_dev *dev, uint32_t events) 593 { 594 struct ec_params_host_event_mask params; 595 596 params.mask = events; 597 598 /* 599 * Use the B copy of the event flags, so it affects the data returned 600 * by cros_ec_get_host_events(). 601 */ 602 if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_CLEAR_B, 0, 603 ¶ms, sizeof(params), NULL, 0) < 0) 604 return -1; 605 606 return 0; 607 } 608 609 int cros_ec_flash_protect(struct cros_ec_dev *dev, 610 uint32_t set_mask, uint32_t set_flags, 611 struct ec_response_flash_protect *resp) 612 { 613 struct ec_params_flash_protect params; 614 615 params.mask = set_mask; 616 params.flags = set_flags; 617 618 if (ec_command(dev, EC_CMD_FLASH_PROTECT, EC_VER_FLASH_PROTECT, 619 ¶ms, sizeof(params), 620 resp, sizeof(*resp)) != sizeof(*resp)) 621 return -1; 622 623 return 0; 624 } 625 626 static int cros_ec_check_version(struct cros_ec_dev *dev) 627 { 628 struct ec_params_hello req; 629 struct ec_response_hello *resp; 630 631 struct dm_cros_ec_ops *ops; 632 int ret; 633 634 ops = dm_cros_ec_get_ops(dev->dev); 635 if (ops->check_version) { 636 ret = ops->check_version(dev->dev); 637 if (ret) 638 return ret; 639 } 640 641 /* 642 * TODO(sjg@chromium.org). 643 * There is a strange oddity here with the EC. We could just ignore 644 * the response, i.e. pass the last two parameters as NULL and 0. 645 * In this case we won't read back very many bytes from the EC. 646 * On the I2C bus the EC gets upset about this and will try to send 647 * the bytes anyway. This means that we will have to wait for that 648 * to complete before continuing with a new EC command. 649 * 650 * This problem is probably unique to the I2C bus. 651 * 652 * So for now, just read all the data anyway. 653 */ 654 655 /* Try sending a version 3 packet */ 656 dev->protocol_version = 3; 657 req.in_data = 0; 658 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req), 659 (uint8_t **)&resp, sizeof(*resp)) > 0) { 660 return 0; 661 } 662 663 /* Try sending a version 2 packet */ 664 dev->protocol_version = 2; 665 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req), 666 (uint8_t **)&resp, sizeof(*resp)) > 0) { 667 return 0; 668 } 669 670 /* 671 * Fail if we're still here, since the EC doesn't understand any 672 * protcol version we speak. Version 1 interface without command 673 * version is no longer supported, and we don't know about any new 674 * protocol versions. 675 */ 676 dev->protocol_version = 0; 677 printf("%s: ERROR: old EC interface not supported\n", __func__); 678 return -1; 679 } 680 681 int cros_ec_test(struct cros_ec_dev *dev) 682 { 683 struct ec_params_hello req; 684 struct ec_response_hello *resp; 685 686 req.in_data = 0x12345678; 687 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req), 688 (uint8_t **)&resp, sizeof(*resp)) < sizeof(*resp)) { 689 printf("ec_command_inptr() returned error\n"); 690 return -1; 691 } 692 if (resp->out_data != req.in_data + 0x01020304) { 693 printf("Received invalid handshake %x\n", resp->out_data); 694 return -1; 695 } 696 697 return 0; 698 } 699 700 int cros_ec_flash_offset(struct cros_ec_dev *dev, enum ec_flash_region region, 701 uint32_t *offset, uint32_t *size) 702 { 703 struct ec_params_flash_region_info p; 704 struct ec_response_flash_region_info *r; 705 int ret; 706 707 p.region = region; 708 ret = ec_command_inptr(dev, EC_CMD_FLASH_REGION_INFO, 709 EC_VER_FLASH_REGION_INFO, 710 &p, sizeof(p), (uint8_t **)&r, sizeof(*r)); 711 if (ret != sizeof(*r)) 712 return -1; 713 714 if (offset) 715 *offset = r->offset; 716 if (size) 717 *size = r->size; 718 719 return 0; 720 } 721 722 int cros_ec_flash_erase(struct cros_ec_dev *dev, uint32_t offset, uint32_t size) 723 { 724 struct ec_params_flash_erase p; 725 726 p.offset = offset; 727 p.size = size; 728 return ec_command_inptr(dev, EC_CMD_FLASH_ERASE, 0, &p, sizeof(p), 729 NULL, 0); 730 } 731 732 /** 733 * Write a single block to the flash 734 * 735 * Write a block of data to the EC flash. The size must not exceed the flash 736 * write block size which you can obtain from cros_ec_flash_write_burst_size(). 737 * 738 * The offset starts at 0. You can obtain the region information from 739 * cros_ec_flash_offset() to find out where to write for a particular region. 740 * 741 * Attempting to write to the region where the EC is currently running from 742 * will result in an error. 743 * 744 * @param dev CROS-EC device 745 * @param data Pointer to data buffer to write 746 * @param offset Offset within flash to write to. 747 * @param size Number of bytes to write 748 * @return 0 if ok, -1 on error 749 */ 750 static int cros_ec_flash_write_block(struct cros_ec_dev *dev, 751 const uint8_t *data, uint32_t offset, uint32_t size) 752 { 753 struct ec_params_flash_write p; 754 755 p.offset = offset; 756 p.size = size; 757 assert(data && p.size <= EC_FLASH_WRITE_VER0_SIZE); 758 memcpy(&p + 1, data, p.size); 759 760 return ec_command_inptr(dev, EC_CMD_FLASH_WRITE, 0, 761 &p, sizeof(p), NULL, 0) >= 0 ? 0 : -1; 762 } 763 764 /** 765 * Return optimal flash write burst size 766 */ 767 static int cros_ec_flash_write_burst_size(struct cros_ec_dev *dev) 768 { 769 return EC_FLASH_WRITE_VER0_SIZE; 770 } 771 772 /** 773 * Check if a block of data is erased (all 0xff) 774 * 775 * This function is useful when dealing with flash, for checking whether a 776 * data block is erased and thus does not need to be programmed. 777 * 778 * @param data Pointer to data to check (must be word-aligned) 779 * @param size Number of bytes to check (must be word-aligned) 780 * @return 0 if erased, non-zero if any word is not erased 781 */ 782 static int cros_ec_data_is_erased(const uint32_t *data, int size) 783 { 784 assert(!(size & 3)); 785 size /= sizeof(uint32_t); 786 for (; size > 0; size -= 4, data++) 787 if (*data != -1U) 788 return 0; 789 790 return 1; 791 } 792 793 int cros_ec_flash_write(struct cros_ec_dev *dev, const uint8_t *data, 794 uint32_t offset, uint32_t size) 795 { 796 uint32_t burst = cros_ec_flash_write_burst_size(dev); 797 uint32_t end, off; 798 int ret; 799 800 /* 801 * TODO: round up to the nearest multiple of write size. Can get away 802 * without that on link right now because its write size is 4 bytes. 803 */ 804 end = offset + size; 805 for (off = offset; off < end; off += burst, data += burst) { 806 uint32_t todo; 807 808 /* If the data is empty, there is no point in programming it */ 809 todo = min(end - off, burst); 810 if (dev->optimise_flash_write && 811 cros_ec_data_is_erased((uint32_t *)data, todo)) 812 continue; 813 814 ret = cros_ec_flash_write_block(dev, data, off, todo); 815 if (ret) 816 return ret; 817 } 818 819 return 0; 820 } 821 822 /** 823 * Read a single block from the flash 824 * 825 * Read a block of data from the EC flash. The size must not exceed the flash 826 * write block size which you can obtain from cros_ec_flash_write_burst_size(). 827 * 828 * The offset starts at 0. You can obtain the region information from 829 * cros_ec_flash_offset() to find out where to read for a particular region. 830 * 831 * @param dev CROS-EC device 832 * @param data Pointer to data buffer to read into 833 * @param offset Offset within flash to read from 834 * @param size Number of bytes to read 835 * @return 0 if ok, -1 on error 836 */ 837 static int cros_ec_flash_read_block(struct cros_ec_dev *dev, uint8_t *data, 838 uint32_t offset, uint32_t size) 839 { 840 struct ec_params_flash_read p; 841 842 p.offset = offset; 843 p.size = size; 844 845 return ec_command(dev, EC_CMD_FLASH_READ, 0, 846 &p, sizeof(p), data, size) >= 0 ? 0 : -1; 847 } 848 849 int cros_ec_flash_read(struct cros_ec_dev *dev, uint8_t *data, uint32_t offset, 850 uint32_t size) 851 { 852 uint32_t burst = cros_ec_flash_write_burst_size(dev); 853 uint32_t end, off; 854 int ret; 855 856 end = offset + size; 857 for (off = offset; off < end; off += burst, data += burst) { 858 ret = cros_ec_flash_read_block(dev, data, off, 859 min(end - off, burst)); 860 if (ret) 861 return ret; 862 } 863 864 return 0; 865 } 866 867 int cros_ec_flash_update_rw(struct cros_ec_dev *dev, 868 const uint8_t *image, int image_size) 869 { 870 uint32_t rw_offset, rw_size; 871 int ret; 872 873 if (cros_ec_flash_offset(dev, EC_FLASH_REGION_RW, &rw_offset, &rw_size)) 874 return -1; 875 if (image_size > (int)rw_size) 876 return -1; 877 878 /* Invalidate the existing hash, just in case the AP reboots 879 * unexpectedly during the update. If that happened, the EC RW firmware 880 * would be invalid, but the EC would still have the original hash. 881 */ 882 ret = cros_ec_invalidate_hash(dev); 883 if (ret) 884 return ret; 885 886 /* 887 * Erase the entire RW section, so that the EC doesn't see any garbage 888 * past the new image if it's smaller than the current image. 889 * 890 * TODO: could optimize this to erase just the current image, since 891 * presumably everything past that is 0xff's. But would still need to 892 * round up to the nearest multiple of erase size. 893 */ 894 ret = cros_ec_flash_erase(dev, rw_offset, rw_size); 895 if (ret) 896 return ret; 897 898 /* Write the image */ 899 ret = cros_ec_flash_write(dev, image, rw_offset, image_size); 900 if (ret) 901 return ret; 902 903 return 0; 904 } 905 906 int cros_ec_read_vbnvcontext(struct cros_ec_dev *dev, uint8_t *block) 907 { 908 struct ec_params_vbnvcontext p; 909 int len; 910 911 p.op = EC_VBNV_CONTEXT_OP_READ; 912 913 len = ec_command(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT, 914 &p, sizeof(p), block, EC_VBNV_BLOCK_SIZE); 915 if (len < EC_VBNV_BLOCK_SIZE) 916 return -1; 917 918 return 0; 919 } 920 921 int cros_ec_write_vbnvcontext(struct cros_ec_dev *dev, const uint8_t *block) 922 { 923 struct ec_params_vbnvcontext p; 924 int len; 925 926 p.op = EC_VBNV_CONTEXT_OP_WRITE; 927 memcpy(p.block, block, sizeof(p.block)); 928 929 len = ec_command_inptr(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT, 930 &p, sizeof(p), NULL, 0); 931 if (len < 0) 932 return -1; 933 934 return 0; 935 } 936 937 int cros_ec_set_ldo(struct udevice *dev, uint8_t index, uint8_t state) 938 { 939 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev); 940 struct ec_params_ldo_set params; 941 942 params.index = index; 943 params.state = state; 944 945 if (ec_command_inptr(cdev, EC_CMD_LDO_SET, 0, ¶ms, sizeof(params), 946 NULL, 0)) 947 return -1; 948 949 return 0; 950 } 951 952 int cros_ec_get_ldo(struct udevice *dev, uint8_t index, uint8_t *state) 953 { 954 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev); 955 struct ec_params_ldo_get params; 956 struct ec_response_ldo_get *resp; 957 958 params.index = index; 959 960 if (ec_command_inptr(cdev, EC_CMD_LDO_GET, 0, ¶ms, sizeof(params), 961 (uint8_t **)&resp, sizeof(*resp)) != 962 sizeof(*resp)) 963 return -1; 964 965 *state = resp->state; 966 967 return 0; 968 } 969 970 int cros_ec_register(struct udevice *dev) 971 { 972 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev); 973 const void *blob = gd->fdt_blob; 974 int node = dev->of_offset; 975 char id[MSG_BYTES]; 976 977 cdev->dev = dev; 978 gpio_request_by_name(dev, "ec-interrupt", 0, &cdev->ec_int, 979 GPIOD_IS_IN); 980 cdev->optimise_flash_write = fdtdec_get_bool(blob, node, 981 "optimise-flash-write"); 982 983 if (cros_ec_check_version(cdev)) { 984 debug("%s: Could not detect CROS-EC version\n", __func__); 985 return -CROS_EC_ERR_CHECK_VERSION; 986 } 987 988 if (cros_ec_read_id(cdev, id, sizeof(id))) { 989 debug("%s: Could not read KBC ID\n", __func__); 990 return -CROS_EC_ERR_READ_ID; 991 } 992 993 /* Remember this device for use by the cros_ec command */ 994 debug("Google Chrome EC v%d CROS-EC driver ready, id '%s'\n", 995 cdev->protocol_version, id); 996 997 return 0; 998 } 999 1000 int cros_ec_decode_region(int argc, char * const argv[]) 1001 { 1002 if (argc > 0) { 1003 if (0 == strcmp(*argv, "rw")) 1004 return EC_FLASH_REGION_RW; 1005 else if (0 == strcmp(*argv, "ro")) 1006 return EC_FLASH_REGION_RO; 1007 1008 debug("%s: Invalid region '%s'\n", __func__, *argv); 1009 } else { 1010 debug("%s: Missing region parameter\n", __func__); 1011 } 1012 1013 return -1; 1014 } 1015 1016 int cros_ec_decode_ec_flash(const void *blob, int node, 1017 struct fdt_cros_ec *config) 1018 { 1019 int flash_node; 1020 1021 flash_node = fdt_subnode_offset(blob, node, "flash"); 1022 if (flash_node < 0) { 1023 debug("Failed to find flash node\n"); 1024 return -1; 1025 } 1026 1027 if (fdtdec_read_fmap_entry(blob, flash_node, "flash", 1028 &config->flash)) { 1029 debug("Failed to decode flash node in chrome-ec'\n"); 1030 return -1; 1031 } 1032 1033 config->flash_erase_value = fdtdec_get_int(blob, flash_node, 1034 "erase-value", -1); 1035 for (node = fdt_first_subnode(blob, flash_node); node >= 0; 1036 node = fdt_next_subnode(blob, node)) { 1037 const char *name = fdt_get_name(blob, node, NULL); 1038 enum ec_flash_region region; 1039 1040 if (0 == strcmp(name, "ro")) { 1041 region = EC_FLASH_REGION_RO; 1042 } else if (0 == strcmp(name, "rw")) { 1043 region = EC_FLASH_REGION_RW; 1044 } else if (0 == strcmp(name, "wp-ro")) { 1045 region = EC_FLASH_REGION_WP_RO; 1046 } else { 1047 debug("Unknown EC flash region name '%s'\n", name); 1048 return -1; 1049 } 1050 1051 if (fdtdec_read_fmap_entry(blob, node, "reg", 1052 &config->region[region])) { 1053 debug("Failed to decode flash region in chrome-ec'\n"); 1054 return -1; 1055 } 1056 } 1057 1058 return 0; 1059 } 1060 1061 int cros_ec_i2c_tunnel(struct udevice *dev, struct i2c_msg *in, int nmsgs) 1062 { 1063 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev); 1064 union { 1065 struct ec_params_i2c_passthru p; 1066 uint8_t outbuf[EC_PROTO2_MAX_PARAM_SIZE]; 1067 } params; 1068 union { 1069 struct ec_response_i2c_passthru r; 1070 uint8_t inbuf[EC_PROTO2_MAX_PARAM_SIZE]; 1071 } response; 1072 struct ec_params_i2c_passthru *p = ¶ms.p; 1073 struct ec_response_i2c_passthru *r = &response.r; 1074 struct ec_params_i2c_passthru_msg *msg; 1075 uint8_t *pdata, *read_ptr = NULL; 1076 int read_len; 1077 int size; 1078 int rv; 1079 int i; 1080 1081 p->port = 0; 1082 1083 p->num_msgs = nmsgs; 1084 size = sizeof(*p) + p->num_msgs * sizeof(*msg); 1085 1086 /* Create a message to write the register address and optional data */ 1087 pdata = (uint8_t *)p + size; 1088 1089 read_len = 0; 1090 for (i = 0, msg = p->msg; i < nmsgs; i++, msg++, in++) { 1091 bool is_read = in->flags & I2C_M_RD; 1092 1093 msg->addr_flags = in->addr; 1094 msg->len = in->len; 1095 if (is_read) { 1096 msg->addr_flags |= EC_I2C_FLAG_READ; 1097 read_len += in->len; 1098 read_ptr = in->buf; 1099 if (sizeof(*r) + read_len > sizeof(response)) { 1100 puts("Read length too big for buffer\n"); 1101 return -1; 1102 } 1103 } else { 1104 if (pdata - (uint8_t *)p + in->len > sizeof(params)) { 1105 puts("Params too large for buffer\n"); 1106 return -1; 1107 } 1108 memcpy(pdata, in->buf, in->len); 1109 pdata += in->len; 1110 } 1111 } 1112 1113 rv = ec_command(cdev, EC_CMD_I2C_PASSTHRU, 0, p, pdata - (uint8_t *)p, 1114 r, sizeof(*r) + read_len); 1115 if (rv < 0) 1116 return rv; 1117 1118 /* Parse response */ 1119 if (r->i2c_status & EC_I2C_STATUS_ERROR) { 1120 printf("Transfer failed with status=0x%x\n", r->i2c_status); 1121 return -1; 1122 } 1123 1124 if (rv < sizeof(*r) + read_len) { 1125 puts("Truncated read response\n"); 1126 return -1; 1127 } 1128 1129 /* We only support a single read message for each transfer */ 1130 if (read_len) 1131 memcpy(read_ptr, r->data, read_len); 1132 1133 return 0; 1134 } 1135 1136 #ifdef CONFIG_CMD_CROS_EC 1137 1138 /** 1139 * Perform a flash read or write command 1140 * 1141 * @param dev CROS-EC device to read/write 1142 * @param is_write 1 do to a write, 0 to do a read 1143 * @param argc Number of arguments 1144 * @param argv Arguments (2 is region, 3 is address) 1145 * @return 0 for ok, 1 for a usage error or -ve for ec command error 1146 * (negative EC_RES_...) 1147 */ 1148 static int do_read_write(struct cros_ec_dev *dev, int is_write, int argc, 1149 char * const argv[]) 1150 { 1151 uint32_t offset, size = -1U, region_size; 1152 unsigned long addr; 1153 char *endp; 1154 int region; 1155 int ret; 1156 1157 region = cros_ec_decode_region(argc - 2, argv + 2); 1158 if (region == -1) 1159 return 1; 1160 if (argc < 4) 1161 return 1; 1162 addr = simple_strtoul(argv[3], &endp, 16); 1163 if (*argv[3] == 0 || *endp != 0) 1164 return 1; 1165 if (argc > 4) { 1166 size = simple_strtoul(argv[4], &endp, 16); 1167 if (*argv[4] == 0 || *endp != 0) 1168 return 1; 1169 } 1170 1171 ret = cros_ec_flash_offset(dev, region, &offset, ®ion_size); 1172 if (ret) { 1173 debug("%s: Could not read region info\n", __func__); 1174 return ret; 1175 } 1176 if (size == -1U) 1177 size = region_size; 1178 1179 ret = is_write ? 1180 cros_ec_flash_write(dev, (uint8_t *)addr, offset, size) : 1181 cros_ec_flash_read(dev, (uint8_t *)addr, offset, size); 1182 if (ret) { 1183 debug("%s: Could not %s region\n", __func__, 1184 is_write ? "write" : "read"); 1185 return ret; 1186 } 1187 1188 return 0; 1189 } 1190 1191 static int do_cros_ec(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) 1192 { 1193 struct cros_ec_dev *dev; 1194 struct udevice *udev; 1195 const char *cmd; 1196 int ret = 0; 1197 1198 if (argc < 2) 1199 return CMD_RET_USAGE; 1200 1201 cmd = argv[1]; 1202 if (0 == strcmp("init", cmd)) { 1203 /* Remove any existing device */ 1204 ret = uclass_find_device(UCLASS_CROS_EC, 0, &udev); 1205 if (!ret) 1206 device_remove(udev); 1207 ret = uclass_get_device(UCLASS_CROS_EC, 0, &udev); 1208 if (ret) { 1209 printf("Could not init cros_ec device (err %d)\n", ret); 1210 return 1; 1211 } 1212 return 0; 1213 } 1214 1215 ret = uclass_get_device(UCLASS_CROS_EC, 0, &udev); 1216 if (ret) { 1217 printf("Cannot get cros-ec device (err=%d)\n", ret); 1218 return 1; 1219 } 1220 dev = dev_get_uclass_priv(udev); 1221 if (0 == strcmp("id", cmd)) { 1222 char id[MSG_BYTES]; 1223 1224 if (cros_ec_read_id(dev, id, sizeof(id))) { 1225 debug("%s: Could not read KBC ID\n", __func__); 1226 return 1; 1227 } 1228 printf("%s\n", id); 1229 } else if (0 == strcmp("info", cmd)) { 1230 struct ec_response_mkbp_info info; 1231 1232 if (cros_ec_info(dev, &info)) { 1233 debug("%s: Could not read KBC info\n", __func__); 1234 return 1; 1235 } 1236 printf("rows = %u\n", info.rows); 1237 printf("cols = %u\n", info.cols); 1238 printf("switches = %#x\n", info.switches); 1239 } else if (0 == strcmp("curimage", cmd)) { 1240 enum ec_current_image image; 1241 1242 if (cros_ec_read_current_image(dev, &image)) { 1243 debug("%s: Could not read KBC image\n", __func__); 1244 return 1; 1245 } 1246 printf("%d\n", image); 1247 } else if (0 == strcmp("hash", cmd)) { 1248 struct ec_response_vboot_hash hash; 1249 int i; 1250 1251 if (cros_ec_read_hash(dev, &hash)) { 1252 debug("%s: Could not read KBC hash\n", __func__); 1253 return 1; 1254 } 1255 1256 if (hash.hash_type == EC_VBOOT_HASH_TYPE_SHA256) 1257 printf("type: SHA-256\n"); 1258 else 1259 printf("type: %d\n", hash.hash_type); 1260 1261 printf("offset: 0x%08x\n", hash.offset); 1262 printf("size: 0x%08x\n", hash.size); 1263 1264 printf("digest: "); 1265 for (i = 0; i < hash.digest_size; i++) 1266 printf("%02x", hash.hash_digest[i]); 1267 printf("\n"); 1268 } else if (0 == strcmp("reboot", cmd)) { 1269 int region; 1270 enum ec_reboot_cmd cmd; 1271 1272 if (argc >= 3 && !strcmp(argv[2], "cold")) 1273 cmd = EC_REBOOT_COLD; 1274 else { 1275 region = cros_ec_decode_region(argc - 2, argv + 2); 1276 if (region == EC_FLASH_REGION_RO) 1277 cmd = EC_REBOOT_JUMP_RO; 1278 else if (region == EC_FLASH_REGION_RW) 1279 cmd = EC_REBOOT_JUMP_RW; 1280 else 1281 return CMD_RET_USAGE; 1282 } 1283 1284 if (cros_ec_reboot(dev, cmd, 0)) { 1285 debug("%s: Could not reboot KBC\n", __func__); 1286 return 1; 1287 } 1288 } else if (0 == strcmp("events", cmd)) { 1289 uint32_t events; 1290 1291 if (cros_ec_get_host_events(dev, &events)) { 1292 debug("%s: Could not read host events\n", __func__); 1293 return 1; 1294 } 1295 printf("0x%08x\n", events); 1296 } else if (0 == strcmp("clrevents", cmd)) { 1297 uint32_t events = 0x7fffffff; 1298 1299 if (argc >= 3) 1300 events = simple_strtol(argv[2], NULL, 0); 1301 1302 if (cros_ec_clear_host_events(dev, events)) { 1303 debug("%s: Could not clear host events\n", __func__); 1304 return 1; 1305 } 1306 } else if (0 == strcmp("read", cmd)) { 1307 ret = do_read_write(dev, 0, argc, argv); 1308 if (ret > 0) 1309 return CMD_RET_USAGE; 1310 } else if (0 == strcmp("write", cmd)) { 1311 ret = do_read_write(dev, 1, argc, argv); 1312 if (ret > 0) 1313 return CMD_RET_USAGE; 1314 } else if (0 == strcmp("erase", cmd)) { 1315 int region = cros_ec_decode_region(argc - 2, argv + 2); 1316 uint32_t offset, size; 1317 1318 if (region == -1) 1319 return CMD_RET_USAGE; 1320 if (cros_ec_flash_offset(dev, region, &offset, &size)) { 1321 debug("%s: Could not read region info\n", __func__); 1322 ret = -1; 1323 } else { 1324 ret = cros_ec_flash_erase(dev, offset, size); 1325 if (ret) { 1326 debug("%s: Could not erase region\n", 1327 __func__); 1328 } 1329 } 1330 } else if (0 == strcmp("regioninfo", cmd)) { 1331 int region = cros_ec_decode_region(argc - 2, argv + 2); 1332 uint32_t offset, size; 1333 1334 if (region == -1) 1335 return CMD_RET_USAGE; 1336 ret = cros_ec_flash_offset(dev, region, &offset, &size); 1337 if (ret) { 1338 debug("%s: Could not read region info\n", __func__); 1339 } else { 1340 printf("Region: %s\n", region == EC_FLASH_REGION_RO ? 1341 "RO" : "RW"); 1342 printf("Offset: %x\n", offset); 1343 printf("Size: %x\n", size); 1344 } 1345 } else if (0 == strcmp("vbnvcontext", cmd)) { 1346 uint8_t block[EC_VBNV_BLOCK_SIZE]; 1347 char buf[3]; 1348 int i, len; 1349 unsigned long result; 1350 1351 if (argc <= 2) { 1352 ret = cros_ec_read_vbnvcontext(dev, block); 1353 if (!ret) { 1354 printf("vbnv_block: "); 1355 for (i = 0; i < EC_VBNV_BLOCK_SIZE; i++) 1356 printf("%02x", block[i]); 1357 putc('\n'); 1358 } 1359 } else { 1360 /* 1361 * TODO(clchiou): Move this to a utility function as 1362 * cmd_spi might want to call it. 1363 */ 1364 memset(block, 0, EC_VBNV_BLOCK_SIZE); 1365 len = strlen(argv[2]); 1366 buf[2] = '\0'; 1367 for (i = 0; i < EC_VBNV_BLOCK_SIZE; i++) { 1368 if (i * 2 >= len) 1369 break; 1370 buf[0] = argv[2][i * 2]; 1371 if (i * 2 + 1 >= len) 1372 buf[1] = '0'; 1373 else 1374 buf[1] = argv[2][i * 2 + 1]; 1375 strict_strtoul(buf, 16, &result); 1376 block[i] = result; 1377 } 1378 ret = cros_ec_write_vbnvcontext(dev, block); 1379 } 1380 if (ret) { 1381 debug("%s: Could not %s VbNvContext\n", __func__, 1382 argc <= 2 ? "read" : "write"); 1383 } 1384 } else if (0 == strcmp("test", cmd)) { 1385 int result = cros_ec_test(dev); 1386 1387 if (result) 1388 printf("Test failed with error %d\n", result); 1389 else 1390 puts("Test passed\n"); 1391 } else if (0 == strcmp("version", cmd)) { 1392 struct ec_response_get_version *p; 1393 char *build_string; 1394 1395 ret = cros_ec_read_version(dev, &p); 1396 if (!ret) { 1397 /* Print versions */ 1398 printf("RO version: %1.*s\n", 1399 (int)sizeof(p->version_string_ro), 1400 p->version_string_ro); 1401 printf("RW version: %1.*s\n", 1402 (int)sizeof(p->version_string_rw), 1403 p->version_string_rw); 1404 printf("Firmware copy: %s\n", 1405 (p->current_image < 1406 ARRAY_SIZE(ec_current_image_name) ? 1407 ec_current_image_name[p->current_image] : 1408 "?")); 1409 ret = cros_ec_read_build_info(dev, &build_string); 1410 if (!ret) 1411 printf("Build info: %s\n", build_string); 1412 } 1413 } else if (0 == strcmp("ldo", cmd)) { 1414 uint8_t index, state; 1415 char *endp; 1416 1417 if (argc < 3) 1418 return CMD_RET_USAGE; 1419 index = simple_strtoul(argv[2], &endp, 10); 1420 if (*argv[2] == 0 || *endp != 0) 1421 return CMD_RET_USAGE; 1422 if (argc > 3) { 1423 state = simple_strtoul(argv[3], &endp, 10); 1424 if (*argv[3] == 0 || *endp != 0) 1425 return CMD_RET_USAGE; 1426 ret = cros_ec_set_ldo(udev, index, state); 1427 } else { 1428 ret = cros_ec_get_ldo(udev, index, &state); 1429 if (!ret) { 1430 printf("LDO%d: %s\n", index, 1431 state == EC_LDO_STATE_ON ? 1432 "on" : "off"); 1433 } 1434 } 1435 1436 if (ret) { 1437 debug("%s: Could not access LDO%d\n", __func__, index); 1438 return ret; 1439 } 1440 } else { 1441 return CMD_RET_USAGE; 1442 } 1443 1444 if (ret < 0) { 1445 printf("Error: CROS-EC command failed (error %d)\n", ret); 1446 ret = 1; 1447 } 1448 1449 return ret; 1450 } 1451 1452 U_BOOT_CMD( 1453 crosec, 6, 1, do_cros_ec, 1454 "CROS-EC utility command", 1455 "init Re-init CROS-EC (done on startup automatically)\n" 1456 "crosec id Read CROS-EC ID\n" 1457 "crosec info Read CROS-EC info\n" 1458 "crosec curimage Read CROS-EC current image\n" 1459 "crosec hash Read CROS-EC hash\n" 1460 "crosec reboot [rw | ro | cold] Reboot CROS-EC\n" 1461 "crosec events Read CROS-EC host events\n" 1462 "crosec clrevents [mask] Clear CROS-EC host events\n" 1463 "crosec regioninfo <ro|rw> Read image info\n" 1464 "crosec erase <ro|rw> Erase EC image\n" 1465 "crosec read <ro|rw> <addr> [<size>] Read EC image\n" 1466 "crosec write <ro|rw> <addr> [<size>] Write EC image\n" 1467 "crosec vbnvcontext [hexstring] Read [write] VbNvContext from EC\n" 1468 "crosec ldo <idx> [<state>] Switch/Read LDO state\n" 1469 "crosec test run tests on cros_ec\n" 1470 "crosec version Read CROS-EC version" 1471 ); 1472 #endif 1473 1474 UCLASS_DRIVER(cros_ec) = { 1475 .id = UCLASS_CROS_EC, 1476 .name = "cros_ec", 1477 .per_device_auto_alloc_size = sizeof(struct cros_ec_dev), 1478 .post_bind = dm_scan_fdt_dev, 1479 }; 1480