xref: /openbmc/u-boot/drivers/misc/Kconfig (revision a4670f8ebb5b4df6afeb5155fb5b44c1d1d154b9)
1#
2# Multifunction miscellaneous devices
3#
4
5menu "Multifunction device drivers"
6
7config MISC
8	bool "Enable Driver Model for Misc drivers"
9	depends on DM
10	help
11	  Enable driver model for miscellaneous devices. This class is
12	  used only for those do not fit other more general classes. A
13	  set of generic read, write and ioctl methods may be used to
14	  access the device.
15
16config ALTERA_SYSID
17	bool "Altera Sysid support"
18	depends on MISC
19	help
20	  Select this to enable a sysid for Altera devices. Please find
21	  details on the "Embedded Peripherals IP User Guide" of Altera.
22
23config ATSHA204A
24	bool "Support for Atmel ATSHA204A module"
25	depends on MISC
26	help
27	   Enable support for I2C connected Atmel's ATSHA204A
28	   CryptoAuthentication module found for example on the Turris Omnia
29	   board.
30
31config ROCKCHIP_EFUSE
32        bool "Rockchip e-fuse support"
33	depends on MISC
34	help
35	  Enable (read-only) access for the e-fuse block found in Rockchip
36	  SoCs: accesses can either be made using byte addressing and a length
37	  or through child-nodes that are generated based on the e-fuse map
38	  retrieved from the DTS.
39
40	  This driver currently supports the RK3399 only, but can easily be
41	  extended (by porting the read function from the Linux kernel sources)
42	  to support other recent Rockchip devices.
43
44config CMD_CROS_EC
45	bool "Enable crosec command"
46	depends on CROS_EC
47	help
48	  Enable command-line access to the Chrome OS EC (Embedded
49	  Controller). This provides the 'crosec' command which has
50	  a number of sub-commands for performing EC tasks such as
51	  updating its flash, accessing a small saved context area
52	  and talking to the I2C bus behind the EC (if there is one).
53
54config CROS_EC
55	bool "Enable Chrome OS EC"
56	help
57	  Enable access to the Chrome OS EC. This is a separate
58	  microcontroller typically available on a SPI bus on Chromebooks. It
59	  provides access to the keyboard, some internal storage and may
60	  control access to the battery and main PMIC depending on the
61	  device. You can use the 'crosec' command to access it.
62
63config CROS_EC_I2C
64	bool "Enable Chrome OS EC I2C driver"
65	depends on CROS_EC
66	help
67	  Enable I2C access to the Chrome OS EC. This is used on older
68	  ARM Chromebooks such as snow and spring before the standard bus
69	  changed to SPI. The EC will accept commands across the I2C using
70	  a special message protocol, and provide responses.
71
72config CROS_EC_LPC
73	bool "Enable Chrome OS EC LPC driver"
74	depends on CROS_EC
75	help
76	  Enable I2C access to the Chrome OS EC. This is used on x86
77	  Chromebooks such as link and falco. The keyboard is provided
78	  through a legacy port interface, so on x86 machines the main
79	  function of the EC is power and thermal management.
80
81config CROS_EC_SANDBOX
82	bool "Enable Chrome OS EC sandbox driver"
83	depends on CROS_EC && SANDBOX
84	help
85	  Enable a sandbox emulation of the Chrome OS EC. This supports
86	  keyboard (use the -l flag to enable the LCD), verified boot context,
87	  EC flash read/write/erase support and a few other things. It is
88	  enough to perform a Chrome OS verified boot on sandbox.
89
90config CROS_EC_SPI
91	bool "Enable Chrome OS EC SPI driver"
92	depends on CROS_EC
93	help
94	  Enable SPI access to the Chrome OS EC. This is used on newer
95	  ARM Chromebooks such as pit, pi and nyan-big. The SPI interface
96	  provides a faster and more robust interface than I2C but the bugs
97	  are less interesting.
98
99config DS4510
100	bool "Enable support for DS4510 CPU supervisor"
101	help
102	  Enable support for the Maxim DS4510 CPU supervisor. It has an
103	  integrated 64-byte EEPROM, four programmable non-volatile I/O pins
104	  and a configurable timer for the supervisor function. The device is
105	  connected over I2C.
106
107config FSL_SEC_MON
108	bool "Enable FSL SEC_MON Driver"
109	help
110	  Freescale Security Monitor block is responsible for monitoring
111	  system states.
112	  Security Monitor can be transitioned on any security failures,
113	  like software violations or hardware security violations.
114
115config MXC_OCOTP
116	bool "Enable MXC OCOTP Driver"
117	help
118	  If you say Y here, you will get support for the One Time
119	  Programmable memory pages that are stored on the some
120	  Freescale i.MX processors.
121
122config NUVOTON_NCT6102D
123	bool "Enable Nuvoton NCT6102D Super I/O driver"
124	help
125	  If you say Y here, you will get support for the Nuvoton
126	  NCT6102D Super I/O driver. This can be used to enable or
127	  disable the legacy UART, the watchdog or other devices
128	  in the Nuvoton Super IO chips on X86 platforms.
129
130config PWRSEQ
131	bool "Enable power-sequencing drivers"
132	depends on DM
133	help
134	  Power-sequencing drivers provide support for controlling power for
135	  devices. They are typically referenced by a phandle from another
136	  device. When the device is started up, its power sequence can be
137	  initiated.
138
139config SPL_PWRSEQ
140	bool "Enable power-sequencing drivers for SPL"
141	depends on PWRSEQ
142	help
143	  Power-sequencing drivers provide support for controlling power for
144	  devices. They are typically referenced by a phandle from another
145	  device. When the device is started up, its power sequence can be
146	  initiated.
147
148config PCA9551_LED
149	bool "Enable PCA9551 LED driver"
150	help
151	  Enable driver for PCA9551 LED controller. This controller
152	  is connected via I2C. So I2C needs to be enabled.
153
154config PCA9551_I2C_ADDR
155	hex "I2C address of PCA9551 LED controller"
156	depends on PCA9551_LED
157	default 0x60
158	help
159	  The I2C address of the PCA9551 LED controller.
160
161config STM32_RCC
162	bool "Enable RCC driver for the STM32 SoC's family"
163	depends on STM32 && MISC
164	help
165	  Enable the STM32 RCC driver. The RCC block (Reset and Clock Control
166	  block) is responsible of the management of the clock and reset
167	  generation.
168	  This driver is similar to an MFD driver in the Linux kernel.
169
170config TEGRA_CAR
171	bool "Enable support for the Tegra CAR driver"
172	depends on TEGRA_NO_BPMP
173	help
174	  The Tegra CAR (Clock and Reset Controller) is a HW module that
175	  controls almost all clocks and resets in a Tegra SoC.
176
177config TEGRA186_BPMP
178	bool "Enable support for the Tegra186 BPMP driver"
179	depends on TEGRA186
180	help
181	  The Tegra BPMP (Boot and Power Management Processor) is a separate
182	  auxiliary CPU embedded into Tegra to perform power management work,
183	  and controls related features such as clocks, resets, power domains,
184	  PMIC I2C bus, etc. This driver provides the core low-level
185	  communication path by which feature-specific drivers (such as clock)
186	  can make requests to the BPMP. This driver is similar to an MFD
187	  driver in the Linux kernel.
188
189config WINBOND_W83627
190	bool "Enable Winbond Super I/O driver"
191	help
192	  If you say Y here, you will get support for the Winbond
193	  W83627 Super I/O driver. This can be used to enable the
194	  legacy UART or other devices in the Winbond Super IO chips
195	  on X86 platforms.
196
197config QFW
198	bool
199	help
200	  Hidden option to enable QEMU fw_cfg interface. This will be selected by
201	  either CONFIG_CMD_QFW or CONFIG_GENERATE_ACPI_TABLE.
202
203config I2C_EEPROM
204	bool "Enable driver for generic I2C-attached EEPROMs"
205	depends on MISC
206	help
207	  Enable a generic driver for EEPROMs attached via I2C.
208
209
210config SPL_I2C_EEPROM
211	bool "Enable driver for generic I2C-attached EEPROMs for SPL"
212	depends on MISC && SPL && SPL_DM
213	help
214	  This option is an SPL-variant of the I2C_EEPROM option.
215	  See the help of I2C_EEPROM for details.
216
217if I2C_EEPROM
218
219config SYS_I2C_EEPROM_ADDR
220	hex "Chip address of the EEPROM device"
221	default 0
222
223config SYS_I2C_EEPROM_BUS
224	int "I2C bus of the EEPROM device."
225	default 0
226
227config SYS_EEPROM_SIZE
228	int "Size in bytes of the EEPROM device"
229	default 256
230
231config SYS_EEPROM_PAGE_WRITE_BITS
232	int "Number of bits used to address bytes in a single page"
233	default 0
234	help
235	  The EEPROM page size is 2^SYS_EEPROM_PAGE_WRITE_BITS.
236	  A 64 byte page, for example would require six bits.
237
238config SYS_EEPROM_PAGE_WRITE_DELAY_MS
239	int "Number of milliseconds to delay between page writes"
240	default 0
241
242config SYS_I2C_EEPROM_ADDR_LEN
243	int "Length in bytes of the EEPROM memory array address"
244	default 1
245	help
246	  Note: This is NOT the chip address length!
247
248config SYS_I2C_EEPROM_ADDR_OVERFLOW
249	hex "EEPROM Address Overflow"
250	default 0
251	help
252	  EEPROM chips that implement "address overflow" are ones
253	  like Catalyst 24WC04/08/16 which has 9/10/11 bits of
254	  address and the extra bits end up in the "chip address" bit
255	  slots. This makes a 24WC08 (1Kbyte) chip look like four 256
256	  byte chips.
257
258endif
259
260
261endmenu
262