xref: /openbmc/u-boot/drivers/fpga/lattice.c (revision b1ad6c696631f07b5fe109378516abcb79ded1f9)
1 /*
2  * (C) Copyright 2010
3  * Stefano Babic, DENX Software Engineering, sbabic@denx.de.
4  *
5  * (C) Copyright 2002
6  * Rich Ireland, Enterasys Networks, rireland@enterasys.com.
7  *
8  * ispVM functions adapted from Lattice's ispmVMEmbedded code:
9  * Copyright 2009 Lattice Semiconductor Corp.
10  *
11  * SPDX-License-Identifier:	GPL-2.0+
12  */
13 
14 #include <common.h>
15 #include <malloc.h>
16 #include <fpga.h>
17 #include <lattice.h>
18 
19 static lattice_board_specific_func *pfns;
20 static const char *fpga_image;
21 static unsigned long read_bytes;
22 static unsigned long bufsize;
23 static unsigned short expectedCRC;
24 
25 /*
26  * External variables and functions declared in ivm_core.c module.
27  */
28 extern unsigned short g_usCalculatedCRC;
29 extern unsigned short g_usDataType;
30 extern unsigned char *g_pucIntelBuffer;
31 extern unsigned char *g_pucHeapMemory;
32 extern unsigned short g_iHeapCounter;
33 extern unsigned short g_iHEAPSize;
34 extern unsigned short g_usIntelDataIndex;
35 extern unsigned short g_usIntelBufferSize;
36 extern char *const g_szSupportedVersions[];
37 
38 
39 /*
40  * ispVMDelay
41  *
42  * Users must implement a delay to observe a_usTimeDelay, where
43  * bit 15 of the a_usTimeDelay defines the unit.
44  *      1 = milliseconds
45  *      0 = microseconds
46  * Example:
47  *      a_usTimeDelay = 0x0001 = 1 microsecond delay.
48  *      a_usTimeDelay = 0x8001 = 1 millisecond delay.
49  *
50  * This subroutine is called upon to provide a delay from 1 millisecond to a few
51  * hundreds milliseconds each time.
52  * It is understood that due to a_usTimeDelay is defined as unsigned short, a 16
53  * bits integer, this function is restricted to produce a delay to 64000
54  * micro-seconds or 32000 milli-second maximum. The VME file will never pass on
55  * to this function a delay time > those maximum number. If it needs more than
56  * those maximum, the VME file will launch the delay function several times to
57  * realize a larger delay time cummulatively.
58  * It is perfectly alright to provide a longer delay than required. It is not
59  * acceptable if the delay is shorter.
60  */
61 void ispVMDelay(unsigned short delay)
62 {
63 	if (delay & 0x8000)
64 		delay = (delay & ~0x8000) * 1000;
65 	udelay(delay);
66 }
67 
68 void writePort(unsigned char a_ucPins, unsigned char a_ucValue)
69 {
70 	a_ucValue = a_ucValue ? 1 : 0;
71 
72 	switch (a_ucPins) {
73 	case g_ucPinTDI:
74 		pfns->jtag_set_tdi(a_ucValue);
75 		break;
76 	case g_ucPinTCK:
77 		pfns->jtag_set_tck(a_ucValue);
78 		break;
79 	case g_ucPinTMS:
80 		pfns->jtag_set_tms(a_ucValue);
81 		break;
82 	default:
83 		printf("%s: requested unknown pin\n", __func__);
84 	}
85 }
86 
87 unsigned char readPort(void)
88 {
89 	return pfns->jtag_get_tdo();
90 }
91 
92 void sclock(void)
93 {
94 	writePort(g_ucPinTCK, 0x01);
95 	writePort(g_ucPinTCK, 0x00);
96 }
97 
98 void calibration(void)
99 {
100 	/* Apply 2 pulses to TCK. */
101 	writePort(g_ucPinTCK, 0x00);
102 	writePort(g_ucPinTCK, 0x01);
103 	writePort(g_ucPinTCK, 0x00);
104 	writePort(g_ucPinTCK, 0x01);
105 	writePort(g_ucPinTCK, 0x00);
106 
107 	ispVMDelay(0x8001);
108 
109 	/* Apply 2 pulses to TCK. */
110 	writePort(g_ucPinTCK, 0x01);
111 	writePort(g_ucPinTCK, 0x00);
112 	writePort(g_ucPinTCK, 0x01);
113 	writePort(g_ucPinTCK, 0x00);
114 }
115 
116 /*
117  * GetByte
118  *
119  * Returns a byte to the caller. The returned byte depends on the
120  * g_usDataType register. If the HEAP_IN bit is set, then the byte
121  * is returned from the HEAP. If the LHEAP_IN bit is set, then
122  * the byte is returned from the intelligent buffer. Otherwise,
123  * the byte is returned directly from the VME file.
124  */
125 unsigned char GetByte(void)
126 {
127 	unsigned char ucData;
128 	unsigned int block_size = 4 * 1024;
129 
130 	if (g_usDataType & HEAP_IN) {
131 
132 		/*
133 		 * Get data from repeat buffer.
134 		 */
135 
136 		if (g_iHeapCounter > g_iHEAPSize) {
137 
138 			/*
139 			 * Data over-run.
140 			 */
141 
142 			return 0xFF;
143 		}
144 
145 		ucData = g_pucHeapMemory[g_iHeapCounter++];
146 	} else if (g_usDataType & LHEAP_IN) {
147 
148 		/*
149 		 * Get data from intel buffer.
150 		 */
151 
152 		if (g_usIntelDataIndex >= g_usIntelBufferSize) {
153 			return 0xFF;
154 		}
155 
156 		ucData = g_pucIntelBuffer[g_usIntelDataIndex++];
157 	} else {
158 		if (read_bytes == bufsize) {
159 			return 0xFF;
160 		}
161 		ucData = *fpga_image++;
162 		read_bytes++;
163 
164 		if (!(read_bytes % block_size)) {
165 			printf("Downloading FPGA %ld/%ld completed\r",
166 				read_bytes,
167 				bufsize);
168 		}
169 
170 		if (expectedCRC != 0) {
171 			ispVMCalculateCRC32(ucData);
172 		}
173 	}
174 
175 	return ucData;
176 }
177 
178 signed char ispVM(void)
179 {
180 	char szFileVersion[9]      = { 0 };
181 	signed char cRetCode         = 0;
182 	signed char cIndex           = 0;
183 	signed char cVersionIndex    = 0;
184 	unsigned char ucReadByte     = 0;
185 	unsigned short crc;
186 
187 	g_pucHeapMemory		= NULL;
188 	g_iHeapCounter		= 0;
189 	g_iHEAPSize		= 0;
190 	g_usIntelDataIndex	= 0;
191 	g_usIntelBufferSize	= 0;
192 	g_usCalculatedCRC = 0;
193 	expectedCRC   = 0;
194 	ucReadByte = GetByte();
195 	switch (ucReadByte) {
196 	case FILE_CRC:
197 		crc = (unsigned char)GetByte();
198 		crc <<= 8;
199 		crc |= GetByte();
200 		expectedCRC = crc;
201 
202 		for (cIndex = 0; cIndex < 8; cIndex++)
203 			szFileVersion[cIndex] = GetByte();
204 
205 		break;
206 	default:
207 		szFileVersion[0] = (signed char) ucReadByte;
208 		for (cIndex = 1; cIndex < 8; cIndex++)
209 			szFileVersion[cIndex] = GetByte();
210 
211 		break;
212 	}
213 
214 	/*
215 	 *
216 	 * Compare the VME file version against the supported version.
217 	 *
218 	 */
219 
220 	for (cVersionIndex = 0; g_szSupportedVersions[cVersionIndex] != 0;
221 		cVersionIndex++) {
222 		for (cIndex = 0; cIndex < 8; cIndex++) {
223 			if (szFileVersion[cIndex] !=
224 				g_szSupportedVersions[cVersionIndex][cIndex]) {
225 				cRetCode = VME_VERSION_FAILURE;
226 				break;
227 			}
228 			cRetCode = 0;
229 		}
230 
231 		if (cRetCode == 0) {
232 			break;
233 		}
234 	}
235 
236 	if (cRetCode < 0) {
237 		return VME_VERSION_FAILURE;
238 	}
239 
240 	printf("VME file checked: starting downloading to FPGA\n");
241 
242 	ispVMStart();
243 
244 	cRetCode = ispVMCode();
245 
246 	ispVMEnd();
247 	ispVMFreeMem();
248 	puts("\n");
249 
250 	if (cRetCode == 0 && expectedCRC != 0 &&
251 			(expectedCRC != g_usCalculatedCRC)) {
252 		printf("Expected CRC:   0x%.4X\n", expectedCRC);
253 		printf("Calculated CRC: 0x%.4X\n", g_usCalculatedCRC);
254 		return VME_CRC_FAILURE;
255 	}
256 	return cRetCode;
257 }
258 
259 static int lattice_validate(Lattice_desc *desc, const char *fn)
260 {
261 	int ret_val = false;
262 
263 	if (desc) {
264 		if ((desc->family > min_lattice_type) &&
265 			(desc->family < max_lattice_type)) {
266 			if ((desc->iface > min_lattice_iface_type) &&
267 				(desc->iface < max_lattice_iface_type)) {
268 				if (desc->size) {
269 					ret_val = true;
270 				} else {
271 					printf("%s: NULL part size\n", fn);
272 				}
273 			} else {
274 				printf("%s: Invalid Interface type, %d\n",
275 					fn, desc->iface);
276 			}
277 		} else {
278 			printf("%s: Invalid family type, %d\n",
279 				fn, desc->family);
280 		}
281 	} else {
282 		printf("%s: NULL descriptor!\n", fn);
283 	}
284 
285 	return ret_val;
286 }
287 
288 int lattice_load(Lattice_desc *desc, const void *buf, size_t bsize)
289 {
290 	int ret_val = FPGA_FAIL;
291 
292 	if (!lattice_validate(desc, (char *)__func__)) {
293 		printf("%s: Invalid device descriptor\n", __func__);
294 	} else {
295 		pfns = desc->iface_fns;
296 
297 		switch (desc->family) {
298 		case Lattice_XP2:
299 			fpga_image = buf;
300 			read_bytes = 0;
301 			bufsize = bsize;
302 			debug("%s: Launching the Lattice ISPVME Loader:"
303 				" addr %p size 0x%lx...\n",
304 				__func__, fpga_image, bufsize);
305 			ret_val = ispVM();
306 			if (ret_val)
307 				printf("%s: error %d downloading FPGA image\n",
308 					__func__, ret_val);
309 			else
310 				puts("FPGA downloaded successfully\n");
311 			break;
312 		default:
313 			printf("%s: Unsupported family type, %d\n",
314 					__func__, desc->family);
315 		}
316 	}
317 
318 	return ret_val;
319 }
320 
321 int lattice_dump(Lattice_desc *desc, const void *buf, size_t bsize)
322 {
323 	puts("Dump not supported for Lattice FPGA\n");
324 
325 	return FPGA_FAIL;
326 
327 }
328 
329 int lattice_info(Lattice_desc *desc)
330 {
331 	int ret_val = FPGA_FAIL;
332 
333 	if (lattice_validate(desc, (char *)__func__)) {
334 		printf("Family:        \t");
335 		switch (desc->family) {
336 		case Lattice_XP2:
337 			puts("XP2\n");
338 			break;
339 			/* Add new family types here */
340 		default:
341 			printf("Unknown family type, %d\n", desc->family);
342 		}
343 
344 		puts("Interface type:\t");
345 		switch (desc->iface) {
346 		case lattice_jtag_mode:
347 			puts("JTAG Mode\n");
348 			break;
349 			/* Add new interface types here */
350 		default:
351 			printf("Unsupported interface type, %d\n", desc->iface);
352 		}
353 
354 		printf("Device Size:   \t%d bytes\n",
355 				desc->size);
356 
357 		if (desc->iface_fns) {
358 			printf("Device Function Table @ 0x%p\n",
359 				desc->iface_fns);
360 			switch (desc->family) {
361 			case Lattice_XP2:
362 				break;
363 				/* Add new family types here */
364 			default:
365 				break;
366 			}
367 		} else {
368 			puts("No Device Function Table.\n");
369 		}
370 
371 		if (desc->desc)
372 			printf("Model:         \t%s\n", desc->desc);
373 
374 		ret_val = FPGA_SUCCESS;
375 	} else {
376 		printf("%s: Invalid device descriptor\n", __func__);
377 	}
378 
379 	return ret_val;
380 }
381