xref: /openbmc/u-boot/drivers/ddr/marvell/a38x/mv_ddr_plat.c (revision ebb1a593252205114f6133b898f67473cc4c4899)
1 
2 #include "ddr3_init.h"
3 #include "mv_ddr_training_db.h"
4 #include "mv_ddr_regs.h"
5 #include "mv_ddr_sys_env_lib.h"
6 
7 #define DDR_INTERFACES_NUM		1
8 #define DDR_INTERFACE_OCTETS_NUM	5
9 
10 /*
11  * 1. L2 filter should be set at binary header to 0xD000000,
12  *    to avoid conflict with internal register IO.
13  * 2. U-Boot modifies internal registers base to 0xf100000,
14  *    and than should update L2 filter accordingly to 0xf000000 (3.75 GB)
15  */
16 #define L2_FILTER_FOR_MAX_MEMORY_SIZE	0xC0000000 /* temporary limit l2 filter to 3gb (LSP issue) */
17 #define ADDRESS_FILTERING_END_REGISTER	0x8c04
18 
19 #define DYNAMIC_CS_SIZE_CONFIG
20 #define DISABLE_L2_FILTERING_DURING_DDR_TRAINING
21 
22 /* Termal Sensor Registers */
23 #define TSEN_CONTROL_LSB_REG		0xE4070
24 #define TSEN_CONTROL_LSB_TC_TRIM_OFFSET	0
25 #define TSEN_CONTROL_LSB_TC_TRIM_MASK	(0x7 << TSEN_CONTROL_LSB_TC_TRIM_OFFSET)
26 #define TSEN_CONTROL_MSB_REG		0xE4074
27 #define TSEN_CONTROL_MSB_RST_OFFSET	8
28 #define TSEN_CONTROL_MSB_RST_MASK	(0x1 << TSEN_CONTROL_MSB_RST_OFFSET)
29 #define TSEN_STATUS_REG			0xe4078
30 #define TSEN_STATUS_READOUT_VALID_OFFSET	10
31 #define TSEN_STATUS_READOUT_VALID_MASK	(0x1 <<				\
32 					 TSEN_STATUS_READOUT_VALID_OFFSET)
33 #define TSEN_STATUS_TEMP_OUT_OFFSET	0
34 #define TSEN_STATUS_TEMP_OUT_MASK	(0x3ff << TSEN_STATUS_TEMP_OUT_OFFSET)
35 
36 static struct dlb_config ddr3_dlb_config_table[] = {
37 	{DLB_CTRL_REG, 0x2000005c},
38 	{DLB_BUS_OPT_WT_REG, 0x00880000},
39 	{DLB_AGING_REG, 0x0f7f007f},
40 	{DLB_EVICTION_CTRL_REG, 0x0000129f},
41 	{DLB_EVICTION_TIMERS_REG, 0x00ff0000},
42 	{DLB_WTS_DIFF_CS_REG, 0x04030802},
43 	{DLB_WTS_DIFF_BG_REG, 0x00000a02},
44 	{DLB_WTS_SAME_BG_REG, 0x09000a01},
45 	{DLB_WTS_CMDS_REG, 0x00020005},
46 	{DLB_WTS_ATTR_PRIO_REG, 0x00060f10},
47 	{DLB_QUEUE_MAP_REG, 0x00000543},
48 	{DLB_SPLIT_REG, 0x00000000},
49 	{DLB_USER_CMD_REG, 0x00000000},
50 	{0x0, 0x0}
51 };
52 
53 static struct dlb_config *sys_env_dlb_config_ptr_get(void)
54 {
55 	return &ddr3_dlb_config_table[0];
56 }
57 
58 static u8 a38x_bw_per_freq[MV_DDR_FREQ_LAST] = {
59 	0x3,			/* MV_DDR_FREQ_100 */
60 	0x4,			/* MV_DDR_FREQ_400 */
61 	0x4,			/* MV_DDR_FREQ_533 */
62 	0x5,			/* MV_DDR_FREQ_667 */
63 	0x5,			/* MV_DDR_FREQ_800 */
64 	0x5,			/* MV_DDR_FREQ_933 */
65 	0x5,			/* MV_DDR_FREQ_1066 */
66 	0x3,			/* MV_DDR_FREQ_311 */
67 	0x3,			/* MV_DDR_FREQ_333 */
68 	0x4,			/* MV_DDR_FREQ_467 */
69 	0x5,			/* MV_DDR_FREQ_850 */
70 	0x5,			/* MV_DDR_FREQ_600 */
71 	0x3,			/* MV_DDR_FREQ_300 */
72 	0x5,			/* MV_DDR_FREQ_900 */
73 	0x3,			/* MV_DDR_FREQ_360 */
74 	0x5			/* MV_DDR_FREQ_1000 */
75 };
76 
77 static u8 a38x_rate_per_freq[MV_DDR_FREQ_LAST] = {
78 	0x1,			/* MV_DDR_FREQ_100 */
79 	0x2,			/* MV_DDR_FREQ_400 */
80 	0x2,			/* MV_DDR_FREQ_533 */
81 	0x2,			/* MV_DDR_FREQ_667 */
82 	0x2,			/* MV_DDR_FREQ_800 */
83 	0x3,			/* MV_DDR_FREQ_933 */
84 	0x3,			/* MV_DDR_FREQ_1066 */
85 	0x1,			/* MV_DDR_FREQ_311 */
86 	0x1,			/* MV_DDR_FREQ_333 */
87 	0x2,			/* MV_DDR_FREQ_467 */
88 	0x2,			/* MV_DDR_FREQ_850 */
89 	0x2,			/* MV_DDR_FREQ_600 */
90 	0x1,			/* MV_DDR_FREQ_300 */
91 	0x2,			/* MV_DDR_FREQ_900 */
92 	0x1,			/* MV_DDR_FREQ_360 */
93 	0x2			/* MV_DDR_FREQ_1000 */
94 };
95 
96 static u16 a38x_vco_freq_per_sar_ref_clk_25_mhz[] = {
97 	666,			/* 0 */
98 	1332,
99 	800,
100 	1600,
101 	1066,
102 	2132,
103 	1200,
104 	2400,
105 	1332,
106 	1332,
107 	1500,
108 	1500,
109 	1600,			/* 12 */
110 	1600,
111 	1700,
112 	1700,
113 	1866,
114 	1866,
115 	1800,			/* 18 */
116 	2000,
117 	2000,
118 	4000,
119 	2132,
120 	2132,
121 	2300,
122 	2300,
123 	2400,
124 	2400,
125 	2500,
126 	2500,
127 	800
128 };
129 
130 static u16 a38x_vco_freq_per_sar_ref_clk_40_mhz[] = {
131 	666,			/* 0 */
132 	1332,
133 	800,
134 	800,			/* 0x3 */
135 	1066,
136 	1066,			/* 0x5 */
137 	1200,
138 	2400,
139 	1332,
140 	1332,
141 	1500,			/* 10 */
142 	1600,			/* 0xB */
143 	1600,
144 	1600,
145 	1700,
146 	1560,			/* 0xF */
147 	1866,
148 	1866,
149 	1800,
150 	2000,
151 	2000,			/* 20 */
152 	4000,
153 	2132,
154 	2132,
155 	2300,
156 	2300,
157 	2400,
158 	2400,
159 	2500,
160 	2500,
161 	1800			/* 30 - 0x1E */
162 };
163 
164 
165 static u32 async_mode_at_tf;
166 
167 static u32 dq_bit_map_2_phy_pin[] = {
168 	1, 0, 2, 6, 9, 8, 3, 7,	/* 0 */
169 	8, 9, 1, 7, 2, 6, 3, 0,	/* 1 */
170 	3, 9, 7, 8, 1, 0, 2, 6,	/* 2 */
171 	1, 0, 6, 2, 8, 3, 7, 9,	/* 3 */
172 	0, 1, 2, 9, 7, 8, 3, 6,	/* 4 */
173 };
174 
175 void mv_ddr_mem_scrubbing(void)
176 {
177 	ddr3_new_tip_ecc_scrub();
178 }
179 
180 static int ddr3_tip_a38x_set_divider(u8 dev_num, u32 if_id,
181 				     enum mv_ddr_freq freq);
182 
183 /*
184  * Read temperature TJ value
185  */
186 static u32 ddr3_ctrl_get_junc_temp(u8 dev_num)
187 {
188 	int reg = 0;
189 
190 	/* Initiates TSEN hardware reset once */
191 	if ((reg_read(TSEN_CONTROL_MSB_REG) & TSEN_CONTROL_MSB_RST_MASK) == 0) {
192 		reg_bit_set(TSEN_CONTROL_MSB_REG, TSEN_CONTROL_MSB_RST_MASK);
193 		/* set Tsen Tc Trim to correct default value (errata #132698) */
194 		reg = reg_read(TSEN_CONTROL_LSB_REG);
195 		reg &= ~TSEN_CONTROL_LSB_TC_TRIM_MASK;
196 		reg |= 0x3 << TSEN_CONTROL_LSB_TC_TRIM_OFFSET;
197 		reg_write(TSEN_CONTROL_LSB_REG, reg);
198 	}
199 	mdelay(10);
200 
201 	/* Check if the readout field is valid */
202 	if ((reg_read(TSEN_STATUS_REG) & TSEN_STATUS_READOUT_VALID_MASK) == 0) {
203 		printf("%s: TSEN not ready\n", __func__);
204 		return 0;
205 	}
206 
207 	reg = reg_read(TSEN_STATUS_REG);
208 	reg = (reg & TSEN_STATUS_TEMP_OUT_MASK) >> TSEN_STATUS_TEMP_OUT_OFFSET;
209 
210 	return ((((10000 * reg) / 21445) * 1000) - 272674) / 1000;
211 }
212 
213 /*
214  * Name:     ddr3_tip_a38x_get_freq_config.
215  * Desc:
216  * Args:
217  * Notes:
218  * Returns:  MV_OK if success, other error code if fail.
219  */
220 static int ddr3_tip_a38x_get_freq_config(u8 dev_num, enum mv_ddr_freq freq,
221 				  struct hws_tip_freq_config_info
222 				  *freq_config_info)
223 {
224 	if (a38x_bw_per_freq[freq] == 0xff)
225 		return MV_NOT_SUPPORTED;
226 
227 	if (freq_config_info == NULL)
228 		return MV_BAD_PARAM;
229 
230 	freq_config_info->bw_per_freq = a38x_bw_per_freq[freq];
231 	freq_config_info->rate_per_freq = a38x_rate_per_freq[freq];
232 	freq_config_info->is_supported = 1;
233 
234 	return MV_OK;
235 }
236 
237 static void dunit_read(u32 addr, u32 mask, u32 *data)
238 {
239 	*data = reg_read(addr) & mask;
240 }
241 
242 static void dunit_write(u32 addr, u32 mask, u32 data)
243 {
244 	u32 reg_val = data;
245 
246 	if (mask != MASK_ALL_BITS) {
247 		dunit_read(addr, MASK_ALL_BITS, &reg_val);
248 		reg_val &= (~mask);
249 		reg_val |= (data & mask);
250 	}
251 
252 	reg_write(addr, reg_val);
253 }
254 
255 #define ODPG_ENABLE_REG				0x186d4
256 #define ODPG_EN_OFFS				0
257 #define ODPG_EN_MASK				0x1
258 #define ODPG_EN_ENA				1
259 #define ODPG_EN_DONE				0
260 #define ODPG_DIS_OFFS				8
261 #define ODPG_DIS_MASK				0x1
262 #define ODPG_DIS_DIS				1
263 void mv_ddr_odpg_enable(void)
264 {
265 	dunit_write(ODPG_ENABLE_REG,
266 		    ODPG_EN_MASK << ODPG_EN_OFFS,
267 		    ODPG_EN_ENA << ODPG_EN_OFFS);
268 }
269 
270 void mv_ddr_odpg_disable(void)
271 {
272 	dunit_write(ODPG_ENABLE_REG,
273 		    ODPG_DIS_MASK << ODPG_DIS_OFFS,
274 		    ODPG_DIS_DIS << ODPG_DIS_OFFS);
275 }
276 
277 void mv_ddr_odpg_done_clr(void)
278 {
279 	return;
280 }
281 
282 int mv_ddr_is_odpg_done(u32 count)
283 {
284 	u32 i, data;
285 
286 	for (i = 0; i < count; i++) {
287 		dunit_read(ODPG_ENABLE_REG, MASK_ALL_BITS, &data);
288 		if (((data >> ODPG_EN_OFFS) & ODPG_EN_MASK) ==
289 		     ODPG_EN_DONE)
290 			break;
291 	}
292 
293 	if (i >= count) {
294 		printf("%s: timeout\n", __func__);
295 		return MV_FAIL;
296 	}
297 
298 	return MV_OK;
299 }
300 
301 void mv_ddr_training_enable(void)
302 {
303 	dunit_write(GLOB_CTRL_STATUS_REG,
304 		    TRAINING_TRIGGER_MASK << TRAINING_TRIGGER_OFFS,
305 		    TRAINING_TRIGGER_ENA << TRAINING_TRIGGER_OFFS);
306 }
307 
308 #define DRAM_INIT_CTRL_STATUS_REG	0x18488
309 #define TRAINING_TRIGGER_OFFS		0
310 #define TRAINING_TRIGGER_MASK		0x1
311 #define TRAINING_TRIGGER_ENA		1
312 #define TRAINING_DONE_OFFS		1
313 #define TRAINING_DONE_MASK		0x1
314 #define TRAINING_DONE_DONE		1
315 #define TRAINING_DONE_NOT_DONE		0
316 #define TRAINING_RESULT_OFFS		2
317 #define TRAINING_RESULT_MASK		0x1
318 #define TRAINING_RESULT_PASS		0
319 #define TRAINING_RESULT_FAIL		1
320 int mv_ddr_is_training_done(u32 count, u32 *result)
321 {
322 	u32 i, data;
323 
324 	if (result == NULL) {
325 		printf("%s: NULL result pointer found\n", __func__);
326 		return MV_FAIL;
327 	}
328 
329 	for (i = 0; i < count; i++) {
330 		dunit_read(DRAM_INIT_CTRL_STATUS_REG, MASK_ALL_BITS, &data);
331 		if (((data >> TRAINING_DONE_OFFS) & TRAINING_DONE_MASK) ==
332 		     TRAINING_DONE_DONE)
333 			break;
334 	}
335 
336 	if (i >= count) {
337 		printf("%s: timeout\n", __func__);
338 		return MV_FAIL;
339 	}
340 
341 	*result = (data >> TRAINING_RESULT_OFFS) & TRAINING_RESULT_MASK;
342 
343 	return MV_OK;
344 }
345 
346 #define DM_PAD	10
347 u32 mv_ddr_dm_pad_get(void)
348 {
349 	return DM_PAD;
350 }
351 
352 /*
353  * Name:     ddr3_tip_a38x_select_ddr_controller.
354  * Desc:     Enable/Disable access to Marvell's server.
355  * Args:     dev_num     - device number
356  *           enable        - whether to enable or disable the server
357  * Notes:
358  * Returns:  MV_OK if success, other error code if fail.
359  */
360 static int ddr3_tip_a38x_select_ddr_controller(u8 dev_num, int enable)
361 {
362 	u32 reg;
363 
364 	reg = reg_read(DUAL_DUNIT_CFG_REG);
365 
366 	if (enable)
367 		reg |= (1 << 6);
368 	else
369 		reg &= ~(1 << 6);
370 
371 	reg_write(DUAL_DUNIT_CFG_REG, reg);
372 
373 	return MV_OK;
374 }
375 
376 static u8 ddr3_tip_clock_mode(u32 frequency)
377 {
378 	if ((frequency == MV_DDR_FREQ_LOW_FREQ) || (mv_ddr_freq_get(frequency) <= 400))
379 		return 1;
380 
381 	return 2;
382 }
383 
384 static int mv_ddr_sar_freq_get(int dev_num, enum mv_ddr_freq *freq)
385 {
386 	u32 reg, ref_clk_satr;
387 
388 	/* Read sample at reset setting */
389 	reg = (reg_read(REG_DEVICE_SAR1_ADDR) >>
390 	       RST2_CPU_DDR_CLOCK_SELECT_IN_OFFSET) &
391 		RST2_CPU_DDR_CLOCK_SELECT_IN_MASK;
392 
393 	ref_clk_satr = reg_read(DEVICE_SAMPLE_AT_RESET2_REG);
394 	if (((ref_clk_satr >> DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_OFFSET) & 0x1) ==
395 	    DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_25MHZ) {
396 		switch (reg) {
397 		case 0x1:
398 			DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
399 					      ("Warning: Unsupported freq mode for 333Mhz configured(%d)\n",
400 					      reg));
401 			/* fallthrough */
402 		case 0x0:
403 			*freq = MV_DDR_FREQ_333;
404 			break;
405 		case 0x3:
406 			DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
407 					      ("Warning: Unsupported freq mode for 400Mhz configured(%d)\n",
408 					      reg));
409 			/* fallthrough */
410 		case 0x2:
411 			*freq = MV_DDR_FREQ_400;
412 			break;
413 		case 0xd:
414 			DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
415 					      ("Warning: Unsupported freq mode for 533Mhz configured(%d)\n",
416 					      reg));
417 			/* fallthrough */
418 		case 0x4:
419 			*freq = MV_DDR_FREQ_533;
420 			break;
421 		case 0x6:
422 			*freq = MV_DDR_FREQ_600;
423 			break;
424 		case 0x11:
425 		case 0x14:
426 			DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
427 					      ("Warning: Unsupported freq mode for 667Mhz configured(%d)\n",
428 					      reg));
429 			/* fallthrough */
430 		case 0x8:
431 			*freq = MV_DDR_FREQ_667;
432 			break;
433 		case 0x15:
434 		case 0x1b:
435 			DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
436 					      ("Warning: Unsupported freq mode for 800Mhz configured(%d)\n",
437 					      reg));
438 			/* fallthrough */
439 		case 0xc:
440 			*freq = MV_DDR_FREQ_800;
441 			break;
442 		case 0x10:
443 			*freq = MV_DDR_FREQ_933;
444 			break;
445 		case 0x12:
446 			*freq = MV_DDR_FREQ_900;
447 			break;
448 		case 0x13:
449 			*freq = MV_DDR_FREQ_933;
450 			break;
451 		default:
452 			*freq = 0;
453 			return MV_NOT_SUPPORTED;
454 		}
455 	} else { /* REFCLK 40MHz case */
456 		switch (reg) {
457 		case 0x3:
458 			*freq = MV_DDR_FREQ_400;
459 			break;
460 		case 0x5:
461 			*freq = MV_DDR_FREQ_533;
462 			break;
463 		case 0xb:
464 			*freq = MV_DDR_FREQ_800;
465 			break;
466 		case 0x1e:
467 			*freq = MV_DDR_FREQ_900;
468 			break;
469 		default:
470 			*freq = 0;
471 			return MV_NOT_SUPPORTED;
472 		}
473 	}
474 
475 	return MV_OK;
476 }
477 
478 static int ddr3_tip_a38x_get_medium_freq(int dev_num, enum mv_ddr_freq *freq)
479 {
480 	u32 reg, ref_clk_satr;
481 
482 	/* Read sample at reset setting */
483 	reg = (reg_read(REG_DEVICE_SAR1_ADDR) >>
484 	RST2_CPU_DDR_CLOCK_SELECT_IN_OFFSET) &
485 	RST2_CPU_DDR_CLOCK_SELECT_IN_MASK;
486 
487 	ref_clk_satr = reg_read(DEVICE_SAMPLE_AT_RESET2_REG);
488 	if (((ref_clk_satr >> DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_OFFSET) & 0x1) ==
489 	    DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_25MHZ) {
490 		switch (reg) {
491 		case 0x0:
492 		case 0x1:
493 			/* Medium is same as TF to run PBS in this freq */
494 			*freq = MV_DDR_FREQ_333;
495 			break;
496 		case 0x2:
497 		case 0x3:
498 			/* Medium is same as TF to run PBS in this freq */
499 			*freq = MV_DDR_FREQ_400;
500 			break;
501 		case 0x4:
502 		case 0xd:
503 			/* Medium is same as TF to run PBS in this freq */
504 			*freq = MV_DDR_FREQ_533;
505 			break;
506 		case 0x8:
507 		case 0x10:
508 		case 0x11:
509 		case 0x14:
510 			*freq = MV_DDR_FREQ_333;
511 			break;
512 		case 0xc:
513 		case 0x15:
514 		case 0x1b:
515 			*freq = MV_DDR_FREQ_400;
516 			break;
517 		case 0x6:
518 			*freq = MV_DDR_FREQ_300;
519 			break;
520 		case 0x12:
521 			*freq = MV_DDR_FREQ_360;
522 			break;
523 		case 0x13:
524 			*freq = MV_DDR_FREQ_400;
525 			break;
526 		default:
527 			*freq = 0;
528 			return MV_NOT_SUPPORTED;
529 		}
530 	} else { /* REFCLK 40MHz case */
531 		switch (reg) {
532 		case 0x3:
533 			/* Medium is same as TF to run PBS in this freq */
534 			*freq = MV_DDR_FREQ_400;
535 			break;
536 		case 0x5:
537 			/* Medium is same as TF to run PBS in this freq */
538 			*freq = MV_DDR_FREQ_533;
539 			break;
540 		case 0xb:
541 			*freq = MV_DDR_FREQ_400;
542 			break;
543 		case 0x1e:
544 			*freq = MV_DDR_FREQ_360;
545 			break;
546 		default:
547 			*freq = 0;
548 			return MV_NOT_SUPPORTED;
549 		}
550 	}
551 
552 	return MV_OK;
553 }
554 
555 static int ddr3_tip_a38x_get_device_info(u8 dev_num, struct ddr3_device_info *info_ptr)
556 {
557 #if defined(CONFIG_ARMADA_39X)
558 	info_ptr->device_id = 0x6900;
559 #else
560 	info_ptr->device_id = 0x6800;
561 #endif
562 	info_ptr->ck_delay = ck_delay;
563 
564 	return MV_OK;
565 }
566 
567 /* check indirect access to phy register file completed */
568 static int is_prfa_done(void)
569 {
570 	u32 reg_val;
571 	u32 iter = 0;
572 
573 	do {
574 		if (iter++ > MAX_POLLING_ITERATIONS) {
575 			printf("error: %s: polling timeout\n", __func__);
576 			return MV_FAIL;
577 		}
578 		dunit_read(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, &reg_val);
579 		reg_val >>= PRFA_REQ_OFFS;
580 		reg_val &= PRFA_REQ_MASK;
581 	} while (reg_val == PRFA_REQ_ENA); /* request pending */
582 
583 	return MV_OK;
584 }
585 
586 /* write to phy register thru indirect access */
587 static int prfa_write(enum hws_access_type phy_access, u32 phy,
588 		      enum hws_ddr_phy phy_type, u32 addr,
589 		      u32 data, enum hws_operation op_type)
590 {
591 	u32 reg_val = ((data & PRFA_DATA_MASK) << PRFA_DATA_OFFS) |
592 		      ((addr & PRFA_REG_NUM_MASK) << PRFA_REG_NUM_OFFS) |
593 		      ((phy & PRFA_PUP_NUM_MASK) << PRFA_PUP_NUM_OFFS) |
594 		      ((phy_type & PRFA_PUP_CTRL_DATA_MASK) << PRFA_PUP_CTRL_DATA_OFFS) |
595 		      ((phy_access & PRFA_PUP_BCAST_WR_ENA_MASK) << PRFA_PUP_BCAST_WR_ENA_OFFS) |
596 		      (((addr >> 6) & PRFA_REG_NUM_HI_MASK) << PRFA_REG_NUM_HI_OFFS) |
597 		      ((op_type & PRFA_TYPE_MASK) << PRFA_TYPE_OFFS);
598 	dunit_write(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, reg_val);
599 	reg_val |= (PRFA_REQ_ENA << PRFA_REQ_OFFS);
600 	dunit_write(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, reg_val);
601 
602 	/* polling for prfa request completion */
603 	if (is_prfa_done() != MV_OK)
604 		return MV_FAIL;
605 
606 	return MV_OK;
607 }
608 
609 /* read from phy register thru indirect access */
610 static int prfa_read(enum hws_access_type phy_access, u32 phy,
611 		     enum hws_ddr_phy phy_type, u32 addr, u32 *data)
612 {
613 	struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
614 	u32 max_phy = ddr3_tip_dev_attr_get(0, MV_ATTR_OCTET_PER_INTERFACE);
615 	u32 i, reg_val;
616 
617 	if (phy_access == ACCESS_TYPE_MULTICAST) {
618 		for (i = 0; i < max_phy; i++) {
619 			VALIDATE_BUS_ACTIVE(tm->bus_act_mask, i);
620 			if (prfa_write(ACCESS_TYPE_UNICAST, i, phy_type, addr, 0, OPERATION_READ) != MV_OK)
621 				return MV_FAIL;
622 			dunit_read(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, &reg_val);
623 			data[i] = (reg_val >> PRFA_DATA_OFFS) & PRFA_DATA_MASK;
624 		}
625 	} else {
626 		if (prfa_write(phy_access, phy, phy_type, addr, 0, OPERATION_READ) != MV_OK)
627 			return MV_FAIL;
628 		dunit_read(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, &reg_val);
629 		*data = (reg_val >> PRFA_DATA_OFFS) & PRFA_DATA_MASK;
630 	}
631 
632 	return MV_OK;
633 }
634 
635 static int mv_ddr_sw_db_init(u32 dev_num, u32 board_id)
636 {
637 	struct hws_tip_config_func_db config_func;
638 
639 	/* new read leveling version */
640 	config_func.mv_ddr_dunit_read = dunit_read;
641 	config_func.mv_ddr_dunit_write = dunit_write;
642 	config_func.tip_dunit_mux_select_func =
643 		ddr3_tip_a38x_select_ddr_controller;
644 	config_func.tip_get_freq_config_info_func =
645 		ddr3_tip_a38x_get_freq_config;
646 	config_func.tip_set_freq_divider_func = ddr3_tip_a38x_set_divider;
647 	config_func.tip_get_device_info_func = ddr3_tip_a38x_get_device_info;
648 	config_func.tip_get_temperature = ddr3_ctrl_get_junc_temp;
649 	config_func.tip_get_clock_ratio = ddr3_tip_clock_mode;
650 	config_func.tip_external_read = ddr3_tip_ext_read;
651 	config_func.tip_external_write = ddr3_tip_ext_write;
652 	config_func.mv_ddr_phy_read = prfa_read;
653 	config_func.mv_ddr_phy_write = prfa_write;
654 
655 	ddr3_tip_init_config_func(dev_num, &config_func);
656 
657 	ddr3_tip_register_dq_table(dev_num, dq_bit_map_2_phy_pin);
658 
659 	/* set device attributes*/
660 	ddr3_tip_dev_attr_init(dev_num);
661 	ddr3_tip_dev_attr_set(dev_num, MV_ATTR_TIP_REV, MV_TIP_REV_4);
662 	ddr3_tip_dev_attr_set(dev_num, MV_ATTR_PHY_EDGE, MV_DDR_PHY_EDGE_POSITIVE);
663 	ddr3_tip_dev_attr_set(dev_num, MV_ATTR_OCTET_PER_INTERFACE, DDR_INTERFACE_OCTETS_NUM);
664 #ifdef CONFIG_ARMADA_39X
665 	ddr3_tip_dev_attr_set(dev_num, MV_ATTR_INTERLEAVE_WA, 1);
666 #else
667 	ddr3_tip_dev_attr_set(dev_num, MV_ATTR_INTERLEAVE_WA, 0);
668 #endif
669 
670 	ca_delay = 0;
671 	delay_enable = 1;
672 	dfs_low_freq = DFS_LOW_FREQ_VALUE;
673 	calibration_update_control = 1;
674 
675 	ddr3_tip_a38x_get_medium_freq(dev_num, &medium_freq);
676 
677 	return MV_OK;
678 }
679 
680 static int mv_ddr_training_mask_set(void)
681 {
682 	struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
683 	enum mv_ddr_freq ddr_freq = tm->interface_params[0].memory_freq;
684 
685 	mask_tune_func = (SET_LOW_FREQ_MASK_BIT |
686 			  LOAD_PATTERN_MASK_BIT |
687 			  SET_MEDIUM_FREQ_MASK_BIT | WRITE_LEVELING_MASK_BIT |
688 			  WRITE_LEVELING_SUPP_MASK_BIT |
689 			  READ_LEVELING_MASK_BIT |
690 			  PBS_RX_MASK_BIT |
691 			  PBS_TX_MASK_BIT |
692 			  SET_TARGET_FREQ_MASK_BIT |
693 			  WRITE_LEVELING_TF_MASK_BIT |
694 			  WRITE_LEVELING_SUPP_TF_MASK_BIT |
695 			  READ_LEVELING_TF_MASK_BIT |
696 			  CENTRALIZATION_RX_MASK_BIT |
697 			  CENTRALIZATION_TX_MASK_BIT);
698 	rl_mid_freq_wa = 1;
699 
700 	if ((ddr_freq == MV_DDR_FREQ_333) || (ddr_freq == MV_DDR_FREQ_400)) {
701 		mask_tune_func = (WRITE_LEVELING_MASK_BIT |
702 				  LOAD_PATTERN_2_MASK_BIT |
703 				  WRITE_LEVELING_SUPP_MASK_BIT |
704 				  READ_LEVELING_MASK_BIT |
705 				  PBS_RX_MASK_BIT |
706 				  PBS_TX_MASK_BIT |
707 				  CENTRALIZATION_RX_MASK_BIT |
708 				  CENTRALIZATION_TX_MASK_BIT);
709 		rl_mid_freq_wa = 0; /* WA not needed if 333/400 is TF */
710 	}
711 
712 	/* Supplementary not supported for ECC modes */
713 	if (mv_ddr_is_ecc_ena()) {
714 		mask_tune_func &= ~WRITE_LEVELING_SUPP_TF_MASK_BIT;
715 		mask_tune_func &= ~WRITE_LEVELING_SUPP_MASK_BIT;
716 		mask_tune_func &= ~PBS_TX_MASK_BIT;
717 		mask_tune_func &= ~PBS_RX_MASK_BIT;
718 	}
719 
720 	return MV_OK;
721 }
722 
723 /* function: mv_ddr_set_calib_controller
724  * this function sets the controller which will control
725  * the calibration cycle in the end of the training.
726  * 1 - internal controller
727  * 2 - external controller
728  */
729 void mv_ddr_set_calib_controller(void)
730 {
731 	calibration_update_control = CAL_UPDATE_CTRL_INT;
732 }
733 
734 static int ddr3_tip_a38x_set_divider(u8 dev_num, u32 if_id,
735 				     enum mv_ddr_freq frequency)
736 {
737 	u32 divider = 0;
738 	u32 sar_val, ref_clk_satr;
739 	u32 async_val;
740 	u32 freq = mv_ddr_freq_get(frequency);
741 
742 	if (if_id != 0) {
743 		DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
744 				      ("A38x does not support interface 0x%x\n",
745 				       if_id));
746 		return MV_BAD_PARAM;
747 	}
748 
749 	/* get VCO freq index */
750 	sar_val = (reg_read(REG_DEVICE_SAR1_ADDR) >>
751 		   RST2_CPU_DDR_CLOCK_SELECT_IN_OFFSET) &
752 		RST2_CPU_DDR_CLOCK_SELECT_IN_MASK;
753 
754 	ref_clk_satr = reg_read(DEVICE_SAMPLE_AT_RESET2_REG);
755 	if (((ref_clk_satr >> DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_OFFSET) & 0x1) ==
756 	    DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_25MHZ)
757 		divider = a38x_vco_freq_per_sar_ref_clk_25_mhz[sar_val] / freq;
758 	else
759 		divider = a38x_vco_freq_per_sar_ref_clk_40_mhz[sar_val] / freq;
760 
761 	if ((async_mode_at_tf == 1) && (freq > 400)) {
762 		/* Set async mode */
763 		dunit_write(0x20220, 0x1000, 0x1000);
764 		dunit_write(0xe42f4, 0x200, 0x200);
765 
766 		/* Wait for async mode setup */
767 		mdelay(5);
768 
769 		/* Set KNL values */
770 		switch (frequency) {
771 		case MV_DDR_FREQ_467:
772 			async_val = 0x806f012;
773 			break;
774 		case MV_DDR_FREQ_533:
775 			async_val = 0x807f012;
776 			break;
777 		case MV_DDR_FREQ_600:
778 			async_val = 0x805f00a;
779 			break;
780 		case MV_DDR_FREQ_667:
781 			async_val = 0x809f012;
782 			break;
783 		case MV_DDR_FREQ_800:
784 			async_val = 0x807f00a;
785 			break;
786 		case MV_DDR_FREQ_850:
787 			async_val = 0x80cb012;
788 			break;
789 		case MV_DDR_FREQ_900:
790 			async_val = 0x80d7012;
791 			break;
792 		case MV_DDR_FREQ_933:
793 			async_val = 0x80df012;
794 			break;
795 		case MV_DDR_FREQ_1000:
796 			async_val = 0x80ef012;
797 			break;
798 		case MV_DDR_FREQ_1066:
799 			async_val = 0x80ff012;
800 			break;
801 		default:
802 			/* set MV_DDR_FREQ_667 as default */
803 			async_val = 0x809f012;
804 		}
805 		dunit_write(0xe42f0, 0xffffffff, async_val);
806 	} else {
807 		/* Set sync mode */
808 		dunit_write(0x20220, 0x1000, 0x0);
809 		dunit_write(0xe42f4, 0x200, 0x0);
810 
811 		/* cpupll_clkdiv_reset_mask */
812 		dunit_write(0xe4264, 0xff, 0x1f);
813 
814 		/* cpupll_clkdiv_reload_smooth */
815 		dunit_write(0xe4260, (0xff << 8), (0x2 << 8));
816 
817 		/* cpupll_clkdiv_relax_en */
818 		dunit_write(0xe4260, (0xff << 24), (0x2 << 24));
819 
820 		/* write the divider */
821 		dunit_write(0xe4268, (0x3f << 8), (divider << 8));
822 
823 		/* set cpupll_clkdiv_reload_ratio */
824 		dunit_write(0xe4264, (1 << 8), (1 << 8));
825 
826 		/* undet cpupll_clkdiv_reload_ratio */
827 		dunit_write(0xe4264, (1 << 8), 0x0);
828 
829 		/* clear cpupll_clkdiv_reload_force */
830 		dunit_write(0xe4260, (0xff << 8), 0x0);
831 
832 		/* clear cpupll_clkdiv_relax_en */
833 		dunit_write(0xe4260, (0xff << 24), 0x0);
834 
835 		/* clear cpupll_clkdiv_reset_mask */
836 		dunit_write(0xe4264, 0xff, 0x0);
837 	}
838 
839 	/* Dunit training clock + 1:1/2:1 mode */
840 	dunit_write(0x18488, (1 << 16), ((ddr3_tip_clock_mode(frequency) & 0x1) << 16));
841 	dunit_write(0x1524, (1 << 15), ((ddr3_tip_clock_mode(frequency) - 1) << 15));
842 
843 	return MV_OK;
844 }
845 
846 /*
847  * external read from memory
848  */
849 int ddr3_tip_ext_read(u32 dev_num, u32 if_id, u32 reg_addr,
850 		      u32 num_of_bursts, u32 *data)
851 {
852 	u32 burst_num;
853 
854 	for (burst_num = 0; burst_num < num_of_bursts * 8; burst_num++)
855 		data[burst_num] = readl(reg_addr + 4 * burst_num);
856 
857 	return MV_OK;
858 }
859 
860 /*
861  * external write to memory
862  */
863 int ddr3_tip_ext_write(u32 dev_num, u32 if_id, u32 reg_addr,
864 		       u32 num_of_bursts, u32 *data) {
865 	u32 burst_num;
866 
867 	for (burst_num = 0; burst_num < num_of_bursts * 8; burst_num++)
868 		writel(data[burst_num], reg_addr + 4 * burst_num);
869 
870 	return MV_OK;
871 }
872 
873 int mv_ddr_early_init(void)
874 {
875 	struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
876 
877 	/* FIXME: change this configuration per ddr type
878 	 * configure a380 and a390 to work with receiver odt timing
879 	 * the odt_config is defined:
880 	 * '1' in ddr4
881 	 * '0' in ddr3
882 	 * here the parameter is run over in ddr4 and ddr3 to '1' (in ddr4 the default is '1')
883 	 * to configure the odt to work with timing restrictions
884 	 */
885 
886 	mv_ddr_sw_db_init(0, 0);
887 
888 	if (tm->interface_params[0].memory_freq != MV_DDR_FREQ_SAR)
889 		async_mode_at_tf = 1;
890 
891 	return MV_OK;
892 }
893 
894 int mv_ddr_early_init2(void)
895 {
896 	mv_ddr_training_mask_set();
897 
898 	return MV_OK;
899 }
900 
901 int mv_ddr_pre_training_fixup(void)
902 {
903 	return 0;
904 }
905 
906 int mv_ddr_post_training_fixup(void)
907 {
908 	return 0;
909 }
910 
911 int ddr3_post_run_alg(void)
912 {
913 	return MV_OK;
914 }
915 
916 int ddr3_silicon_post_init(void)
917 {
918 	struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
919 
920 	/* Set half bus width */
921 	if (DDR3_IS_16BIT_DRAM_MODE(tm->bus_act_mask)) {
922 		CHECK_STATUS(ddr3_tip_if_write
923 			     (0, ACCESS_TYPE_UNICAST, PARAM_NOT_CARE,
924 			      SDRAM_CFG_REG, 0x0, 0x8000));
925 	}
926 
927 	return MV_OK;
928 }
929 
930 u32 mv_ddr_init_freq_get(void)
931 {
932 	enum mv_ddr_freq freq;
933 
934 	mv_ddr_sar_freq_get(0, &freq);
935 
936 	return freq;
937 }
938 
939 static u32 ddr3_get_bus_width(void)
940 {
941 	u32 bus_width;
942 
943 	bus_width = (reg_read(SDRAM_CFG_REG) & 0x8000) >>
944 		BUS_IN_USE_OFFS;
945 
946 	return (bus_width == 0) ? 16 : 32;
947 }
948 
949 static u32 ddr3_get_device_width(u32 cs)
950 {
951 	u32 device_width;
952 
953 	device_width = (reg_read(SDRAM_ADDR_CTRL_REG) &
954 			(CS_STRUCT_MASK << CS_STRUCT_OFFS(cs))) >>
955 			CS_STRUCT_OFFS(cs);
956 
957 	return (device_width == 0) ? 8 : 16;
958 }
959 
960 static u32 ddr3_get_device_size(u32 cs)
961 {
962 	u32 device_size_low, device_size_high, device_size;
963 	u32 data, cs_low_offset, cs_high_offset;
964 
965 	cs_low_offset = CS_SIZE_OFFS(cs);
966 	cs_high_offset = CS_SIZE_HIGH_OFFS(cs);
967 
968 	data = reg_read(SDRAM_ADDR_CTRL_REG);
969 	device_size_low = (data >> cs_low_offset) & 0x3;
970 	device_size_high = (data >> cs_high_offset) & 0x1;
971 
972 	device_size = device_size_low | (device_size_high << 2);
973 
974 	switch (device_size) {
975 	case 0:
976 		return 2048;
977 	case 2:
978 		return 512;
979 	case 3:
980 		return 1024;
981 	case 4:
982 		return 4096;
983 	case 5:
984 		return 8192;
985 	case 1:
986 	default:
987 		DEBUG_INIT_C("Error: Wrong device size of Cs: ", cs, 1);
988 		/* zeroes mem size in ddr3_calc_mem_cs_size */
989 		return 0;
990 	}
991 }
992 
993 int ddr3_calc_mem_cs_size(u32 cs, uint64_t *cs_size)
994 {
995 	u32 cs_mem_size;
996 
997 	/* Calculate in MiB */
998 	cs_mem_size = ((ddr3_get_bus_width() / ddr3_get_device_width(cs)) *
999 		       ddr3_get_device_size(cs)) / 8;
1000 
1001 	/*
1002 	 * Multiple controller bus width, 2x for 64 bit
1003 	 * (SoC controller may be 32 or 64 bit,
1004 	 * so bit 15 in 0x1400, that means if whole bus used or only half,
1005 	 * have a differnt meaning
1006 	 */
1007 	cs_mem_size *= DDR_CONTROLLER_BUS_WIDTH_MULTIPLIER;
1008 
1009 	if ((cs_mem_size < 128) || (cs_mem_size > 4096)) {
1010 		DEBUG_INIT_C("Error: Wrong Memory size of Cs: ", cs, 1);
1011 		return MV_BAD_VALUE;
1012 	}
1013 
1014 	*cs_size = cs_mem_size << 20; /* write cs size in bytes */
1015 
1016 	return MV_OK;
1017 }
1018 
1019 static int ddr3_fast_path_dynamic_cs_size_config(u32 cs_ena)
1020 {
1021 	u32 reg, cs;
1022 	uint64_t mem_total_size = 0;
1023 	uint64_t cs_mem_size = 0;
1024 	uint64_t mem_total_size_c, cs_mem_size_c;
1025 
1026 #ifdef DEVICE_MAX_DRAM_ADDRESS_SIZE
1027 	u32 physical_mem_size;
1028 	u32 max_mem_size = DEVICE_MAX_DRAM_ADDRESS_SIZE;
1029 	struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
1030 #endif
1031 
1032 	/* Open fast path windows */
1033 	for (cs = 0; cs < MAX_CS_NUM; cs++) {
1034 		if (cs_ena & (1 << cs)) {
1035 			/* get CS size */
1036 			if (ddr3_calc_mem_cs_size(cs, &cs_mem_size) != MV_OK)
1037 				return MV_FAIL;
1038 
1039 #ifdef DEVICE_MAX_DRAM_ADDRESS_SIZE
1040 			/*
1041 			 * if number of address pins doesn't allow to use max
1042 			 * mem size that is defined in topology
1043 			 * mem size is defined by DEVICE_MAX_DRAM_ADDRESS_SIZE
1044 			 */
1045 			physical_mem_size = mem_size
1046 				[tm->interface_params[0].memory_size];
1047 
1048 			if (ddr3_get_device_width(cs) == 16) {
1049 				/*
1050 				 * 16bit mem device can be twice more - no need
1051 				 * in less significant pin
1052 				 */
1053 				max_mem_size = DEVICE_MAX_DRAM_ADDRESS_SIZE * 2;
1054 			}
1055 
1056 			if (physical_mem_size > max_mem_size) {
1057 				cs_mem_size = max_mem_size *
1058 					(ddr3_get_bus_width() /
1059 					 ddr3_get_device_width(cs));
1060 				printf("Updated Physical Mem size is from 0x%x to %x\n",
1061 				       physical_mem_size,
1062 				       DEVICE_MAX_DRAM_ADDRESS_SIZE);
1063 			}
1064 #endif
1065 
1066 			/* set fast path window control for the cs */
1067 			reg = 0xffffe1;
1068 			reg |= (cs << 2);
1069 			reg |= (cs_mem_size - 1) & 0xffff0000;
1070 			/*Open fast path Window */
1071 			reg_write(REG_FASTPATH_WIN_CTRL_ADDR(cs), reg);
1072 
1073 			/* Set fast path window base address for the cs */
1074 			reg = ((cs_mem_size) * cs) & 0xffff0000;
1075 			/* Set base address */
1076 			reg_write(REG_FASTPATH_WIN_BASE_ADDR(cs), reg);
1077 
1078 			/*
1079 			 * Since memory size may be bigger than 4G the summ may
1080 			 * be more than 32 bit word,
1081 			 * so to estimate the result divide mem_total_size and
1082 			 * cs_mem_size by 0x10000 (it is equal to >> 16)
1083 			 */
1084 			mem_total_size_c = (mem_total_size >> 16) & 0xffffffffffff;
1085 			cs_mem_size_c = (cs_mem_size >> 16) & 0xffffffffffff;
1086 			/* if the sum less than 2 G - calculate the value */
1087 			if (mem_total_size_c + cs_mem_size_c < 0x10000)
1088 				mem_total_size += cs_mem_size;
1089 			else	/* put max possible size */
1090 				mem_total_size = L2_FILTER_FOR_MAX_MEMORY_SIZE;
1091 		}
1092 	}
1093 
1094 	/* Set L2 filtering to Max Memory size */
1095 	reg_write(ADDRESS_FILTERING_END_REGISTER, mem_total_size);
1096 
1097 	return MV_OK;
1098 }
1099 
1100 static int ddr3_restore_and_set_final_windows(u32 *win, const char *ddr_type)
1101 {
1102 	u32 win_ctrl_reg, num_of_win_regs;
1103 	u32 cs_ena = mv_ddr_sys_env_get_cs_ena_from_reg();
1104 	u32 ui;
1105 
1106 	win_ctrl_reg = REG_XBAR_WIN_4_CTRL_ADDR;
1107 	num_of_win_regs = 16;
1108 
1109 	/* Return XBAR windows 4-7 or 16-19 init configuration */
1110 	for (ui = 0; ui < num_of_win_regs; ui++)
1111 		reg_write((win_ctrl_reg + 0x4 * ui), win[ui]);
1112 
1113 	printf("%s Training Sequence - Switching XBAR Window to FastPath Window\n",
1114 	       ddr_type);
1115 
1116 #if defined DYNAMIC_CS_SIZE_CONFIG
1117 	if (ddr3_fast_path_dynamic_cs_size_config(cs_ena) != MV_OK)
1118 		printf("ddr3_fast_path_dynamic_cs_size_config FAILED\n");
1119 #else
1120 	u32 reg, cs;
1121 	reg = 0x1fffffe1;
1122 	for (cs = 0; cs < MAX_CS_NUM; cs++) {
1123 		if (cs_ena & (1 << cs)) {
1124 			reg |= (cs << 2);
1125 			break;
1126 		}
1127 	}
1128 	/* Open fast path Window to - 0.5G */
1129 	reg_write(REG_FASTPATH_WIN_CTRL_ADDR(0), reg);
1130 #endif
1131 
1132 	return MV_OK;
1133 }
1134 
1135 static int ddr3_save_and_set_training_windows(u32 *win)
1136 {
1137 	u32 cs_ena;
1138 	u32 reg, tmp_count, cs, ui;
1139 	u32 win_ctrl_reg, win_base_reg, win_remap_reg;
1140 	u32 num_of_win_regs, win_jump_index;
1141 	win_ctrl_reg = REG_XBAR_WIN_4_CTRL_ADDR;
1142 	win_base_reg = REG_XBAR_WIN_4_BASE_ADDR;
1143 	win_remap_reg = REG_XBAR_WIN_4_REMAP_ADDR;
1144 	win_jump_index = 0x10;
1145 	num_of_win_regs = 16;
1146 	struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
1147 
1148 #ifdef DISABLE_L2_FILTERING_DURING_DDR_TRAINING
1149 	/*
1150 	 * Disable L2 filtering during DDR training
1151 	 * (when Cross Bar window is open)
1152 	 */
1153 	reg_write(ADDRESS_FILTERING_END_REGISTER, 0);
1154 #endif
1155 
1156 	cs_ena = tm->interface_params[0].as_bus_params[0].cs_bitmask;
1157 
1158 	/* Close XBAR Window 19 - Not needed */
1159 	/* {0x000200e8}  -   Open Mbus Window - 2G */
1160 	reg_write(REG_XBAR_WIN_19_CTRL_ADDR, 0);
1161 
1162 	/* Save XBAR Windows 4-19 init configurations */
1163 	for (ui = 0; ui < num_of_win_regs; ui++)
1164 		win[ui] = reg_read(win_ctrl_reg + 0x4 * ui);
1165 
1166 	/* Open XBAR Windows 4-7 or 16-19 for other CS */
1167 	reg = 0;
1168 	tmp_count = 0;
1169 	for (cs = 0; cs < MAX_CS_NUM; cs++) {
1170 		if (cs_ena & (1 << cs)) {
1171 			switch (cs) {
1172 			case 0:
1173 				reg = 0x0e00;
1174 				break;
1175 			case 1:
1176 				reg = 0x0d00;
1177 				break;
1178 			case 2:
1179 				reg = 0x0b00;
1180 				break;
1181 			case 3:
1182 				reg = 0x0700;
1183 				break;
1184 			}
1185 			reg |= (1 << 0);
1186 			reg |= (SDRAM_CS_SIZE & 0xffff0000);
1187 
1188 			reg_write(win_ctrl_reg + win_jump_index * tmp_count,
1189 				  reg);
1190 			reg = (((SDRAM_CS_SIZE + 1) * (tmp_count)) &
1191 			       0xffff0000);
1192 			reg_write(win_base_reg + win_jump_index * tmp_count,
1193 				  reg);
1194 
1195 			if (win_remap_reg <= REG_XBAR_WIN_7_REMAP_ADDR)
1196 				reg_write(win_remap_reg +
1197 					  win_jump_index * tmp_count, 0);
1198 
1199 			tmp_count++;
1200 		}
1201 	}
1202 
1203 	return MV_OK;
1204 }
1205 
1206 static u32 win[16];
1207 
1208 int mv_ddr_pre_training_soc_config(const char *ddr_type)
1209 {
1210 	u32 soc_num;
1211 	u32 reg_val;
1212 
1213 	/* Switching CPU to MRVL ID */
1214 	soc_num = (reg_read(REG_SAMPLE_RESET_HIGH_ADDR) & SAR1_CPU_CORE_MASK) >>
1215 		SAR1_CPU_CORE_OFFSET;
1216 	switch (soc_num) {
1217 	case 0x3:
1218 		reg_bit_set(CPU_CONFIGURATION_REG(3), CPU_MRVL_ID_OFFSET);
1219 		reg_bit_set(CPU_CONFIGURATION_REG(2), CPU_MRVL_ID_OFFSET);
1220 		/* fallthrough */
1221 	case 0x1:
1222 		reg_bit_set(CPU_CONFIGURATION_REG(1), CPU_MRVL_ID_OFFSET);
1223 		/* fallthrough */
1224 	case 0x0:
1225 		reg_bit_set(CPU_CONFIGURATION_REG(0), CPU_MRVL_ID_OFFSET);
1226 		/* fallthrough */
1227 	default:
1228 		break;
1229 	}
1230 
1231 	/*
1232 	 * Set DRAM Reset Mask in case detected GPIO indication of wakeup from
1233 	 * suspend i.e the DRAM values will not be overwritten / reset when
1234 	 * waking from suspend
1235 	 */
1236 	if (mv_ddr_sys_env_suspend_wakeup_check() ==
1237 	    SUSPEND_WAKEUP_ENABLED_GPIO_DETECTED) {
1238 		reg_bit_set(SDRAM_INIT_CTRL_REG,
1239 			    DRAM_RESET_MASK_MASKED << DRAM_RESET_MASK_OFFS);
1240 	}
1241 
1242 	/* Check if DRAM is already initialized  */
1243 	if (reg_read(REG_BOOTROM_ROUTINE_ADDR) &
1244 	    (1 << REG_BOOTROM_ROUTINE_DRAM_INIT_OFFS)) {
1245 		printf("%s Training Sequence - 2nd boot - Skip\n", ddr_type);
1246 		return MV_OK;
1247 	}
1248 
1249 	/* Fix read ready phases for all SOC in reg 0x15c8 */
1250 	reg_val = reg_read(TRAINING_DBG_3_REG);
1251 
1252 	reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(0));
1253 	reg_val |= (0x4 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(0));	/* phase 0 */
1254 
1255 	reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(1));
1256 	reg_val |= (0x4 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(1));	/* phase 1 */
1257 
1258 	reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(3));
1259 	reg_val |= (0x6 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(3));	/* phase 3 */
1260 
1261 	reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(4));
1262 	reg_val |= (0x6 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(4));	/* phase 4 */
1263 
1264 	reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(5));
1265 	reg_val |= (0x6 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(5));	/* phase 5 */
1266 
1267 	reg_write(TRAINING_DBG_3_REG, reg_val);
1268 
1269 	/*
1270 	 * Axi_bresp_mode[8] = Compliant,
1271 	 * Axi_addr_decode_cntrl[11] = Internal,
1272 	 * Axi_data_bus_width[0] = 128bit
1273 	 * */
1274 	/* 0x14a8 - AXI Control Register */
1275 	reg_write(AXI_CTRL_REG, 0);
1276 
1277 	/*
1278 	 * Stage 2 - Training Values Setup
1279 	 */
1280 	/* Set X-BAR windows for the training sequence */
1281 	ddr3_save_and_set_training_windows(win);
1282 
1283 	return MV_OK;
1284 }
1285 
1286 static int ddr3_new_tip_dlb_config(void)
1287 {
1288 	u32 reg, i = 0;
1289 	struct dlb_config *config_table_ptr = sys_env_dlb_config_ptr_get();
1290 
1291 	/* Write the configuration */
1292 	while (config_table_ptr[i].reg_addr != 0) {
1293 		reg_write(config_table_ptr[i].reg_addr,
1294 			  config_table_ptr[i].reg_data);
1295 		i++;
1296 	}
1297 
1298 
1299 	/* Enable DLB */
1300 	reg = reg_read(DLB_CTRL_REG);
1301 	reg &= ~(DLB_EN_MASK << DLB_EN_OFFS) &
1302 	       ~(WR_COALESCE_EN_MASK << WR_COALESCE_EN_OFFS) &
1303 	       ~(AXI_PREFETCH_EN_MASK << AXI_PREFETCH_EN_OFFS) &
1304 	       ~(MBUS_PREFETCH_EN_MASK << MBUS_PREFETCH_EN_OFFS) &
1305 	       ~(PREFETCH_NXT_LN_SZ_TRIG_MASK << PREFETCH_NXT_LN_SZ_TRIG_OFFS);
1306 
1307 	reg |= (DLB_EN_ENA << DLB_EN_OFFS) |
1308 	       (WR_COALESCE_EN_ENA << WR_COALESCE_EN_OFFS) |
1309 	       (AXI_PREFETCH_EN_ENA << AXI_PREFETCH_EN_OFFS) |
1310 	       (MBUS_PREFETCH_EN_ENA << MBUS_PREFETCH_EN_OFFS) |
1311 	       (PREFETCH_NXT_LN_SZ_TRIG_ENA << PREFETCH_NXT_LN_SZ_TRIG_OFFS);
1312 
1313 	reg_write(DLB_CTRL_REG, reg);
1314 
1315 	return MV_OK;
1316 }
1317 
1318 int mv_ddr_post_training_soc_config(const char *ddr_type)
1319 {
1320 	u32 reg_val;
1321 
1322 	/* Restore and set windows */
1323 	ddr3_restore_and_set_final_windows(win, ddr_type);
1324 
1325 	/* Update DRAM init indication in bootROM register */
1326 	reg_val = reg_read(REG_BOOTROM_ROUTINE_ADDR);
1327 	reg_write(REG_BOOTROM_ROUTINE_ADDR,
1328 		  reg_val | (1 << REG_BOOTROM_ROUTINE_DRAM_INIT_OFFS));
1329 
1330 	/* DLB config */
1331 	ddr3_new_tip_dlb_config();
1332 
1333 	return MV_OK;
1334 }
1335 
1336 void mv_ddr_mc_config(void)
1337 {
1338 	/* Memory controller initializations */
1339 	struct init_cntr_param init_param;
1340 	int status;
1341 
1342 	init_param.do_mrs_phy = 1;
1343 	init_param.is_ctrl64_bit = 0;
1344 	init_param.init_phy = 1;
1345 	init_param.msys_init = 1;
1346 	status = hws_ddr3_tip_init_controller(0, &init_param);
1347 	if (status != MV_OK)
1348 		printf("DDR3 init controller - FAILED 0x%x\n", status);
1349 
1350 	status = mv_ddr_mc_init();
1351 	if (status != MV_OK)
1352 		printf("DDR3 init_sequence - FAILED 0x%x\n", status);
1353 }
1354 /* function: mv_ddr_mc_init
1355  * this function enables the dunit after init controller configuration
1356  */
1357 int mv_ddr_mc_init(void)
1358 {
1359 	CHECK_STATUS(ddr3_tip_enable_init_sequence(0));
1360 
1361 	return MV_OK;
1362 }
1363 
1364 /* function: ddr3_tip_configure_phy
1365  * configures phy and electrical parameters
1366  */
1367 int ddr3_tip_configure_phy(u32 dev_num)
1368 {
1369 	u32 if_id, phy_id;
1370 	u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
1371 	struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
1372 
1373 	CHECK_STATUS(ddr3_tip_bus_write
1374 		(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1375 		ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA,
1376 		PAD_ZRI_CAL_PHY_REG,
1377 		((0x7f & g_zpri_data) << 7 | (0x7f & g_znri_data))));
1378 	CHECK_STATUS(ddr3_tip_bus_write
1379 		(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1380 		ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_CONTROL,
1381 		PAD_ZRI_CAL_PHY_REG,
1382 		((0x7f & g_zpri_ctrl) << 7 | (0x7f & g_znri_ctrl))));
1383 	CHECK_STATUS(ddr3_tip_bus_write
1384 		(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1385 		ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA,
1386 		PAD_ODT_CAL_PHY_REG,
1387 		((0x3f & g_zpodt_data) << 6 | (0x3f & g_znodt_data))));
1388 	CHECK_STATUS(ddr3_tip_bus_write
1389 		(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1390 		ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_CONTROL,
1391 		PAD_ODT_CAL_PHY_REG,
1392 		((0x3f & g_zpodt_ctrl) << 6 | (0x3f & g_znodt_ctrl))));
1393 
1394 	CHECK_STATUS(ddr3_tip_bus_write
1395 		(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1396 		ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA,
1397 		PAD_PRE_DISABLE_PHY_REG, 0));
1398 	CHECK_STATUS(ddr3_tip_bus_write
1399 		(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1400 		ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA,
1401 		CMOS_CONFIG_PHY_REG, 0));
1402 	CHECK_STATUS(ddr3_tip_bus_write
1403 		(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1404 		ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_CONTROL,
1405 		CMOS_CONFIG_PHY_REG, 0));
1406 
1407 	for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
1408 		/* check if the interface is enabled */
1409 		VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
1410 
1411 		for (phy_id = 0;
1412 			phy_id < octets_per_if_num;
1413 			phy_id++) {
1414 				VALIDATE_BUS_ACTIVE(tm->bus_act_mask, phy_id);
1415 				/* Vref & clamp */
1416 				CHECK_STATUS(ddr3_tip_bus_read_modify_write
1417 					(dev_num, ACCESS_TYPE_UNICAST,
1418 					if_id, phy_id, DDR_PHY_DATA,
1419 					PAD_CFG_PHY_REG,
1420 					((clamp_tbl[if_id] << 4) | vref_init_val),
1421 					((0x7 << 4) | 0x7)));
1422 				/* clamp not relevant for control */
1423 				CHECK_STATUS(ddr3_tip_bus_read_modify_write
1424 					(dev_num, ACCESS_TYPE_UNICAST,
1425 					if_id, phy_id, DDR_PHY_CONTROL,
1426 					PAD_CFG_PHY_REG, 0x4, 0x7));
1427 		}
1428 	}
1429 
1430 	if (ddr3_tip_dev_attr_get(dev_num, MV_ATTR_PHY_EDGE) ==
1431 		MV_DDR_PHY_EDGE_POSITIVE)
1432 		CHECK_STATUS(ddr3_tip_bus_write
1433 		(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1434 		ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1435 		DDR_PHY_DATA, 0x90, 0x6002));
1436 
1437 
1438 	return MV_OK;
1439 }
1440 
1441 
1442 int mv_ddr_manual_cal_do(void)
1443 {
1444 	return 0;
1445 }
1446