xref: /openbmc/u-boot/drivers/ddr/fsl/main.c (revision 87e29878caba758ed3e09e9912ac8eb6dfc55f39)
1 /*
2  * Copyright 2008-2014 Freescale Semiconductor, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * Version 2 as published by the Free Software Foundation.
7  */
8 
9 /*
10  * Generic driver for Freescale DDR/DDR2/DDR3 memory controller.
11  * Based on code from spd_sdram.c
12  * Author: James Yang [at freescale.com]
13  */
14 
15 #include <common.h>
16 #include <i2c.h>
17 #include <fsl_ddr_sdram.h>
18 #include <fsl_ddr.h>
19 
20 /*
21  * CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY is the physical address from the view
22  * of DDR controllers. It is the same as CONFIG_SYS_DDR_SDRAM_BASE for
23  * all Power SoCs. But it could be different for ARM SoCs. For example,
24  * fsl_lsch3 has a mapping mechanism to map DDR memory to ranges (in order) of
25  * 0x00_8000_0000 ~ 0x00_ffff_ffff
26  * 0x80_8000_0000 ~ 0xff_ffff_ffff
27  */
28 #ifndef CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY
29 #define CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY CONFIG_SYS_DDR_SDRAM_BASE
30 #endif
31 
32 #ifdef CONFIG_PPC
33 #include <asm/fsl_law.h>
34 
35 void fsl_ddr_set_lawbar(
36 		const common_timing_params_t *memctl_common_params,
37 		unsigned int memctl_interleaved,
38 		unsigned int ctrl_num);
39 #endif
40 
41 void fsl_ddr_set_intl3r(const unsigned int granule_size);
42 #if defined(SPD_EEPROM_ADDRESS) || \
43     defined(SPD_EEPROM_ADDRESS1) || defined(SPD_EEPROM_ADDRESS2) || \
44     defined(SPD_EEPROM_ADDRESS3) || defined(SPD_EEPROM_ADDRESS4)
45 #if (CONFIG_NUM_DDR_CONTROLLERS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
46 u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
47 	[0][0] = SPD_EEPROM_ADDRESS,
48 };
49 #elif (CONFIG_NUM_DDR_CONTROLLERS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
50 u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
51 	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
52 	[0][1] = SPD_EEPROM_ADDRESS2,	/* controller 1 */
53 };
54 #elif (CONFIG_NUM_DDR_CONTROLLERS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
55 u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
56 	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
57 	[1][0] = SPD_EEPROM_ADDRESS2,	/* controller 2 */
58 };
59 #elif (CONFIG_NUM_DDR_CONTROLLERS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
60 u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
61 	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
62 	[0][1] = SPD_EEPROM_ADDRESS2,	/* controller 1 */
63 	[1][0] = SPD_EEPROM_ADDRESS3,	/* controller 2 */
64 	[1][1] = SPD_EEPROM_ADDRESS4,	/* controller 2 */
65 };
66 #elif (CONFIG_NUM_DDR_CONTROLLERS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
67 u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
68 	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
69 	[1][0] = SPD_EEPROM_ADDRESS2,	/* controller 2 */
70 	[2][0] = SPD_EEPROM_ADDRESS3,	/* controller 3 */
71 };
72 #elif (CONFIG_NUM_DDR_CONTROLLERS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
73 u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
74 	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
75 	[0][1] = SPD_EEPROM_ADDRESS2,	/* controller 1 */
76 	[1][0] = SPD_EEPROM_ADDRESS3,	/* controller 2 */
77 	[1][1] = SPD_EEPROM_ADDRESS4,	/* controller 2 */
78 	[2][0] = SPD_EEPROM_ADDRESS5,	/* controller 3 */
79 	[2][1] = SPD_EEPROM_ADDRESS6,	/* controller 3 */
80 };
81 
82 #endif
83 
84 #define SPD_SPA0_ADDRESS	0x36
85 #define SPD_SPA1_ADDRESS	0x37
86 
87 static void __get_spd(generic_spd_eeprom_t *spd, u8 i2c_address)
88 {
89 	int ret;
90 #ifdef CONFIG_SYS_FSL_DDR4
91 	uint8_t dummy = 0;
92 #endif
93 
94 	i2c_set_bus_num(CONFIG_SYS_SPD_BUS_NUM);
95 
96 #ifdef CONFIG_SYS_FSL_DDR4
97 	/*
98 	 * DDR4 SPD has 384 to 512 bytes
99 	 * To access the lower 256 bytes, we need to set EE page address to 0
100 	 * To access the upper 256 bytes, we need to set EE page address to 1
101 	 * See Jedec standar No. 21-C for detail
102 	 */
103 	i2c_write(SPD_SPA0_ADDRESS, 0, 1, &dummy, 1);
104 	ret = i2c_read(i2c_address, 0, 1, (uchar *)spd, 256);
105 	if (!ret) {
106 		i2c_write(SPD_SPA1_ADDRESS, 0, 1, &dummy, 1);
107 		ret = i2c_read(i2c_address, 0, 1,
108 			       (uchar *)((ulong)spd + 256),
109 			       min(256,
110 				   (int)sizeof(generic_spd_eeprom_t) - 256));
111 	}
112 #else
113 	ret = i2c_read(i2c_address, 0, 1, (uchar *)spd,
114 				sizeof(generic_spd_eeprom_t));
115 #endif
116 
117 	if (ret) {
118 		if (i2c_address ==
119 #ifdef SPD_EEPROM_ADDRESS
120 				SPD_EEPROM_ADDRESS
121 #elif defined(SPD_EEPROM_ADDRESS1)
122 				SPD_EEPROM_ADDRESS1
123 #endif
124 				) {
125 			printf("DDR: failed to read SPD from address %u\n",
126 				i2c_address);
127 		} else {
128 			debug("DDR: failed to read SPD from address %u\n",
129 				i2c_address);
130 		}
131 		memset(spd, 0, sizeof(generic_spd_eeprom_t));
132 	}
133 }
134 
135 __attribute__((weak, alias("__get_spd")))
136 void get_spd(generic_spd_eeprom_t *spd, u8 i2c_address);
137 
138 /* This function allows boards to update SPD address */
139 __weak void update_spd_address(unsigned int ctrl_num,
140 			       unsigned int slot,
141 			       unsigned int *addr)
142 {
143 }
144 
145 void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
146 		      unsigned int ctrl_num, unsigned int dimm_slots_per_ctrl)
147 {
148 	unsigned int i;
149 	unsigned int i2c_address = 0;
150 
151 	if (ctrl_num >= CONFIG_NUM_DDR_CONTROLLERS) {
152 		printf("%s unexpected ctrl_num = %u\n", __FUNCTION__, ctrl_num);
153 		return;
154 	}
155 
156 	for (i = 0; i < dimm_slots_per_ctrl; i++) {
157 		i2c_address = spd_i2c_addr[ctrl_num][i];
158 		update_spd_address(ctrl_num, i, &i2c_address);
159 		get_spd(&(ctrl_dimms_spd[i]), i2c_address);
160 	}
161 }
162 #else
163 void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
164 		      unsigned int ctrl_num, unsigned int dimm_slots_per_ctrl)
165 {
166 }
167 #endif /* SPD_EEPROM_ADDRESSx */
168 
169 /*
170  * ASSUMPTIONS:
171  *    - Same number of CONFIG_DIMM_SLOTS_PER_CTLR on each controller
172  *    - Same memory data bus width on all controllers
173  *
174  * NOTES:
175  *
176  * The memory controller and associated documentation use confusing
177  * terminology when referring to the orgranization of DRAM.
178  *
179  * Here is a terminology translation table:
180  *
181  * memory controller/documention  |industry   |this code  |signals
182  * -------------------------------|-----------|-----------|-----------------
183  * physical bank/bank		  |rank       |rank	  |chip select (CS)
184  * logical bank/sub-bank	  |bank       |bank	  |bank address (BA)
185  * page/row			  |row	      |page	  |row address
186  * ???				  |column     |column	  |column address
187  *
188  * The naming confusion is further exacerbated by the descriptions of the
189  * memory controller interleaving feature, where accesses are interleaved
190  * _BETWEEN_ two seperate memory controllers.  This is configured only in
191  * CS0_CONFIG[INTLV_CTL] of each memory controller.
192  *
193  * memory controller documentation | number of chip selects
194  *				   | per memory controller supported
195  * --------------------------------|-----------------------------------------
196  * cache line interleaving	   | 1 (CS0 only)
197  * page interleaving		   | 1 (CS0 only)
198  * bank interleaving		   | 1 (CS0 only)
199  * superbank interleraving	   | depends on bank (chip select)
200  *				   |   interleraving [rank interleaving]
201  *				   |   mode used on every memory controller
202  *
203  * Even further confusing is the existence of the interleaving feature
204  * _WITHIN_ each memory controller.  The feature is referred to in
205  * documentation as chip select interleaving or bank interleaving,
206  * although it is configured in the DDR_SDRAM_CFG field.
207  *
208  * Name of field		| documentation name	| this code
209  * -----------------------------|-----------------------|------------------
210  * DDR_SDRAM_CFG[BA_INTLV_CTL]	| Bank (chip select)	| rank interleaving
211  *				|  interleaving
212  */
213 
214 const char *step_string_tbl[] = {
215 	"STEP_GET_SPD",
216 	"STEP_COMPUTE_DIMM_PARMS",
217 	"STEP_COMPUTE_COMMON_PARMS",
218 	"STEP_GATHER_OPTS",
219 	"STEP_ASSIGN_ADDRESSES",
220 	"STEP_COMPUTE_REGS",
221 	"STEP_PROGRAM_REGS",
222 	"STEP_ALL"
223 };
224 
225 const char * step_to_string(unsigned int step) {
226 
227 	unsigned int s = __ilog2(step);
228 
229 	if ((1 << s) != step)
230 		return step_string_tbl[7];
231 
232 	if (s >= ARRAY_SIZE(step_string_tbl)) {
233 		printf("Error for the step in %s\n", __func__);
234 		s = 0;
235 	}
236 
237 	return step_string_tbl[s];
238 }
239 
240 static unsigned long long __step_assign_addresses(fsl_ddr_info_t *pinfo,
241 			  unsigned int dbw_cap_adj[])
242 {
243 	unsigned int i, j;
244 	unsigned long long total_mem, current_mem_base, total_ctlr_mem;
245 	unsigned long long rank_density, ctlr_density = 0;
246 	unsigned int first_ctrl = pinfo->first_ctrl;
247 	unsigned int last_ctrl = first_ctrl + pinfo->num_ctrls - 1;
248 
249 	/*
250 	 * If a reduced data width is requested, but the SPD
251 	 * specifies a physically wider device, adjust the
252 	 * computed dimm capacities accordingly before
253 	 * assigning addresses.
254 	 */
255 	for (i = first_ctrl; i <= last_ctrl; i++) {
256 		unsigned int found = 0;
257 
258 		switch (pinfo->memctl_opts[i].data_bus_width) {
259 		case 2:
260 			/* 16-bit */
261 			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
262 				unsigned int dw;
263 				if (!pinfo->dimm_params[i][j].n_ranks)
264 					continue;
265 				dw = pinfo->dimm_params[i][j].primary_sdram_width;
266 				if ((dw == 72 || dw == 64)) {
267 					dbw_cap_adj[i] = 2;
268 					break;
269 				} else if ((dw == 40 || dw == 32)) {
270 					dbw_cap_adj[i] = 1;
271 					break;
272 				}
273 			}
274 			break;
275 
276 		case 1:
277 			/* 32-bit */
278 			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
279 				unsigned int dw;
280 				dw = pinfo->dimm_params[i][j].data_width;
281 				if (pinfo->dimm_params[i][j].n_ranks
282 				    && (dw == 72 || dw == 64)) {
283 					/*
284 					 * FIXME: can't really do it
285 					 * like this because this just
286 					 * further reduces the memory
287 					 */
288 					found = 1;
289 					break;
290 				}
291 			}
292 			if (found) {
293 				dbw_cap_adj[i] = 1;
294 			}
295 			break;
296 
297 		case 0:
298 			/* 64-bit */
299 			break;
300 
301 		default:
302 			printf("unexpected data bus width "
303 				"specified controller %u\n", i);
304 			return 1;
305 		}
306 		debug("dbw_cap_adj[%d]=%d\n", i, dbw_cap_adj[i]);
307 	}
308 
309 	current_mem_base = pinfo->mem_base;
310 	total_mem = 0;
311 	if (pinfo->memctl_opts[first_ctrl].memctl_interleaving) {
312 		rank_density = pinfo->dimm_params[first_ctrl][0].rank_density >>
313 					dbw_cap_adj[first_ctrl];
314 		switch (pinfo->memctl_opts[first_ctrl].ba_intlv_ctl &
315 					FSL_DDR_CS0_CS1_CS2_CS3) {
316 		case FSL_DDR_CS0_CS1_CS2_CS3:
317 			ctlr_density = 4 * rank_density;
318 			break;
319 		case FSL_DDR_CS0_CS1:
320 		case FSL_DDR_CS0_CS1_AND_CS2_CS3:
321 			ctlr_density = 2 * rank_density;
322 			break;
323 		case FSL_DDR_CS2_CS3:
324 		default:
325 			ctlr_density = rank_density;
326 			break;
327 		}
328 		debug("rank density is 0x%llx, ctlr density is 0x%llx\n",
329 			rank_density, ctlr_density);
330 		for (i = first_ctrl; i <= last_ctrl; i++) {
331 			if (pinfo->memctl_opts[i].memctl_interleaving) {
332 				switch (pinfo->memctl_opts[i].memctl_interleaving_mode) {
333 				case FSL_DDR_256B_INTERLEAVING:
334 				case FSL_DDR_CACHE_LINE_INTERLEAVING:
335 				case FSL_DDR_PAGE_INTERLEAVING:
336 				case FSL_DDR_BANK_INTERLEAVING:
337 				case FSL_DDR_SUPERBANK_INTERLEAVING:
338 					total_ctlr_mem = 2 * ctlr_density;
339 					break;
340 				case FSL_DDR_3WAY_1KB_INTERLEAVING:
341 				case FSL_DDR_3WAY_4KB_INTERLEAVING:
342 				case FSL_DDR_3WAY_8KB_INTERLEAVING:
343 					total_ctlr_mem = 3 * ctlr_density;
344 					break;
345 				case FSL_DDR_4WAY_1KB_INTERLEAVING:
346 				case FSL_DDR_4WAY_4KB_INTERLEAVING:
347 				case FSL_DDR_4WAY_8KB_INTERLEAVING:
348 					total_ctlr_mem = 4 * ctlr_density;
349 					break;
350 				default:
351 					panic("Unknown interleaving mode");
352 				}
353 				pinfo->common_timing_params[i].base_address =
354 							current_mem_base;
355 				pinfo->common_timing_params[i].total_mem =
356 							total_ctlr_mem;
357 				total_mem = current_mem_base + total_ctlr_mem;
358 				debug("ctrl %d base 0x%llx\n", i, current_mem_base);
359 				debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
360 			} else {
361 				/* when 3rd controller not interleaved */
362 				current_mem_base = total_mem;
363 				total_ctlr_mem = 0;
364 				pinfo->common_timing_params[i].base_address =
365 							current_mem_base;
366 				for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
367 					unsigned long long cap =
368 						pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
369 					pinfo->dimm_params[i][j].base_address =
370 						current_mem_base;
371 					debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
372 					current_mem_base += cap;
373 					total_ctlr_mem += cap;
374 				}
375 				debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
376 				pinfo->common_timing_params[i].total_mem =
377 							total_ctlr_mem;
378 				total_mem += total_ctlr_mem;
379 			}
380 		}
381 	} else {
382 		/*
383 		 * Simple linear assignment if memory
384 		 * controllers are not interleaved.
385 		 */
386 		for (i = first_ctrl; i <= last_ctrl; i++) {
387 			total_ctlr_mem = 0;
388 			pinfo->common_timing_params[i].base_address =
389 						current_mem_base;
390 			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
391 				/* Compute DIMM base addresses. */
392 				unsigned long long cap =
393 					pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
394 				pinfo->dimm_params[i][j].base_address =
395 					current_mem_base;
396 				debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
397 				current_mem_base += cap;
398 				total_ctlr_mem += cap;
399 			}
400 			debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
401 			pinfo->common_timing_params[i].total_mem =
402 							total_ctlr_mem;
403 			total_mem += total_ctlr_mem;
404 		}
405 	}
406 	debug("Total mem by %s is 0x%llx\n", __func__, total_mem);
407 
408 	return total_mem;
409 }
410 
411 /* Use weak function to allow board file to override the address assignment */
412 __attribute__((weak, alias("__step_assign_addresses")))
413 unsigned long long step_assign_addresses(fsl_ddr_info_t *pinfo,
414 			  unsigned int dbw_cap_adj[]);
415 
416 unsigned long long
417 fsl_ddr_compute(fsl_ddr_info_t *pinfo, unsigned int start_step,
418 				       unsigned int size_only)
419 {
420 	unsigned int i, j;
421 	unsigned long long total_mem = 0;
422 	int assert_reset = 0;
423 	unsigned int first_ctrl =  pinfo->first_ctrl;
424 	unsigned int last_ctrl = first_ctrl + pinfo->num_ctrls - 1;
425 	__maybe_unused int retval;
426 	__maybe_unused bool goodspd = false;
427 	__maybe_unused int dimm_slots_per_ctrl = pinfo->dimm_slots_per_ctrl;
428 
429 	fsl_ddr_cfg_regs_t *ddr_reg = pinfo->fsl_ddr_config_reg;
430 	common_timing_params_t *timing_params = pinfo->common_timing_params;
431 	if (pinfo->board_need_mem_reset)
432 		assert_reset = pinfo->board_need_mem_reset();
433 
434 	/* data bus width capacity adjust shift amount */
435 	unsigned int dbw_capacity_adjust[CONFIG_NUM_DDR_CONTROLLERS];
436 
437 	for (i = first_ctrl; i <= last_ctrl; i++)
438 		dbw_capacity_adjust[i] = 0;
439 
440 	debug("starting at step %u (%s)\n",
441 	      start_step, step_to_string(start_step));
442 
443 	switch (start_step) {
444 	case STEP_GET_SPD:
445 #if defined(CONFIG_DDR_SPD) || defined(CONFIG_SPD_EEPROM)
446 		/* STEP 1:  Gather all DIMM SPD data */
447 		for (i = first_ctrl; i <= last_ctrl; i++) {
448 			fsl_ddr_get_spd(pinfo->spd_installed_dimms[i], i,
449 					dimm_slots_per_ctrl);
450 		}
451 
452 	case STEP_COMPUTE_DIMM_PARMS:
453 		/* STEP 2:  Compute DIMM parameters from SPD data */
454 
455 		for (i = first_ctrl; i <= last_ctrl; i++) {
456 			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
457 				generic_spd_eeprom_t *spd =
458 					&(pinfo->spd_installed_dimms[i][j]);
459 				dimm_params_t *pdimm =
460 					&(pinfo->dimm_params[i][j]);
461 				retval = compute_dimm_parameters(
462 							i, spd, pdimm, j);
463 #ifdef CONFIG_SYS_DDR_RAW_TIMING
464 				if (!j && retval) {
465 					printf("SPD error on controller %d! "
466 					"Trying fallback to raw timing "
467 					"calculation\n", i);
468 					retval = fsl_ddr_get_dimm_params(pdimm,
469 									 i, j);
470 				}
471 #else
472 				if (retval == 2) {
473 					printf("Error: compute_dimm_parameters"
474 					" non-zero returned FATAL value "
475 					"for memctl=%u dimm=%u\n", i, j);
476 					return 0;
477 				}
478 #endif
479 				if (retval) {
480 					debug("Warning: compute_dimm_parameters"
481 					" non-zero return value for memctl=%u "
482 					"dimm=%u\n", i, j);
483 				} else {
484 					goodspd = true;
485 				}
486 			}
487 		}
488 		if (!goodspd) {
489 			/*
490 			 * No valid SPD found
491 			 * Throw an error if this is for main memory, i.e.
492 			 * first_ctrl == 0. Otherwise, siliently return 0
493 			 * as the memory size.
494 			 */
495 			if (first_ctrl == 0)
496 				printf("Error: No valid SPD detected.\n");
497 
498 			return 0;
499 		}
500 #elif defined(CONFIG_SYS_DDR_RAW_TIMING)
501 	case STEP_COMPUTE_DIMM_PARMS:
502 		for (i = first_ctrl; i <= last_ctrl; i++) {
503 			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
504 				dimm_params_t *pdimm =
505 					&(pinfo->dimm_params[i][j]);
506 				fsl_ddr_get_dimm_params(pdimm, i, j);
507 			}
508 		}
509 		debug("Filling dimm parameters from board specific file\n");
510 #endif
511 	case STEP_COMPUTE_COMMON_PARMS:
512 		/*
513 		 * STEP 3: Compute a common set of timing parameters
514 		 * suitable for all of the DIMMs on each memory controller
515 		 */
516 		for (i = first_ctrl; i <= last_ctrl; i++) {
517 			debug("Computing lowest common DIMM"
518 				" parameters for memctl=%u\n", i);
519 			compute_lowest_common_dimm_parameters
520 				(i,
521 				 pinfo->dimm_params[i],
522 				 &timing_params[i],
523 				 CONFIG_DIMM_SLOTS_PER_CTLR);
524 		}
525 
526 	case STEP_GATHER_OPTS:
527 		/* STEP 4:  Gather configuration requirements from user */
528 		for (i = first_ctrl; i <= last_ctrl; i++) {
529 			debug("Reloading memory controller "
530 				"configuration options for memctl=%u\n", i);
531 			/*
532 			 * This "reloads" the memory controller options
533 			 * to defaults.  If the user "edits" an option,
534 			 * next_step points to the step after this,
535 			 * which is currently STEP_ASSIGN_ADDRESSES.
536 			 */
537 			populate_memctl_options(
538 					&timing_params[i],
539 					&pinfo->memctl_opts[i],
540 					pinfo->dimm_params[i], i);
541 			/*
542 			 * For RDIMMs, JEDEC spec requires clocks to be stable
543 			 * before reset signal is deasserted. For the boards
544 			 * using fixed parameters, this function should be
545 			 * be called from board init file.
546 			 */
547 			if (timing_params[i].all_dimms_registered)
548 				assert_reset = 1;
549 		}
550 		if (assert_reset && !size_only) {
551 			if (pinfo->board_mem_reset) {
552 				debug("Asserting mem reset\n");
553 				pinfo->board_mem_reset();
554 			} else {
555 				debug("Asserting mem reset missing\n");
556 			}
557 		}
558 
559 	case STEP_ASSIGN_ADDRESSES:
560 		/* STEP 5:  Assign addresses to chip selects */
561 		check_interleaving_options(pinfo);
562 		total_mem = step_assign_addresses(pinfo, dbw_capacity_adjust);
563 		debug("Total mem %llu assigned\n", total_mem);
564 
565 	case STEP_COMPUTE_REGS:
566 		/* STEP 6:  compute controller register values */
567 		debug("FSL Memory ctrl register computation\n");
568 		for (i = first_ctrl; i <= last_ctrl; i++) {
569 			if (timing_params[i].ndimms_present == 0) {
570 				memset(&ddr_reg[i], 0,
571 					sizeof(fsl_ddr_cfg_regs_t));
572 				continue;
573 			}
574 
575 			compute_fsl_memctl_config_regs
576 				(i,
577 				 &pinfo->memctl_opts[i],
578 				 &ddr_reg[i], &timing_params[i],
579 				 pinfo->dimm_params[i],
580 				 dbw_capacity_adjust[i],
581 				 size_only);
582 		}
583 
584 	default:
585 		break;
586 	}
587 
588 	{
589 		/*
590 		 * Compute the amount of memory available just by
591 		 * looking for the highest valid CSn_BNDS value.
592 		 * This allows us to also experiment with using
593 		 * only CS0 when using dual-rank DIMMs.
594 		 */
595 		unsigned int max_end = 0;
596 
597 		for (i = first_ctrl; i <= last_ctrl; i++) {
598 			for (j = 0; j < CONFIG_CHIP_SELECTS_PER_CTRL; j++) {
599 				fsl_ddr_cfg_regs_t *reg = &ddr_reg[i];
600 				if (reg->cs[j].config & 0x80000000) {
601 					unsigned int end;
602 					/*
603 					 * 0xfffffff is a special value we put
604 					 * for unused bnds
605 					 */
606 					if (reg->cs[j].bnds == 0xffffffff)
607 						continue;
608 					end = reg->cs[j].bnds & 0xffff;
609 					if (end > max_end) {
610 						max_end = end;
611 					}
612 				}
613 			}
614 		}
615 
616 		total_mem = 1 + (((unsigned long long)max_end << 24ULL) |
617 			    0xFFFFFFULL) - pinfo->mem_base;
618 	}
619 
620 	return total_mem;
621 }
622 
623 phys_size_t __fsl_ddr_sdram(fsl_ddr_info_t *pinfo)
624 {
625 	unsigned int i, first_ctrl, last_ctrl;
626 #ifdef CONFIG_PPC
627 	unsigned int law_memctl = LAW_TRGT_IF_DDR_1;
628 #endif
629 	unsigned long long total_memory;
630 	int deassert_reset = 0;
631 
632 	first_ctrl = pinfo->first_ctrl;
633 	last_ctrl = first_ctrl + pinfo->num_ctrls - 1;
634 
635 	/* Compute it once normally. */
636 #ifdef CONFIG_FSL_DDR_INTERACTIVE
637 	if (tstc() && (getc() == 'd')) {	/* we got a key press of 'd' */
638 		total_memory = fsl_ddr_interactive(pinfo, 0);
639 	} else if (fsl_ddr_interactive_env_var_exists()) {
640 		total_memory = fsl_ddr_interactive(pinfo, 1);
641 	} else
642 #endif
643 		total_memory = fsl_ddr_compute(pinfo, STEP_GET_SPD, 0);
644 
645 	/* setup 3-way interleaving before enabling DDRC */
646 	switch (pinfo->memctl_opts[first_ctrl].memctl_interleaving_mode) {
647 	case FSL_DDR_3WAY_1KB_INTERLEAVING:
648 	case FSL_DDR_3WAY_4KB_INTERLEAVING:
649 	case FSL_DDR_3WAY_8KB_INTERLEAVING:
650 		fsl_ddr_set_intl3r(
651 			pinfo->memctl_opts[first_ctrl].
652 			memctl_interleaving_mode);
653 		break;
654 	default:
655 		break;
656 	}
657 
658 	/*
659 	 * Program configuration registers.
660 	 * JEDEC specs requires clocks to be stable before deasserting reset
661 	 * for RDIMMs. Clocks start after chip select is enabled and clock
662 	 * control register is set. During step 1, all controllers have their
663 	 * registers set but not enabled. Step 2 proceeds after deasserting
664 	 * reset through board FPGA or GPIO.
665 	 * For non-registered DIMMs, initialization can go through but it is
666 	 * also OK to follow the same flow.
667 	 */
668 	if (pinfo->board_need_mem_reset)
669 		deassert_reset = pinfo->board_need_mem_reset();
670 	for (i = first_ctrl; i <= last_ctrl; i++) {
671 		if (pinfo->common_timing_params[i].all_dimms_registered)
672 			deassert_reset = 1;
673 	}
674 	for (i = first_ctrl; i <= last_ctrl; i++) {
675 		debug("Programming controller %u\n", i);
676 		if (pinfo->common_timing_params[i].ndimms_present == 0) {
677 			debug("No dimms present on controller %u; "
678 					"skipping programming\n", i);
679 			continue;
680 		}
681 		/*
682 		 * The following call with step = 1 returns before enabling
683 		 * the controller. It has to finish with step = 2 later.
684 		 */
685 		fsl_ddr_set_memctl_regs(&(pinfo->fsl_ddr_config_reg[i]), i,
686 					deassert_reset ? 1 : 0);
687 	}
688 	if (deassert_reset) {
689 		/* Use board FPGA or GPIO to deassert reset signal */
690 		if (pinfo->board_mem_de_reset) {
691 			debug("Deasserting mem reset\n");
692 			pinfo->board_mem_de_reset();
693 		} else {
694 			debug("Deasserting mem reset missing\n");
695 		}
696 		for (i = first_ctrl; i <= last_ctrl; i++) {
697 			/* Call with step = 2 to continue initialization */
698 			fsl_ddr_set_memctl_regs(&(pinfo->fsl_ddr_config_reg[i]),
699 						i, 2);
700 		}
701 	}
702 
703 #ifdef CONFIG_FSL_DDR_SYNC_REFRESH
704 	fsl_ddr_sync_memctl_refresh(first_ctrl, last_ctrl);
705 #endif
706 
707 #ifdef CONFIG_PPC
708 	/* program LAWs */
709 	for (i = first_ctrl; i <= last_ctrl; i++) {
710 		if (pinfo->memctl_opts[i].memctl_interleaving) {
711 			switch (pinfo->memctl_opts[i].
712 				memctl_interleaving_mode) {
713 			case FSL_DDR_CACHE_LINE_INTERLEAVING:
714 			case FSL_DDR_PAGE_INTERLEAVING:
715 			case FSL_DDR_BANK_INTERLEAVING:
716 			case FSL_DDR_SUPERBANK_INTERLEAVING:
717 				if (i % 2)
718 					break;
719 				if (i == 0) {
720 					law_memctl = LAW_TRGT_IF_DDR_INTRLV;
721 					fsl_ddr_set_lawbar(
722 						&pinfo->common_timing_params[i],
723 						law_memctl, i);
724 				}
725 #if CONFIG_NUM_DDR_CONTROLLERS > 3
726 				else if (i == 2) {
727 					law_memctl = LAW_TRGT_IF_DDR_INTLV_34;
728 					fsl_ddr_set_lawbar(
729 						&pinfo->common_timing_params[i],
730 						law_memctl, i);
731 				}
732 #endif
733 				break;
734 			case FSL_DDR_3WAY_1KB_INTERLEAVING:
735 			case FSL_DDR_3WAY_4KB_INTERLEAVING:
736 			case FSL_DDR_3WAY_8KB_INTERLEAVING:
737 				law_memctl = LAW_TRGT_IF_DDR_INTLV_123;
738 				if (i == 0) {
739 					fsl_ddr_set_lawbar(
740 						&pinfo->common_timing_params[i],
741 						law_memctl, i);
742 				}
743 				break;
744 			case FSL_DDR_4WAY_1KB_INTERLEAVING:
745 			case FSL_DDR_4WAY_4KB_INTERLEAVING:
746 			case FSL_DDR_4WAY_8KB_INTERLEAVING:
747 				law_memctl = LAW_TRGT_IF_DDR_INTLV_1234;
748 				if (i == 0)
749 					fsl_ddr_set_lawbar(
750 						&pinfo->common_timing_params[i],
751 						law_memctl, i);
752 				/* place holder for future 4-way interleaving */
753 				break;
754 			default:
755 				break;
756 			}
757 		} else {
758 			switch (i) {
759 			case 0:
760 				law_memctl = LAW_TRGT_IF_DDR_1;
761 				break;
762 			case 1:
763 				law_memctl = LAW_TRGT_IF_DDR_2;
764 				break;
765 			case 2:
766 				law_memctl = LAW_TRGT_IF_DDR_3;
767 				break;
768 			case 3:
769 				law_memctl = LAW_TRGT_IF_DDR_4;
770 				break;
771 			default:
772 				break;
773 			}
774 			fsl_ddr_set_lawbar(&pinfo->common_timing_params[i],
775 					   law_memctl, i);
776 		}
777 	}
778 #endif
779 
780 	debug("total_memory by %s = %llu\n", __func__, total_memory);
781 
782 #if !defined(CONFIG_PHYS_64BIT)
783 	/* Check for 4G or more.  Bad. */
784 	if ((first_ctrl == 0) && (total_memory >= (1ull << 32))) {
785 		puts("Detected ");
786 		print_size(total_memory, " of memory\n");
787 		printf("       This U-Boot only supports < 4G of DDR\n");
788 		printf("       You could rebuild it with CONFIG_PHYS_64BIT\n");
789 		printf("       "); /* re-align to match init_func_ram print */
790 		total_memory = CONFIG_MAX_MEM_MAPPED;
791 	}
792 #endif
793 
794 	return total_memory;
795 }
796 
797 /*
798  * fsl_ddr_sdram(void) -- this is the main function to be
799  * called by initdram() in the board file.
800  *
801  * It returns amount of memory configured in bytes.
802  */
803 phys_size_t fsl_ddr_sdram(void)
804 {
805 	fsl_ddr_info_t info;
806 
807 	/* Reset info structure. */
808 	memset(&info, 0, sizeof(fsl_ddr_info_t));
809 	info.mem_base = CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY;
810 	info.first_ctrl = 0;
811 	info.num_ctrls = CONFIG_SYS_FSL_DDR_MAIN_NUM_CTRLS;
812 	info.dimm_slots_per_ctrl = CONFIG_DIMM_SLOTS_PER_CTLR;
813 	info.board_need_mem_reset = board_need_mem_reset;
814 	info.board_mem_reset = board_assert_mem_reset;
815 	info.board_mem_de_reset = board_deassert_mem_reset;
816 
817 	return __fsl_ddr_sdram(&info);
818 }
819 
820 #ifdef CONFIG_SYS_FSL_OTHER_DDR_NUM_CTRLS
821 phys_size_t fsl_other_ddr_sdram(unsigned long long base,
822 				unsigned int first_ctrl,
823 				unsigned int num_ctrls,
824 				unsigned int dimm_slots_per_ctrl,
825 				int (*board_need_reset)(void),
826 				void (*board_reset)(void),
827 				void (*board_de_reset)(void))
828 {
829 	fsl_ddr_info_t info;
830 
831 	/* Reset info structure. */
832 	memset(&info, 0, sizeof(fsl_ddr_info_t));
833 	info.mem_base = base;
834 	info.first_ctrl = first_ctrl;
835 	info.num_ctrls = num_ctrls;
836 	info.dimm_slots_per_ctrl = dimm_slots_per_ctrl;
837 	info.board_need_mem_reset = board_need_reset;
838 	info.board_mem_reset = board_reset;
839 	info.board_mem_de_reset = board_de_reset;
840 
841 	return __fsl_ddr_sdram(&info);
842 }
843 #endif
844 
845 /*
846  * fsl_ddr_sdram_size(first_ctrl, last_intlv) - This function only returns the
847  * size of the total memory without setting ddr control registers.
848  */
849 phys_size_t
850 fsl_ddr_sdram_size(void)
851 {
852 	fsl_ddr_info_t  info;
853 	unsigned long long total_memory = 0;
854 
855 	memset(&info, 0 , sizeof(fsl_ddr_info_t));
856 	info.mem_base = CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY;
857 	info.first_ctrl = 0;
858 	info.num_ctrls = CONFIG_SYS_FSL_DDR_MAIN_NUM_CTRLS;
859 	info.dimm_slots_per_ctrl = CONFIG_DIMM_SLOTS_PER_CTLR;
860 	info.board_need_mem_reset = NULL;
861 
862 	/* Compute it once normally. */
863 	total_memory = fsl_ddr_compute(&info, STEP_GET_SPD, 1);
864 
865 	return total_memory;
866 }
867