xref: /openbmc/u-boot/drivers/ddr/fsl/main.c (revision 34e026f9b1eb3bcffb38e7787c2e6eac0e88ba85)
1 /*
2  * Copyright 2008-2014 Freescale Semiconductor, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * Version 2 as published by the Free Software Foundation.
7  */
8 
9 /*
10  * Generic driver for Freescale DDR/DDR2/DDR3 memory controller.
11  * Based on code from spd_sdram.c
12  * Author: James Yang [at freescale.com]
13  */
14 
15 #include <common.h>
16 #include <i2c.h>
17 #include <fsl_ddr_sdram.h>
18 #include <fsl_ddr.h>
19 
20 /*
21  * CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY is the physical address from the view
22  * of DDR controllers. It is the same as CONFIG_SYS_DDR_SDRAM_BASE for
23  * all Power SoCs. But it could be different for ARM SoCs. For example,
24  * fsl_lsch3 has a mapping mechanism to map DDR memory to ranges (in order) of
25  * 0x00_8000_0000 ~ 0x00_ffff_ffff
26  * 0x80_8000_0000 ~ 0xff_ffff_ffff
27  */
28 #ifndef CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY
29 #define CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY CONFIG_SYS_DDR_SDRAM_BASE
30 #endif
31 
32 #ifdef CONFIG_PPC
33 #include <asm/fsl_law.h>
34 
35 void fsl_ddr_set_lawbar(
36 		const common_timing_params_t *memctl_common_params,
37 		unsigned int memctl_interleaved,
38 		unsigned int ctrl_num);
39 #endif
40 
41 void fsl_ddr_set_intl3r(const unsigned int granule_size);
42 #if defined(SPD_EEPROM_ADDRESS) || \
43     defined(SPD_EEPROM_ADDRESS1) || defined(SPD_EEPROM_ADDRESS2) || \
44     defined(SPD_EEPROM_ADDRESS3) || defined(SPD_EEPROM_ADDRESS4)
45 #if (CONFIG_NUM_DDR_CONTROLLERS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
46 u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
47 	[0][0] = SPD_EEPROM_ADDRESS,
48 };
49 #elif (CONFIG_NUM_DDR_CONTROLLERS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
50 u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
51 	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
52 	[0][1] = SPD_EEPROM_ADDRESS2,	/* controller 1 */
53 };
54 #elif (CONFIG_NUM_DDR_CONTROLLERS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
55 u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
56 	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
57 	[1][0] = SPD_EEPROM_ADDRESS2,	/* controller 2 */
58 };
59 #elif (CONFIG_NUM_DDR_CONTROLLERS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
60 u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
61 	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
62 	[0][1] = SPD_EEPROM_ADDRESS2,	/* controller 1 */
63 	[1][0] = SPD_EEPROM_ADDRESS3,	/* controller 2 */
64 	[1][1] = SPD_EEPROM_ADDRESS4,	/* controller 2 */
65 };
66 #elif (CONFIG_NUM_DDR_CONTROLLERS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
67 u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
68 	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
69 	[1][0] = SPD_EEPROM_ADDRESS2,	/* controller 2 */
70 	[2][0] = SPD_EEPROM_ADDRESS3,	/* controller 3 */
71 };
72 #elif (CONFIG_NUM_DDR_CONTROLLERS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
73 u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
74 	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
75 	[0][1] = SPD_EEPROM_ADDRESS2,	/* controller 1 */
76 	[1][0] = SPD_EEPROM_ADDRESS3,	/* controller 2 */
77 	[1][1] = SPD_EEPROM_ADDRESS4,	/* controller 2 */
78 	[2][0] = SPD_EEPROM_ADDRESS5,	/* controller 3 */
79 	[2][1] = SPD_EEPROM_ADDRESS6,	/* controller 3 */
80 };
81 
82 #endif
83 
84 #define SPD_SPA0_ADDRESS	0x36
85 #define SPD_SPA1_ADDRESS	0x37
86 
87 static void __get_spd(generic_spd_eeprom_t *spd, u8 i2c_address)
88 {
89 	int ret;
90 #ifdef CONFIG_SYS_FSL_DDR4
91 	uint8_t dummy = 0;
92 #endif
93 
94 	i2c_set_bus_num(CONFIG_SYS_SPD_BUS_NUM);
95 
96 #ifdef CONFIG_SYS_FSL_DDR4
97 	/*
98 	 * DDR4 SPD has 384 to 512 bytes
99 	 * To access the lower 256 bytes, we need to set EE page address to 0
100 	 * To access the upper 256 bytes, we need to set EE page address to 1
101 	 * See Jedec standar No. 21-C for detail
102 	 */
103 	i2c_write(SPD_SPA0_ADDRESS, 0, 1, &dummy, 1);
104 	ret = i2c_read(i2c_address, 0, 1, (uchar *)spd, 256);
105 	if (!ret) {
106 		i2c_write(SPD_SPA1_ADDRESS, 0, 1, &dummy, 1);
107 		ret = i2c_read(i2c_address, 0, 1,
108 			       (uchar *)((ulong)spd + 256),
109 			       min(256, sizeof(generic_spd_eeprom_t) - 256));
110 	}
111 #else
112 	ret = i2c_read(i2c_address, 0, 1, (uchar *)spd,
113 				sizeof(generic_spd_eeprom_t));
114 #endif
115 
116 	if (ret) {
117 		if (i2c_address ==
118 #ifdef SPD_EEPROM_ADDRESS
119 				SPD_EEPROM_ADDRESS
120 #elif defined(SPD_EEPROM_ADDRESS1)
121 				SPD_EEPROM_ADDRESS1
122 #endif
123 				) {
124 			printf("DDR: failed to read SPD from address %u\n",
125 				i2c_address);
126 		} else {
127 			debug("DDR: failed to read SPD from address %u\n",
128 				i2c_address);
129 		}
130 		memset(spd, 0, sizeof(generic_spd_eeprom_t));
131 	}
132 }
133 
134 __attribute__((weak, alias("__get_spd")))
135 void get_spd(generic_spd_eeprom_t *spd, u8 i2c_address);
136 
137 void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
138 		      unsigned int ctrl_num)
139 {
140 	unsigned int i;
141 	unsigned int i2c_address = 0;
142 
143 	if (ctrl_num >= CONFIG_NUM_DDR_CONTROLLERS) {
144 		printf("%s unexpected ctrl_num = %u\n", __FUNCTION__, ctrl_num);
145 		return;
146 	}
147 
148 	for (i = 0; i < CONFIG_DIMM_SLOTS_PER_CTLR; i++) {
149 		i2c_address = spd_i2c_addr[ctrl_num][i];
150 		get_spd(&(ctrl_dimms_spd[i]), i2c_address);
151 	}
152 }
153 #else
154 void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
155 		      unsigned int ctrl_num)
156 {
157 }
158 #endif /* SPD_EEPROM_ADDRESSx */
159 
160 /*
161  * ASSUMPTIONS:
162  *    - Same number of CONFIG_DIMM_SLOTS_PER_CTLR on each controller
163  *    - Same memory data bus width on all controllers
164  *
165  * NOTES:
166  *
167  * The memory controller and associated documentation use confusing
168  * terminology when referring to the orgranization of DRAM.
169  *
170  * Here is a terminology translation table:
171  *
172  * memory controller/documention  |industry   |this code  |signals
173  * -------------------------------|-----------|-----------|-----------------
174  * physical bank/bank		  |rank       |rank	  |chip select (CS)
175  * logical bank/sub-bank	  |bank       |bank	  |bank address (BA)
176  * page/row			  |row	      |page	  |row address
177  * ???				  |column     |column	  |column address
178  *
179  * The naming confusion is further exacerbated by the descriptions of the
180  * memory controller interleaving feature, where accesses are interleaved
181  * _BETWEEN_ two seperate memory controllers.  This is configured only in
182  * CS0_CONFIG[INTLV_CTL] of each memory controller.
183  *
184  * memory controller documentation | number of chip selects
185  *				   | per memory controller supported
186  * --------------------------------|-----------------------------------------
187  * cache line interleaving	   | 1 (CS0 only)
188  * page interleaving		   | 1 (CS0 only)
189  * bank interleaving		   | 1 (CS0 only)
190  * superbank interleraving	   | depends on bank (chip select)
191  *				   |   interleraving [rank interleaving]
192  *				   |   mode used on every memory controller
193  *
194  * Even further confusing is the existence of the interleaving feature
195  * _WITHIN_ each memory controller.  The feature is referred to in
196  * documentation as chip select interleaving or bank interleaving,
197  * although it is configured in the DDR_SDRAM_CFG field.
198  *
199  * Name of field		| documentation name	| this code
200  * -----------------------------|-----------------------|------------------
201  * DDR_SDRAM_CFG[BA_INTLV_CTL]	| Bank (chip select)	| rank interleaving
202  *				|  interleaving
203  */
204 
205 const char *step_string_tbl[] = {
206 	"STEP_GET_SPD",
207 	"STEP_COMPUTE_DIMM_PARMS",
208 	"STEP_COMPUTE_COMMON_PARMS",
209 	"STEP_GATHER_OPTS",
210 	"STEP_ASSIGN_ADDRESSES",
211 	"STEP_COMPUTE_REGS",
212 	"STEP_PROGRAM_REGS",
213 	"STEP_ALL"
214 };
215 
216 const char * step_to_string(unsigned int step) {
217 
218 	unsigned int s = __ilog2(step);
219 
220 	if ((1 << s) != step)
221 		return step_string_tbl[7];
222 
223 	return step_string_tbl[s];
224 }
225 
226 static unsigned long long __step_assign_addresses(fsl_ddr_info_t *pinfo,
227 			  unsigned int dbw_cap_adj[])
228 {
229 	int i, j;
230 	unsigned long long total_mem, current_mem_base, total_ctlr_mem;
231 	unsigned long long rank_density, ctlr_density = 0;
232 
233 	/*
234 	 * If a reduced data width is requested, but the SPD
235 	 * specifies a physically wider device, adjust the
236 	 * computed dimm capacities accordingly before
237 	 * assigning addresses.
238 	 */
239 	for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
240 		unsigned int found = 0;
241 
242 		switch (pinfo->memctl_opts[i].data_bus_width) {
243 		case 2:
244 			/* 16-bit */
245 			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
246 				unsigned int dw;
247 				if (!pinfo->dimm_params[i][j].n_ranks)
248 					continue;
249 				dw = pinfo->dimm_params[i][j].primary_sdram_width;
250 				if ((dw == 72 || dw == 64)) {
251 					dbw_cap_adj[i] = 2;
252 					break;
253 				} else if ((dw == 40 || dw == 32)) {
254 					dbw_cap_adj[i] = 1;
255 					break;
256 				}
257 			}
258 			break;
259 
260 		case 1:
261 			/* 32-bit */
262 			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
263 				unsigned int dw;
264 				dw = pinfo->dimm_params[i][j].data_width;
265 				if (pinfo->dimm_params[i][j].n_ranks
266 				    && (dw == 72 || dw == 64)) {
267 					/*
268 					 * FIXME: can't really do it
269 					 * like this because this just
270 					 * further reduces the memory
271 					 */
272 					found = 1;
273 					break;
274 				}
275 			}
276 			if (found) {
277 				dbw_cap_adj[i] = 1;
278 			}
279 			break;
280 
281 		case 0:
282 			/* 64-bit */
283 			break;
284 
285 		default:
286 			printf("unexpected data bus width "
287 				"specified controller %u\n", i);
288 			return 1;
289 		}
290 		debug("dbw_cap_adj[%d]=%d\n", i, dbw_cap_adj[i]);
291 	}
292 
293 	current_mem_base = CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY;
294 	total_mem = 0;
295 	if (pinfo->memctl_opts[0].memctl_interleaving) {
296 		rank_density = pinfo->dimm_params[0][0].rank_density >>
297 					dbw_cap_adj[0];
298 		switch (pinfo->memctl_opts[0].ba_intlv_ctl &
299 					FSL_DDR_CS0_CS1_CS2_CS3) {
300 		case FSL_DDR_CS0_CS1_CS2_CS3:
301 			ctlr_density = 4 * rank_density;
302 			break;
303 		case FSL_DDR_CS0_CS1:
304 		case FSL_DDR_CS0_CS1_AND_CS2_CS3:
305 			ctlr_density = 2 * rank_density;
306 			break;
307 		case FSL_DDR_CS2_CS3:
308 		default:
309 			ctlr_density = rank_density;
310 			break;
311 		}
312 		debug("rank density is 0x%llx, ctlr density is 0x%llx\n",
313 			rank_density, ctlr_density);
314 		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
315 			if (pinfo->memctl_opts[i].memctl_interleaving) {
316 				switch (pinfo->memctl_opts[i].memctl_interleaving_mode) {
317 				case FSL_DDR_256B_INTERLEAVING:
318 				case FSL_DDR_CACHE_LINE_INTERLEAVING:
319 				case FSL_DDR_PAGE_INTERLEAVING:
320 				case FSL_DDR_BANK_INTERLEAVING:
321 				case FSL_DDR_SUPERBANK_INTERLEAVING:
322 					total_ctlr_mem = 2 * ctlr_density;
323 					break;
324 				case FSL_DDR_3WAY_1KB_INTERLEAVING:
325 				case FSL_DDR_3WAY_4KB_INTERLEAVING:
326 				case FSL_DDR_3WAY_8KB_INTERLEAVING:
327 					total_ctlr_mem = 3 * ctlr_density;
328 					break;
329 				case FSL_DDR_4WAY_1KB_INTERLEAVING:
330 				case FSL_DDR_4WAY_4KB_INTERLEAVING:
331 				case FSL_DDR_4WAY_8KB_INTERLEAVING:
332 					total_ctlr_mem = 4 * ctlr_density;
333 					break;
334 				default:
335 					panic("Unknown interleaving mode");
336 				}
337 				pinfo->common_timing_params[i].base_address =
338 							current_mem_base;
339 				pinfo->common_timing_params[i].total_mem =
340 							total_ctlr_mem;
341 				total_mem = current_mem_base + total_ctlr_mem;
342 				debug("ctrl %d base 0x%llx\n", i, current_mem_base);
343 				debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
344 			} else {
345 				/* when 3rd controller not interleaved */
346 				current_mem_base = total_mem;
347 				total_ctlr_mem = 0;
348 				pinfo->common_timing_params[i].base_address =
349 							current_mem_base;
350 				for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
351 					unsigned long long cap =
352 						pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
353 					pinfo->dimm_params[i][j].base_address =
354 						current_mem_base;
355 					debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
356 					current_mem_base += cap;
357 					total_ctlr_mem += cap;
358 				}
359 				debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
360 				pinfo->common_timing_params[i].total_mem =
361 							total_ctlr_mem;
362 				total_mem += total_ctlr_mem;
363 			}
364 		}
365 	} else {
366 		/*
367 		 * Simple linear assignment if memory
368 		 * controllers are not interleaved.
369 		 */
370 		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
371 			total_ctlr_mem = 0;
372 			pinfo->common_timing_params[i].base_address =
373 						current_mem_base;
374 			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
375 				/* Compute DIMM base addresses. */
376 				unsigned long long cap =
377 					pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
378 				pinfo->dimm_params[i][j].base_address =
379 					current_mem_base;
380 				debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
381 				current_mem_base += cap;
382 				total_ctlr_mem += cap;
383 			}
384 			debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
385 			pinfo->common_timing_params[i].total_mem =
386 							total_ctlr_mem;
387 			total_mem += total_ctlr_mem;
388 		}
389 	}
390 	debug("Total mem by %s is 0x%llx\n", __func__, total_mem);
391 
392 	return total_mem;
393 }
394 
395 /* Use weak function to allow board file to override the address assignment */
396 __attribute__((weak, alias("__step_assign_addresses")))
397 unsigned long long step_assign_addresses(fsl_ddr_info_t *pinfo,
398 			  unsigned int dbw_cap_adj[]);
399 
400 unsigned long long
401 fsl_ddr_compute(fsl_ddr_info_t *pinfo, unsigned int start_step,
402 				       unsigned int size_only)
403 {
404 	unsigned int i, j;
405 	unsigned long long total_mem = 0;
406 	int assert_reset;
407 
408 	fsl_ddr_cfg_regs_t *ddr_reg = pinfo->fsl_ddr_config_reg;
409 	common_timing_params_t *timing_params = pinfo->common_timing_params;
410 	assert_reset = board_need_mem_reset();
411 
412 	/* data bus width capacity adjust shift amount */
413 	unsigned int dbw_capacity_adjust[CONFIG_NUM_DDR_CONTROLLERS];
414 
415 	for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
416 		dbw_capacity_adjust[i] = 0;
417 	}
418 
419 	debug("starting at step %u (%s)\n",
420 	      start_step, step_to_string(start_step));
421 
422 	switch (start_step) {
423 	case STEP_GET_SPD:
424 #if defined(CONFIG_DDR_SPD) || defined(CONFIG_SPD_EEPROM)
425 		/* STEP 1:  Gather all DIMM SPD data */
426 		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
427 			fsl_ddr_get_spd(pinfo->spd_installed_dimms[i], i);
428 		}
429 
430 	case STEP_COMPUTE_DIMM_PARMS:
431 		/* STEP 2:  Compute DIMM parameters from SPD data */
432 
433 		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
434 			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
435 				unsigned int retval;
436 				generic_spd_eeprom_t *spd =
437 					&(pinfo->spd_installed_dimms[i][j]);
438 				dimm_params_t *pdimm =
439 					&(pinfo->dimm_params[i][j]);
440 
441 				retval = compute_dimm_parameters(spd, pdimm, i);
442 #ifdef CONFIG_SYS_DDR_RAW_TIMING
443 				if (!i && !j && retval) {
444 					printf("SPD error on controller %d! "
445 					"Trying fallback to raw timing "
446 					"calculation\n", i);
447 					fsl_ddr_get_dimm_params(pdimm, i, j);
448 				}
449 #else
450 				if (retval == 2) {
451 					printf("Error: compute_dimm_parameters"
452 					" non-zero returned FATAL value "
453 					"for memctl=%u dimm=%u\n", i, j);
454 					return 0;
455 				}
456 #endif
457 				if (retval) {
458 					debug("Warning: compute_dimm_parameters"
459 					" non-zero return value for memctl=%u "
460 					"dimm=%u\n", i, j);
461 				}
462 			}
463 		}
464 
465 #elif defined(CONFIG_SYS_DDR_RAW_TIMING)
466 	case STEP_COMPUTE_DIMM_PARMS:
467 		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
468 			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
469 				dimm_params_t *pdimm =
470 					&(pinfo->dimm_params[i][j]);
471 				fsl_ddr_get_dimm_params(pdimm, i, j);
472 			}
473 		}
474 		debug("Filling dimm parameters from board specific file\n");
475 #endif
476 	case STEP_COMPUTE_COMMON_PARMS:
477 		/*
478 		 * STEP 3: Compute a common set of timing parameters
479 		 * suitable for all of the DIMMs on each memory controller
480 		 */
481 		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
482 			debug("Computing lowest common DIMM"
483 				" parameters for memctl=%u\n", i);
484 			compute_lowest_common_dimm_parameters(
485 				pinfo->dimm_params[i],
486 				&timing_params[i],
487 				CONFIG_DIMM_SLOTS_PER_CTLR);
488 		}
489 
490 	case STEP_GATHER_OPTS:
491 		/* STEP 4:  Gather configuration requirements from user */
492 		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
493 			debug("Reloading memory controller "
494 				"configuration options for memctl=%u\n", i);
495 			/*
496 			 * This "reloads" the memory controller options
497 			 * to defaults.  If the user "edits" an option,
498 			 * next_step points to the step after this,
499 			 * which is currently STEP_ASSIGN_ADDRESSES.
500 			 */
501 			populate_memctl_options(
502 					timing_params[i].all_dimms_registered,
503 					&pinfo->memctl_opts[i],
504 					pinfo->dimm_params[i], i);
505 			/*
506 			 * For RDIMMs, JEDEC spec requires clocks to be stable
507 			 * before reset signal is deasserted. For the boards
508 			 * using fixed parameters, this function should be
509 			 * be called from board init file.
510 			 */
511 			if (timing_params[i].all_dimms_registered)
512 				assert_reset = 1;
513 		}
514 		if (assert_reset) {
515 			debug("Asserting mem reset\n");
516 			board_assert_mem_reset();
517 		}
518 
519 	case STEP_ASSIGN_ADDRESSES:
520 		/* STEP 5:  Assign addresses to chip selects */
521 		check_interleaving_options(pinfo);
522 		total_mem = step_assign_addresses(pinfo, dbw_capacity_adjust);
523 
524 	case STEP_COMPUTE_REGS:
525 		/* STEP 6:  compute controller register values */
526 		debug("FSL Memory ctrl register computation\n");
527 		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
528 			if (timing_params[i].ndimms_present == 0) {
529 				memset(&ddr_reg[i], 0,
530 					sizeof(fsl_ddr_cfg_regs_t));
531 				continue;
532 			}
533 
534 			compute_fsl_memctl_config_regs(
535 					&pinfo->memctl_opts[i],
536 					&ddr_reg[i], &timing_params[i],
537 					pinfo->dimm_params[i],
538 					dbw_capacity_adjust[i],
539 					size_only);
540 		}
541 
542 	default:
543 		break;
544 	}
545 
546 	{
547 		/*
548 		 * Compute the amount of memory available just by
549 		 * looking for the highest valid CSn_BNDS value.
550 		 * This allows us to also experiment with using
551 		 * only CS0 when using dual-rank DIMMs.
552 		 */
553 		unsigned int max_end = 0;
554 
555 		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
556 			for (j = 0; j < CONFIG_CHIP_SELECTS_PER_CTRL; j++) {
557 				fsl_ddr_cfg_regs_t *reg = &ddr_reg[i];
558 				if (reg->cs[j].config & 0x80000000) {
559 					unsigned int end;
560 					/*
561 					 * 0xfffffff is a special value we put
562 					 * for unused bnds
563 					 */
564 					if (reg->cs[j].bnds == 0xffffffff)
565 						continue;
566 					end = reg->cs[j].bnds & 0xffff;
567 					if (end > max_end) {
568 						max_end = end;
569 					}
570 				}
571 			}
572 		}
573 
574 		total_mem = 1 + (((unsigned long long)max_end << 24ULL) |
575 			    0xFFFFFFULL) - CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY;
576 	}
577 
578 	return total_mem;
579 }
580 
581 /*
582  * fsl_ddr_sdram() -- this is the main function to be called by
583  *	initdram() in the board file.
584  *
585  * It returns amount of memory configured in bytes.
586  */
587 phys_size_t fsl_ddr_sdram(void)
588 {
589 	unsigned int i;
590 #ifdef CONFIG_PPC
591 	unsigned int law_memctl = LAW_TRGT_IF_DDR_1;
592 #endif
593 	unsigned long long total_memory;
594 	fsl_ddr_info_t info;
595 	int deassert_reset;
596 
597 	/* Reset info structure. */
598 	memset(&info, 0, sizeof(fsl_ddr_info_t));
599 
600 	/* Compute it once normally. */
601 #ifdef CONFIG_FSL_DDR_INTERACTIVE
602 	if (tstc() && (getc() == 'd')) {	/* we got a key press of 'd' */
603 		total_memory = fsl_ddr_interactive(&info, 0);
604 	} else if (fsl_ddr_interactive_env_var_exists()) {
605 		total_memory = fsl_ddr_interactive(&info, 1);
606 	} else
607 #endif
608 		total_memory = fsl_ddr_compute(&info, STEP_GET_SPD, 0);
609 
610 	/* setup 3-way interleaving before enabling DDRC */
611 	if (info.memctl_opts[0].memctl_interleaving) {
612 		switch (info.memctl_opts[0].memctl_interleaving_mode) {
613 		case FSL_DDR_3WAY_1KB_INTERLEAVING:
614 		case FSL_DDR_3WAY_4KB_INTERLEAVING:
615 		case FSL_DDR_3WAY_8KB_INTERLEAVING:
616 			fsl_ddr_set_intl3r(
617 				info.memctl_opts[0].memctl_interleaving_mode);
618 			break;
619 		default:
620 			break;
621 		}
622 	}
623 
624 	/*
625 	 * Program configuration registers.
626 	 * JEDEC specs requires clocks to be stable before deasserting reset
627 	 * for RDIMMs. Clocks start after chip select is enabled and clock
628 	 * control register is set. During step 1, all controllers have their
629 	 * registers set but not enabled. Step 2 proceeds after deasserting
630 	 * reset through board FPGA or GPIO.
631 	 * For non-registered DIMMs, initialization can go through but it is
632 	 * also OK to follow the same flow.
633 	 */
634 	deassert_reset = board_need_mem_reset();
635 	for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
636 		if (info.common_timing_params[i].all_dimms_registered)
637 			deassert_reset = 1;
638 	}
639 	for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
640 		debug("Programming controller %u\n", i);
641 		if (info.common_timing_params[i].ndimms_present == 0) {
642 			debug("No dimms present on controller %u; "
643 					"skipping programming\n", i);
644 			continue;
645 		}
646 		/*
647 		 * The following call with step = 1 returns before enabling
648 		 * the controller. It has to finish with step = 2 later.
649 		 */
650 		fsl_ddr_set_memctl_regs(&(info.fsl_ddr_config_reg[i]), i,
651 					deassert_reset ? 1 : 0);
652 	}
653 	if (deassert_reset) {
654 		/* Use board FPGA or GPIO to deassert reset signal */
655 		debug("Deasserting mem reset\n");
656 		board_deassert_mem_reset();
657 		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
658 			/* Call with step = 2 to continue initialization */
659 			fsl_ddr_set_memctl_regs(&(info.fsl_ddr_config_reg[i]),
660 						i, 2);
661 		}
662 	}
663 
664 #ifdef CONFIG_PPC
665 	/* program LAWs */
666 	for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
667 		if (info.memctl_opts[i].memctl_interleaving) {
668 			switch (info.memctl_opts[i].memctl_interleaving_mode) {
669 			case FSL_DDR_CACHE_LINE_INTERLEAVING:
670 			case FSL_DDR_PAGE_INTERLEAVING:
671 			case FSL_DDR_BANK_INTERLEAVING:
672 			case FSL_DDR_SUPERBANK_INTERLEAVING:
673 				if (i == 0) {
674 					law_memctl = LAW_TRGT_IF_DDR_INTRLV;
675 					fsl_ddr_set_lawbar(&info.common_timing_params[i],
676 						law_memctl, i);
677 				} else if (i == 2) {
678 					law_memctl = LAW_TRGT_IF_DDR_INTLV_34;
679 					fsl_ddr_set_lawbar(&info.common_timing_params[i],
680 						law_memctl, i);
681 				}
682 				break;
683 			case FSL_DDR_3WAY_1KB_INTERLEAVING:
684 			case FSL_DDR_3WAY_4KB_INTERLEAVING:
685 			case FSL_DDR_3WAY_8KB_INTERLEAVING:
686 				law_memctl = LAW_TRGT_IF_DDR_INTLV_123;
687 				if (i == 0) {
688 					fsl_ddr_set_lawbar(&info.common_timing_params[i],
689 						law_memctl, i);
690 				}
691 				break;
692 			case FSL_DDR_4WAY_1KB_INTERLEAVING:
693 			case FSL_DDR_4WAY_4KB_INTERLEAVING:
694 			case FSL_DDR_4WAY_8KB_INTERLEAVING:
695 				law_memctl = LAW_TRGT_IF_DDR_INTLV_1234;
696 				if (i == 0)
697 					fsl_ddr_set_lawbar(&info.common_timing_params[i],
698 						law_memctl, i);
699 				/* place holder for future 4-way interleaving */
700 				break;
701 			default:
702 				break;
703 			}
704 		} else {
705 			switch (i) {
706 			case 0:
707 				law_memctl = LAW_TRGT_IF_DDR_1;
708 				break;
709 			case 1:
710 				law_memctl = LAW_TRGT_IF_DDR_2;
711 				break;
712 			case 2:
713 				law_memctl = LAW_TRGT_IF_DDR_3;
714 				break;
715 			case 3:
716 				law_memctl = LAW_TRGT_IF_DDR_4;
717 				break;
718 			default:
719 				break;
720 			}
721 			fsl_ddr_set_lawbar(&info.common_timing_params[i],
722 					law_memctl, i);
723 		}
724 	}
725 #endif
726 
727 	debug("total_memory by %s = %llu\n", __func__, total_memory);
728 
729 #if !defined(CONFIG_PHYS_64BIT)
730 	/* Check for 4G or more.  Bad. */
731 	if (total_memory >= (1ull << 32)) {
732 		puts("Detected ");
733 		print_size(total_memory, " of memory\n");
734 		printf("       This U-Boot only supports < 4G of DDR\n");
735 		printf("       You could rebuild it with CONFIG_PHYS_64BIT\n");
736 		printf("       "); /* re-align to match init_func_ram print */
737 		total_memory = CONFIG_MAX_MEM_MAPPED;
738 	}
739 #endif
740 
741 	return total_memory;
742 }
743 
744 /*
745  * fsl_ddr_sdram_size() - This function only returns the size of the total
746  * memory without setting ddr control registers.
747  */
748 phys_size_t
749 fsl_ddr_sdram_size(void)
750 {
751 	fsl_ddr_info_t  info;
752 	unsigned long long total_memory = 0;
753 
754 	memset(&info, 0 , sizeof(fsl_ddr_info_t));
755 
756 	/* Compute it once normally. */
757 	total_memory = fsl_ddr_compute(&info, STEP_GET_SPD, 1);
758 
759 	return total_memory;
760 }
761