xref: /openbmc/u-boot/drivers/crypto/fsl/jr.c (revision a02ab5eaff966ecf746bc4e90696c84efb4b113b)
1 /*
2  * Copyright 2008-2014 Freescale Semiconductor, Inc.
3  *
4  * SPDX-License-Identifier:	GPL-2.0+
5  *
6  * Based on CAAM driver in drivers/crypto/caam in Linux
7  */
8 
9 #include <common.h>
10 #include <malloc.h>
11 #include "fsl_sec.h"
12 #include "jr.h"
13 #include "jobdesc.h"
14 #include "desc_constr.h"
15 #ifdef CONFIG_FSL_CORENET
16 #include <asm/fsl_pamu.h>
17 #endif
18 
19 #define CIRC_CNT(head, tail, size)	(((head) - (tail)) & (size - 1))
20 #define CIRC_SPACE(head, tail, size)	CIRC_CNT((tail), (head) + 1, (size))
21 
22 uint32_t sec_offset[CONFIG_SYS_FSL_MAX_NUM_OF_SEC] = {
23 	0,
24 #if defined(CONFIG_PPC_C29X)
25 	CONFIG_SYS_FSL_SEC_IDX_OFFSET,
26 	2 * CONFIG_SYS_FSL_SEC_IDX_OFFSET
27 #endif
28 };
29 
30 #define SEC_ADDR(idx)	\
31 	((CONFIG_SYS_FSL_SEC_ADDR + sec_offset[idx]))
32 
33 #define SEC_JR0_ADDR(idx)	\
34 	(SEC_ADDR(idx) +	\
35 	 (CONFIG_SYS_FSL_JR0_OFFSET - CONFIG_SYS_FSL_SEC_OFFSET))
36 
37 struct jobring jr0[CONFIG_SYS_FSL_MAX_NUM_OF_SEC];
38 
39 static inline void start_jr0(uint8_t sec_idx)
40 {
41 	ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
42 	u32 ctpr_ms = sec_in32(&sec->ctpr_ms);
43 	u32 scfgr = sec_in32(&sec->scfgr);
44 
45 	if (ctpr_ms & SEC_CTPR_MS_VIRT_EN_INCL) {
46 		/* VIRT_EN_INCL = 1 & VIRT_EN_POR = 1 or
47 		 * VIRT_EN_INCL = 1 & VIRT_EN_POR = 0 & SEC_SCFGR_VIRT_EN = 1
48 		 */
49 		if ((ctpr_ms & SEC_CTPR_MS_VIRT_EN_POR) ||
50 		    (!(ctpr_ms & SEC_CTPR_MS_VIRT_EN_POR) &&
51 					(scfgr & SEC_SCFGR_VIRT_EN)))
52 			sec_out32(&sec->jrstartr, CONFIG_JRSTARTR_JR0);
53 	} else {
54 		/* VIRT_EN_INCL = 0 && VIRT_EN_POR_VALUE = 1 */
55 		if (ctpr_ms & SEC_CTPR_MS_VIRT_EN_POR)
56 			sec_out32(&sec->jrstartr, CONFIG_JRSTARTR_JR0);
57 	}
58 }
59 
60 static inline void jr_reset_liodn(uint8_t sec_idx)
61 {
62 	ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
63 	sec_out32(&sec->jrliodnr[0].ls, 0);
64 }
65 
66 static inline void jr_disable_irq(uint8_t sec_idx)
67 {
68 	struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
69 	uint32_t jrcfg = sec_in32(&regs->jrcfg1);
70 
71 	jrcfg = jrcfg | JR_INTMASK;
72 
73 	sec_out32(&regs->jrcfg1, jrcfg);
74 }
75 
76 static void jr_initregs(uint8_t sec_idx)
77 {
78 	struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
79 	struct jobring *jr = &jr0[sec_idx];
80 	phys_addr_t ip_base = virt_to_phys((void *)jr->input_ring);
81 	phys_addr_t op_base = virt_to_phys((void *)jr->output_ring);
82 
83 #ifdef CONFIG_PHYS_64BIT
84 	sec_out32(&regs->irba_h, ip_base >> 32);
85 #else
86 	sec_out32(&regs->irba_h, 0x0);
87 #endif
88 	sec_out32(&regs->irba_l, (uint32_t)ip_base);
89 #ifdef CONFIG_PHYS_64BIT
90 	sec_out32(&regs->orba_h, op_base >> 32);
91 #else
92 	sec_out32(&regs->orba_h, 0x0);
93 #endif
94 	sec_out32(&regs->orba_l, (uint32_t)op_base);
95 	sec_out32(&regs->ors, JR_SIZE);
96 	sec_out32(&regs->irs, JR_SIZE);
97 
98 	if (!jr->irq)
99 		jr_disable_irq(sec_idx);
100 }
101 
102 static int jr_init(uint8_t sec_idx)
103 {
104 	struct jobring *jr = &jr0[sec_idx];
105 
106 	memset(jr, 0, sizeof(struct jobring));
107 
108 	jr->jq_id = DEFAULT_JR_ID;
109 	jr->irq = DEFAULT_IRQ;
110 
111 #ifdef CONFIG_FSL_CORENET
112 	jr->liodn = DEFAULT_JR_LIODN;
113 #endif
114 	jr->size = JR_SIZE;
115 	jr->input_ring = (dma_addr_t *)memalign(ARCH_DMA_MINALIGN,
116 				JR_SIZE * sizeof(dma_addr_t));
117 	if (!jr->input_ring)
118 		return -1;
119 
120 	jr->op_size = roundup(JR_SIZE * sizeof(struct op_ring),
121 			      ARCH_DMA_MINALIGN);
122 	jr->output_ring =
123 	    (struct op_ring *)memalign(ARCH_DMA_MINALIGN, jr->op_size);
124 	if (!jr->output_ring)
125 		return -1;
126 
127 	memset(jr->input_ring, 0, JR_SIZE * sizeof(dma_addr_t));
128 	memset(jr->output_ring, 0, jr->op_size);
129 
130 	start_jr0(sec_idx);
131 
132 	jr_initregs(sec_idx);
133 
134 	return 0;
135 }
136 
137 static int jr_sw_cleanup(uint8_t sec_idx)
138 {
139 	struct jobring *jr = &jr0[sec_idx];
140 
141 	jr->head = 0;
142 	jr->tail = 0;
143 	jr->read_idx = 0;
144 	jr->write_idx = 0;
145 	memset(jr->info, 0, sizeof(jr->info));
146 	memset(jr->input_ring, 0, jr->size * sizeof(dma_addr_t));
147 	memset(jr->output_ring, 0, jr->size * sizeof(struct op_ring));
148 
149 	return 0;
150 }
151 
152 static int jr_hw_reset(uint8_t sec_idx)
153 {
154 	struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
155 	uint32_t timeout = 100000;
156 	uint32_t jrint, jrcr;
157 
158 	sec_out32(&regs->jrcr, JRCR_RESET);
159 	do {
160 		jrint = sec_in32(&regs->jrint);
161 	} while (((jrint & JRINT_ERR_HALT_MASK) ==
162 		  JRINT_ERR_HALT_INPROGRESS) && --timeout);
163 
164 	jrint = sec_in32(&regs->jrint);
165 	if (((jrint & JRINT_ERR_HALT_MASK) !=
166 	     JRINT_ERR_HALT_INPROGRESS) && timeout == 0)
167 		return -1;
168 
169 	timeout = 100000;
170 	sec_out32(&regs->jrcr, JRCR_RESET);
171 	do {
172 		jrcr = sec_in32(&regs->jrcr);
173 	} while ((jrcr & JRCR_RESET) && --timeout);
174 
175 	if (timeout == 0)
176 		return -1;
177 
178 	return 0;
179 }
180 
181 /* -1 --- error, can't enqueue -- no space available */
182 static int jr_enqueue(uint32_t *desc_addr,
183 	       void (*callback)(uint32_t status, void *arg),
184 	       void *arg, uint8_t sec_idx)
185 {
186 	struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
187 	struct jobring *jr = &jr0[sec_idx];
188 	int head = jr->head;
189 	uint32_t desc_word;
190 	int length = desc_len(desc_addr);
191 	int i;
192 #ifdef CONFIG_PHYS_64BIT
193 	uint32_t *addr_hi, *addr_lo;
194 #endif
195 
196 	/* The descriptor must be submitted to SEC block as per endianness
197 	 * of the SEC Block.
198 	 * So, if the endianness of Core and SEC block is different, each word
199 	 * of the descriptor will be byte-swapped.
200 	 */
201 	for (i = 0; i < length; i++) {
202 		desc_word = desc_addr[i];
203 		sec_out32((uint32_t *)&desc_addr[i], desc_word);
204 	}
205 
206 	phys_addr_t desc_phys_addr = virt_to_phys(desc_addr);
207 
208 	jr->info[head].desc_phys_addr = desc_phys_addr;
209 	jr->info[head].callback = (void *)callback;
210 	jr->info[head].arg = arg;
211 	jr->info[head].op_done = 0;
212 
213 	unsigned long start = (unsigned long)&jr->info[head] &
214 					~(ARCH_DMA_MINALIGN - 1);
215 	unsigned long end = ALIGN((unsigned long)&jr->info[head] +
216 				  sizeof(struct jr_info), ARCH_DMA_MINALIGN);
217 	flush_dcache_range(start, end);
218 
219 #ifdef CONFIG_PHYS_64BIT
220 	/* Write the 64 bit Descriptor address on Input Ring.
221 	 * The 32 bit hign and low part of the address will
222 	 * depend on endianness of SEC block.
223 	 */
224 #ifdef CONFIG_SYS_FSL_SEC_LE
225 	addr_lo = (uint32_t *)(&jr->input_ring[head]);
226 	addr_hi = (uint32_t *)(&jr->input_ring[head]) + 1;
227 #elif defined(CONFIG_SYS_FSL_SEC_BE)
228 	addr_hi = (uint32_t *)(&jr->input_ring[head]);
229 	addr_lo = (uint32_t *)(&jr->input_ring[head]) + 1;
230 #endif /* ifdef CONFIG_SYS_FSL_SEC_LE */
231 
232 	sec_out32(addr_hi, (uint32_t)(desc_phys_addr >> 32));
233 	sec_out32(addr_lo, (uint32_t)(desc_phys_addr));
234 
235 #else
236 	/* Write the 32 bit Descriptor address on Input Ring. */
237 	sec_out32(&jr->input_ring[head], desc_phys_addr);
238 #endif /* ifdef CONFIG_PHYS_64BIT */
239 
240 	start = (unsigned long)&jr->input_ring[head] & ~(ARCH_DMA_MINALIGN - 1);
241 	end = ALIGN((unsigned long)&jr->input_ring[head] +
242 		     sizeof(dma_addr_t), ARCH_DMA_MINALIGN);
243 	flush_dcache_range(start, end);
244 
245 	jr->head = (head + 1) & (jr->size - 1);
246 
247 	/* Invalidate output ring */
248 	start = (unsigned long)jr->output_ring &
249 					~(ARCH_DMA_MINALIGN - 1);
250 	end = ALIGN((unsigned long)jr->output_ring + jr->op_size,
251 		    ARCH_DMA_MINALIGN);
252 	invalidate_dcache_range(start, end);
253 
254 	sec_out32(&regs->irja, 1);
255 
256 	return 0;
257 }
258 
259 static int jr_dequeue(int sec_idx)
260 {
261 	struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
262 	struct jobring *jr = &jr0[sec_idx];
263 	int head = jr->head;
264 	int tail = jr->tail;
265 	int idx, i, found;
266 	void (*callback)(uint32_t status, void *arg);
267 	void *arg = NULL;
268 #ifdef CONFIG_PHYS_64BIT
269 	uint32_t *addr_hi, *addr_lo;
270 #else
271 	uint32_t *addr;
272 #endif
273 
274 	while (sec_in32(&regs->orsf) && CIRC_CNT(jr->head, jr->tail,
275 						 jr->size)) {
276 
277 		found = 0;
278 
279 		phys_addr_t op_desc;
280 	#ifdef CONFIG_PHYS_64BIT
281 		/* Read the 64 bit Descriptor address from Output Ring.
282 		 * The 32 bit hign and low part of the address will
283 		 * depend on endianness of SEC block.
284 		 */
285 	#ifdef CONFIG_SYS_FSL_SEC_LE
286 		addr_lo = (uint32_t *)(&jr->output_ring[jr->tail].desc);
287 		addr_hi = (uint32_t *)(&jr->output_ring[jr->tail].desc) + 1;
288 	#elif defined(CONFIG_SYS_FSL_SEC_BE)
289 		addr_hi = (uint32_t *)(&jr->output_ring[jr->tail].desc);
290 		addr_lo = (uint32_t *)(&jr->output_ring[jr->tail].desc) + 1;
291 	#endif /* ifdef CONFIG_SYS_FSL_SEC_LE */
292 
293 		op_desc = ((u64)sec_in32(addr_hi) << 32) |
294 			  ((u64)sec_in32(addr_lo));
295 
296 	#else
297 		/* Read the 32 bit Descriptor address from Output Ring. */
298 		addr = (uint32_t *)&jr->output_ring[jr->tail].desc;
299 		op_desc = sec_in32(addr);
300 	#endif /* ifdef CONFIG_PHYS_64BIT */
301 
302 		uint32_t status = sec_in32(&jr->output_ring[jr->tail].status);
303 
304 		for (i = 0; CIRC_CNT(head, tail + i, jr->size) >= 1; i++) {
305 			idx = (tail + i) & (jr->size - 1);
306 			if (op_desc == jr->info[idx].desc_phys_addr) {
307 				found = 1;
308 				break;
309 			}
310 		}
311 
312 		/* Error condition if match not found */
313 		if (!found)
314 			return -1;
315 
316 		jr->info[idx].op_done = 1;
317 		callback = (void *)jr->info[idx].callback;
318 		arg = jr->info[idx].arg;
319 
320 		/* When the job on tail idx gets done, increment
321 		 * tail till the point where job completed out of oredr has
322 		 * been taken into account
323 		 */
324 		if (idx == tail)
325 			do {
326 				tail = (tail + 1) & (jr->size - 1);
327 			} while (jr->info[tail].op_done);
328 
329 		jr->tail = tail;
330 		jr->read_idx = (jr->read_idx + 1) & (jr->size - 1);
331 
332 		sec_out32(&regs->orjr, 1);
333 		jr->info[idx].op_done = 0;
334 
335 		callback(status, arg);
336 	}
337 
338 	return 0;
339 }
340 
341 static void desc_done(uint32_t status, void *arg)
342 {
343 	struct result *x = arg;
344 	x->status = status;
345 	caam_jr_strstatus(status);
346 	x->done = 1;
347 }
348 
349 static inline int run_descriptor_jr_idx(uint32_t *desc, uint8_t sec_idx)
350 {
351 	unsigned long long timeval = get_ticks();
352 	unsigned long long timeout = usec2ticks(CONFIG_SEC_DEQ_TIMEOUT);
353 	struct result op;
354 	int ret = 0;
355 
356 	memset(&op, 0, sizeof(op));
357 
358 	ret = jr_enqueue(desc, desc_done, &op, sec_idx);
359 	if (ret) {
360 		debug("Error in SEC enq\n");
361 		ret = JQ_ENQ_ERR;
362 		goto out;
363 	}
364 
365 	timeval = get_ticks();
366 	timeout = usec2ticks(CONFIG_SEC_DEQ_TIMEOUT);
367 	while (op.done != 1) {
368 		ret = jr_dequeue(sec_idx);
369 		if (ret) {
370 			debug("Error in SEC deq\n");
371 			ret = JQ_DEQ_ERR;
372 			goto out;
373 		}
374 
375 		if ((get_ticks() - timeval) > timeout) {
376 			debug("SEC Dequeue timed out\n");
377 			ret = JQ_DEQ_TO_ERR;
378 			goto out;
379 		}
380 	}
381 
382 	if (op.status) {
383 		debug("Error %x\n", op.status);
384 		ret = op.status;
385 	}
386 out:
387 	return ret;
388 }
389 
390 int run_descriptor_jr(uint32_t *desc)
391 {
392 	return run_descriptor_jr_idx(desc, 0);
393 }
394 
395 static inline int jr_reset_sec(uint8_t sec_idx)
396 {
397 	if (jr_hw_reset(sec_idx) < 0)
398 		return -1;
399 
400 	/* Clean up the jobring structure maintained by software */
401 	jr_sw_cleanup(sec_idx);
402 
403 	return 0;
404 }
405 
406 int jr_reset(void)
407 {
408 	return jr_reset_sec(0);
409 }
410 
411 static inline int sec_reset_idx(uint8_t sec_idx)
412 {
413 	ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
414 	uint32_t mcfgr = sec_in32(&sec->mcfgr);
415 	uint32_t timeout = 100000;
416 
417 	mcfgr |= MCFGR_SWRST;
418 	sec_out32(&sec->mcfgr, mcfgr);
419 
420 	mcfgr |= MCFGR_DMA_RST;
421 	sec_out32(&sec->mcfgr, mcfgr);
422 	do {
423 		mcfgr = sec_in32(&sec->mcfgr);
424 	} while ((mcfgr & MCFGR_DMA_RST) == MCFGR_DMA_RST && --timeout);
425 
426 	if (timeout == 0)
427 		return -1;
428 
429 	timeout = 100000;
430 	do {
431 		mcfgr = sec_in32(&sec->mcfgr);
432 	} while ((mcfgr & MCFGR_SWRST) == MCFGR_SWRST && --timeout);
433 
434 	if (timeout == 0)
435 		return -1;
436 
437 	return 0;
438 }
439 
440 static int instantiate_rng(uint8_t sec_idx)
441 {
442 	struct result op;
443 	u32 *desc;
444 	u32 rdsta_val;
445 	int ret = 0;
446 	ccsr_sec_t __iomem *sec = (ccsr_sec_t __iomem *)SEC_ADDR(sec_idx);
447 	struct rng4tst __iomem *rng =
448 			(struct rng4tst __iomem *)&sec->rng;
449 
450 	memset(&op, 0, sizeof(struct result));
451 
452 	desc = memalign(ARCH_DMA_MINALIGN, sizeof(uint32_t) * 6);
453 	if (!desc) {
454 		printf("cannot allocate RNG init descriptor memory\n");
455 		return -1;
456 	}
457 
458 	inline_cnstr_jobdesc_rng_instantiation(desc);
459 	int size = roundup(sizeof(uint32_t) * 6, ARCH_DMA_MINALIGN);
460 	flush_dcache_range((unsigned long)desc,
461 			   (unsigned long)desc + size);
462 
463 	ret = run_descriptor_jr_idx(desc, sec_idx);
464 
465 	if (ret)
466 		printf("RNG: Instantiation failed with error %x\n", ret);
467 
468 	rdsta_val = sec_in32(&rng->rdsta);
469 	if (op.status || !(rdsta_val & RNG_STATE0_HANDLE_INSTANTIATED))
470 		return -1;
471 
472 	return ret;
473 }
474 
475 int sec_reset(void)
476 {
477 	return sec_reset_idx(0);
478 }
479 
480 static u8 get_rng_vid(uint8_t sec_idx)
481 {
482 	ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
483 	u32 cha_vid = sec_in32(&sec->chavid_ls);
484 
485 	return (cha_vid & SEC_CHAVID_RNG_LS_MASK) >> SEC_CHAVID_LS_RNG_SHIFT;
486 }
487 
488 /*
489  * By default, the TRNG runs for 200 clocks per sample;
490  * 1200 clocks per sample generates better entropy.
491  */
492 static void kick_trng(int ent_delay, uint8_t sec_idx)
493 {
494 	ccsr_sec_t __iomem *sec = (ccsr_sec_t __iomem *)SEC_ADDR(sec_idx);
495 	struct rng4tst __iomem *rng =
496 			(struct rng4tst __iomem *)&sec->rng;
497 	u32 val;
498 
499 	/* put RNG4 into program mode */
500 	sec_setbits32(&rng->rtmctl, RTMCTL_PRGM);
501 	/* rtsdctl bits 0-15 contain "Entropy Delay, which defines the
502 	 * length (in system clocks) of each Entropy sample taken
503 	 * */
504 	val = sec_in32(&rng->rtsdctl);
505 	val = (val & ~RTSDCTL_ENT_DLY_MASK) |
506 	      (ent_delay << RTSDCTL_ENT_DLY_SHIFT);
507 	sec_out32(&rng->rtsdctl, val);
508 	/* min. freq. count, equal to 1/4 of the entropy sample length */
509 	sec_out32(&rng->rtfreqmin, ent_delay >> 2);
510 	/* disable maximum frequency count */
511 	sec_out32(&rng->rtfreqmax, RTFRQMAX_DISABLE);
512 	/*
513 	 * select raw sampling in both entropy shifter
514 	 * and statistical checker
515 	 */
516 	sec_setbits32(&rng->rtmctl, RTMCTL_SAMP_MODE_RAW_ES_SC);
517 	/* put RNG4 into run mode */
518 	sec_clrbits32(&rng->rtmctl, RTMCTL_PRGM);
519 }
520 
521 static int rng_init(uint8_t sec_idx)
522 {
523 	int ret, ent_delay = RTSDCTL_ENT_DLY_MIN;
524 	ccsr_sec_t __iomem *sec = (ccsr_sec_t __iomem *)SEC_ADDR(sec_idx);
525 	struct rng4tst __iomem *rng =
526 			(struct rng4tst __iomem *)&sec->rng;
527 
528 	u32 rdsta = sec_in32(&rng->rdsta);
529 
530 	/* Check if RNG state 0 handler is already instantiated */
531 	if (rdsta & RNG_STATE0_HANDLE_INSTANTIATED)
532 		return 0;
533 
534 	do {
535 		/*
536 		 * If either of the SH's were instantiated by somebody else
537 		 * then it is assumed that the entropy
538 		 * parameters are properly set and thus the function
539 		 * setting these (kick_trng(...)) is skipped.
540 		 * Also, if a handle was instantiated, do not change
541 		 * the TRNG parameters.
542 		 */
543 		kick_trng(ent_delay, sec_idx);
544 		ent_delay += 400;
545 		/*
546 		 * if instantiate_rng(...) fails, the loop will rerun
547 		 * and the kick_trng(...) function will modfiy the
548 		 * upper and lower limits of the entropy sampling
549 		 * interval, leading to a sucessful initialization of
550 		 * the RNG.
551 		 */
552 		ret = instantiate_rng(sec_idx);
553 	} while ((ret == -1) && (ent_delay < RTSDCTL_ENT_DLY_MAX));
554 	if (ret) {
555 		printf("RNG: Failed to instantiate RNG\n");
556 		return ret;
557 	}
558 
559 	 /* Enable RDB bit so that RNG works faster */
560 	sec_setbits32(&sec->scfgr, SEC_SCFGR_RDBENABLE);
561 
562 	return ret;
563 }
564 
565 int sec_init_idx(uint8_t sec_idx)
566 {
567 	ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
568 	uint32_t mcr = sec_in32(&sec->mcfgr);
569 	int ret = 0;
570 
571 #ifdef CONFIG_FSL_CORENET
572 	uint32_t liodnr;
573 	uint32_t liodn_ns;
574 	uint32_t liodn_s;
575 #endif
576 
577 	if (!(sec_idx < CONFIG_SYS_FSL_MAX_NUM_OF_SEC)) {
578 		printf("SEC initialization failed\n");
579 		return -1;
580 	}
581 
582 	/*
583 	 * Modifying CAAM Read/Write Attributes
584 	 * For LS2080A
585 	 * For AXI Write - Cacheable, Write Back, Write allocate
586 	 * For AXI Read - Cacheable, Read allocate
587 	 * Only For LS2080a, to solve CAAM coherency issues
588 	 */
589 #ifdef CONFIG_LS2080A
590 	mcr = (mcr & ~MCFGR_AWCACHE_MASK) | (0xb << MCFGR_AWCACHE_SHIFT);
591 	mcr = (mcr & ~MCFGR_ARCACHE_MASK) | (0x6 << MCFGR_ARCACHE_SHIFT);
592 #else
593 	mcr = (mcr & ~MCFGR_AWCACHE_MASK) | (0x2 << MCFGR_AWCACHE_SHIFT);
594 #endif
595 
596 #ifdef CONFIG_PHYS_64BIT
597 	mcr |= (1 << MCFGR_PS_SHIFT);
598 #endif
599 	sec_out32(&sec->mcfgr, mcr);
600 
601 #ifdef CONFIG_FSL_CORENET
602 	liodnr = sec_in32(&sec->jrliodnr[0].ls);
603 	liodn_ns = (liodnr & JRNSLIODN_MASK) >> JRNSLIODN_SHIFT;
604 	liodn_s = (liodnr & JRSLIODN_MASK) >> JRSLIODN_SHIFT;
605 #endif
606 
607 	ret = jr_init(sec_idx);
608 	if (ret < 0) {
609 		printf("SEC initialization failed\n");
610 		return -1;
611 	}
612 
613 #ifdef CONFIG_FSL_CORENET
614 	ret = sec_config_pamu_table(liodn_ns, liodn_s);
615 	if (ret < 0)
616 		return -1;
617 
618 	pamu_enable();
619 #endif
620 
621 	if (get_rng_vid(sec_idx) >= 4) {
622 		if (rng_init(sec_idx) < 0) {
623 			printf("SEC%u: RNG instantiation failed\n", sec_idx);
624 			return -1;
625 		}
626 		printf("SEC%u: RNG instantiated\n", sec_idx);
627 	}
628 
629 	return ret;
630 }
631 
632 int sec_init(void)
633 {
634 	return sec_init_idx(0);
635 }
636