xref: /openbmc/u-boot/drivers/crypto/fsl/jr.c (revision 87e29878caba758ed3e09e9912ac8eb6dfc55f39)
1 /*
2  * Copyright 2008-2014 Freescale Semiconductor, Inc.
3  *
4  * SPDX-License-Identifier:	GPL-2.0+
5  *
6  * Based on CAAM driver in drivers/crypto/caam in Linux
7  */
8 
9 #include <common.h>
10 #include <malloc.h>
11 #include "fsl_sec.h"
12 #include "jr.h"
13 #include "jobdesc.h"
14 #include "desc_constr.h"
15 
16 #define CIRC_CNT(head, tail, size)	(((head) - (tail)) & (size - 1))
17 #define CIRC_SPACE(head, tail, size)	CIRC_CNT((tail), (head) + 1, (size))
18 
19 struct jobring jr;
20 
21 static inline void start_jr0(void)
22 {
23 	ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR;
24 	u32 ctpr_ms = sec_in32(&sec->ctpr_ms);
25 	u32 scfgr = sec_in32(&sec->scfgr);
26 
27 	if (ctpr_ms & SEC_CTPR_MS_VIRT_EN_INCL) {
28 		/* VIRT_EN_INCL = 1 & VIRT_EN_POR = 1 or
29 		 * VIRT_EN_INCL = 1 & VIRT_EN_POR = 0 & SEC_SCFGR_VIRT_EN = 1
30 		 */
31 		if ((ctpr_ms & SEC_CTPR_MS_VIRT_EN_POR) ||
32 		    (!(ctpr_ms & SEC_CTPR_MS_VIRT_EN_POR) &&
33 					(scfgr & SEC_SCFGR_VIRT_EN)))
34 			sec_out32(&sec->jrstartr, CONFIG_JRSTARTR_JR0);
35 	} else {
36 		/* VIRT_EN_INCL = 0 && VIRT_EN_POR_VALUE = 1 */
37 		if (ctpr_ms & SEC_CTPR_MS_VIRT_EN_POR)
38 			sec_out32(&sec->jrstartr, CONFIG_JRSTARTR_JR0);
39 	}
40 }
41 
42 static inline void jr_reset_liodn(void)
43 {
44 	ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR;
45 	sec_out32(&sec->jrliodnr[0].ls, 0);
46 }
47 
48 static inline void jr_disable_irq(void)
49 {
50 	struct jr_regs *regs = (struct jr_regs *)CONFIG_SYS_FSL_JR0_ADDR;
51 	uint32_t jrcfg = sec_in32(&regs->jrcfg1);
52 
53 	jrcfg = jrcfg | JR_INTMASK;
54 
55 	sec_out32(&regs->jrcfg1, jrcfg);
56 }
57 
58 static void jr_initregs(void)
59 {
60 	struct jr_regs *regs = (struct jr_regs *)CONFIG_SYS_FSL_JR0_ADDR;
61 	phys_addr_t ip_base = virt_to_phys((void *)jr.input_ring);
62 	phys_addr_t op_base = virt_to_phys((void *)jr.output_ring);
63 
64 #ifdef CONFIG_PHYS_64BIT
65 	sec_out32(&regs->irba_h, ip_base >> 32);
66 #else
67 	sec_out32(&regs->irba_h, 0x0);
68 #endif
69 	sec_out32(&regs->irba_l, (uint32_t)ip_base);
70 #ifdef CONFIG_PHYS_64BIT
71 	sec_out32(&regs->orba_h, op_base >> 32);
72 #else
73 	sec_out32(&regs->orba_h, 0x0);
74 #endif
75 	sec_out32(&regs->orba_l, (uint32_t)op_base);
76 	sec_out32(&regs->ors, JR_SIZE);
77 	sec_out32(&regs->irs, JR_SIZE);
78 
79 	if (!jr.irq)
80 		jr_disable_irq();
81 }
82 
83 static int jr_init(void)
84 {
85 	memset(&jr, 0, sizeof(struct jobring));
86 
87 	jr.jq_id = DEFAULT_JR_ID;
88 	jr.irq = DEFAULT_IRQ;
89 
90 #ifdef CONFIG_FSL_CORENET
91 	jr.liodn = DEFAULT_JR_LIODN;
92 #endif
93 	jr.size = JR_SIZE;
94 	jr.input_ring = (dma_addr_t *)memalign(ARCH_DMA_MINALIGN,
95 				JR_SIZE * sizeof(dma_addr_t));
96 	if (!jr.input_ring)
97 		return -1;
98 	jr.output_ring =
99 	    (struct op_ring *)memalign(ARCH_DMA_MINALIGN,
100 				JR_SIZE * sizeof(struct op_ring));
101 	if (!jr.output_ring)
102 		return -1;
103 
104 	memset(jr.input_ring, 0, JR_SIZE * sizeof(dma_addr_t));
105 	memset(jr.output_ring, 0, JR_SIZE * sizeof(struct op_ring));
106 
107 	start_jr0();
108 
109 	jr_initregs();
110 
111 	return 0;
112 }
113 
114 static int jr_sw_cleanup(void)
115 {
116 	jr.head = 0;
117 	jr.tail = 0;
118 	jr.read_idx = 0;
119 	jr.write_idx = 0;
120 	memset(jr.info, 0, sizeof(jr.info));
121 	memset(jr.input_ring, 0, jr.size * sizeof(dma_addr_t));
122 	memset(jr.output_ring, 0, jr.size * sizeof(struct op_ring));
123 
124 	return 0;
125 }
126 
127 static int jr_hw_reset(void)
128 {
129 	struct jr_regs *regs = (struct jr_regs *)CONFIG_SYS_FSL_JR0_ADDR;
130 	uint32_t timeout = 100000;
131 	uint32_t jrint, jrcr;
132 
133 	sec_out32(&regs->jrcr, JRCR_RESET);
134 	do {
135 		jrint = sec_in32(&regs->jrint);
136 	} while (((jrint & JRINT_ERR_HALT_MASK) ==
137 		  JRINT_ERR_HALT_INPROGRESS) && --timeout);
138 
139 	jrint = sec_in32(&regs->jrint);
140 	if (((jrint & JRINT_ERR_HALT_MASK) !=
141 	     JRINT_ERR_HALT_INPROGRESS) && timeout == 0)
142 		return -1;
143 
144 	timeout = 100000;
145 	sec_out32(&regs->jrcr, JRCR_RESET);
146 	do {
147 		jrcr = sec_in32(&regs->jrcr);
148 	} while ((jrcr & JRCR_RESET) && --timeout);
149 
150 	if (timeout == 0)
151 		return -1;
152 
153 	return 0;
154 }
155 
156 /* -1 --- error, can't enqueue -- no space available */
157 static int jr_enqueue(uint32_t *desc_addr,
158 	       void (*callback)(uint32_t status, void *arg),
159 	       void *arg)
160 {
161 	struct jr_regs *regs = (struct jr_regs *)CONFIG_SYS_FSL_JR0_ADDR;
162 	int head = jr.head;
163 	uint32_t desc_word;
164 	int length = desc_len(desc_addr);
165 	int i;
166 #ifdef CONFIG_PHYS_64BIT
167 	uint32_t *addr_hi, *addr_lo;
168 #endif
169 
170 	/* The descriptor must be submitted to SEC block as per endianness
171 	 * of the SEC Block.
172 	 * So, if the endianness of Core and SEC block is different, each word
173 	 * of the descriptor will be byte-swapped.
174 	 */
175 	for (i = 0; i < length; i++) {
176 		desc_word = desc_addr[i];
177 		sec_out32((uint32_t *)&desc_addr[i], desc_word);
178 	}
179 
180 	phys_addr_t desc_phys_addr = virt_to_phys(desc_addr);
181 
182 	if (sec_in32(&regs->irsa) == 0 ||
183 	    CIRC_SPACE(jr.head, jr.tail, jr.size) <= 0)
184 		return -1;
185 
186 	jr.info[head].desc_phys_addr = desc_phys_addr;
187 	jr.info[head].callback = (void *)callback;
188 	jr.info[head].arg = arg;
189 	jr.info[head].op_done = 0;
190 
191 	unsigned long start = (unsigned long)&jr.info[head] &
192 					~(ARCH_DMA_MINALIGN - 1);
193 	unsigned long end = ALIGN(start + sizeof(struct jr_info),
194 					ARCH_DMA_MINALIGN);
195 	flush_dcache_range(start, end);
196 
197 #ifdef CONFIG_PHYS_64BIT
198 	/* Write the 64 bit Descriptor address on Input Ring.
199 	 * The 32 bit hign and low part of the address will
200 	 * depend on endianness of SEC block.
201 	 */
202 #ifdef CONFIG_SYS_FSL_SEC_LE
203 	addr_lo = (uint32_t *)(&jr.input_ring[head]);
204 	addr_hi = (uint32_t *)(&jr.input_ring[head]) + 1;
205 #elif defined(CONFIG_SYS_FSL_SEC_BE)
206 	addr_hi = (uint32_t *)(&jr.input_ring[head]);
207 	addr_lo = (uint32_t *)(&jr.input_ring[head]) + 1;
208 #endif /* ifdef CONFIG_SYS_FSL_SEC_LE */
209 
210 	sec_out32(addr_hi, (uint32_t)(desc_phys_addr >> 32));
211 	sec_out32(addr_lo, (uint32_t)(desc_phys_addr));
212 
213 #else
214 	/* Write the 32 bit Descriptor address on Input Ring. */
215 	sec_out32(&jr.input_ring[head], desc_phys_addr);
216 #endif /* ifdef CONFIG_PHYS_64BIT */
217 
218 	start = (unsigned long)&jr.input_ring[head] & ~(ARCH_DMA_MINALIGN - 1);
219 	end = ALIGN(start + sizeof(phys_addr_t), ARCH_DMA_MINALIGN);
220 	flush_dcache_range(start, end);
221 
222 	jr.head = (head + 1) & (jr.size - 1);
223 
224 	sec_out32(&regs->irja, 1);
225 
226 	return 0;
227 }
228 
229 static int jr_dequeue(void)
230 {
231 	struct jr_regs *regs = (struct jr_regs *)CONFIG_SYS_FSL_JR0_ADDR;
232 	int head = jr.head;
233 	int tail = jr.tail;
234 	int idx, i, found;
235 	void (*callback)(uint32_t status, void *arg);
236 	void *arg = NULL;
237 #ifdef CONFIG_PHYS_64BIT
238 	uint32_t *addr_hi, *addr_lo;
239 #else
240 	uint32_t *addr;
241 #endif
242 
243 	while (sec_in32(&regs->orsf) && CIRC_CNT(jr.head, jr.tail, jr.size)) {
244 		unsigned long start = (unsigned long)jr.output_ring &
245 					~(ARCH_DMA_MINALIGN - 1);
246 		unsigned long end = ALIGN(start +
247 					  sizeof(struct op_ring)*JR_SIZE,
248 					  ARCH_DMA_MINALIGN);
249 		invalidate_dcache_range(start, end);
250 
251 		found = 0;
252 
253 		phys_addr_t op_desc;
254 	#ifdef CONFIG_PHYS_64BIT
255 		/* Read the 64 bit Descriptor address from Output Ring.
256 		 * The 32 bit hign and low part of the address will
257 		 * depend on endianness of SEC block.
258 		 */
259 	#ifdef CONFIG_SYS_FSL_SEC_LE
260 		addr_lo = (uint32_t *)(&jr.output_ring[jr.tail].desc);
261 		addr_hi = (uint32_t *)(&jr.output_ring[jr.tail].desc) + 1;
262 	#elif defined(CONFIG_SYS_FSL_SEC_BE)
263 		addr_hi = (uint32_t *)(&jr.output_ring[jr.tail].desc);
264 		addr_lo = (uint32_t *)(&jr.output_ring[jr.tail].desc) + 1;
265 	#endif /* ifdef CONFIG_SYS_FSL_SEC_LE */
266 
267 		op_desc = ((u64)sec_in32(addr_hi) << 32) |
268 			  ((u64)sec_in32(addr_lo));
269 
270 	#else
271 		/* Read the 32 bit Descriptor address from Output Ring. */
272 		addr = (uint32_t *)&jr.output_ring[jr.tail].desc;
273 		op_desc = sec_in32(addr);
274 	#endif /* ifdef CONFIG_PHYS_64BIT */
275 
276 		uint32_t status = sec_in32(&jr.output_ring[jr.tail].status);
277 
278 		for (i = 0; CIRC_CNT(head, tail + i, jr.size) >= 1; i++) {
279 			idx = (tail + i) & (jr.size - 1);
280 			if (op_desc == jr.info[idx].desc_phys_addr) {
281 				found = 1;
282 				break;
283 			}
284 		}
285 
286 		/* Error condition if match not found */
287 		if (!found)
288 			return -1;
289 
290 		jr.info[idx].op_done = 1;
291 		callback = (void *)jr.info[idx].callback;
292 		arg = jr.info[idx].arg;
293 
294 		/* When the job on tail idx gets done, increment
295 		 * tail till the point where job completed out of oredr has
296 		 * been taken into account
297 		 */
298 		if (idx == tail)
299 			do {
300 				tail = (tail + 1) & (jr.size - 1);
301 			} while (jr.info[tail].op_done);
302 
303 		jr.tail = tail;
304 		jr.read_idx = (jr.read_idx + 1) & (jr.size - 1);
305 
306 		sec_out32(&regs->orjr, 1);
307 		jr.info[idx].op_done = 0;
308 
309 		callback(status, arg);
310 	}
311 
312 	return 0;
313 }
314 
315 static void desc_done(uint32_t status, void *arg)
316 {
317 	struct result *x = arg;
318 	x->status = status;
319 	caam_jr_strstatus(status);
320 	x->done = 1;
321 }
322 
323 int run_descriptor_jr(uint32_t *desc)
324 {
325 	unsigned long long timeval = get_ticks();
326 	unsigned long long timeout = usec2ticks(CONFIG_SEC_DEQ_TIMEOUT);
327 	struct result op;
328 	int ret = 0;
329 
330 	memset(&op, 0, sizeof(op));
331 
332 	ret = jr_enqueue(desc, desc_done, &op);
333 	if (ret) {
334 		debug("Error in SEC enq\n");
335 		ret = JQ_ENQ_ERR;
336 		goto out;
337 	}
338 
339 	timeval = get_ticks();
340 	timeout = usec2ticks(CONFIG_SEC_DEQ_TIMEOUT);
341 	while (op.done != 1) {
342 		ret = jr_dequeue();
343 		if (ret) {
344 			debug("Error in SEC deq\n");
345 			ret = JQ_DEQ_ERR;
346 			goto out;
347 		}
348 
349 		if ((get_ticks() - timeval) > timeout) {
350 			debug("SEC Dequeue timed out\n");
351 			ret = JQ_DEQ_TO_ERR;
352 			goto out;
353 		}
354 	}
355 
356 	if (!op.status) {
357 		debug("Error %x\n", op.status);
358 		ret = op.status;
359 	}
360 out:
361 	return ret;
362 }
363 
364 int jr_reset(void)
365 {
366 	if (jr_hw_reset() < 0)
367 		return -1;
368 
369 	/* Clean up the jobring structure maintained by software */
370 	jr_sw_cleanup();
371 
372 	return 0;
373 }
374 
375 int sec_reset(void)
376 {
377 	ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR;
378 	uint32_t mcfgr = sec_in32(&sec->mcfgr);
379 	uint32_t timeout = 100000;
380 
381 	mcfgr |= MCFGR_SWRST;
382 	sec_out32(&sec->mcfgr, mcfgr);
383 
384 	mcfgr |= MCFGR_DMA_RST;
385 	sec_out32(&sec->mcfgr, mcfgr);
386 	do {
387 		mcfgr = sec_in32(&sec->mcfgr);
388 	} while ((mcfgr & MCFGR_DMA_RST) == MCFGR_DMA_RST && --timeout);
389 
390 	if (timeout == 0)
391 		return -1;
392 
393 	timeout = 100000;
394 	do {
395 		mcfgr = sec_in32(&sec->mcfgr);
396 	} while ((mcfgr & MCFGR_SWRST) == MCFGR_SWRST && --timeout);
397 
398 	if (timeout == 0)
399 		return -1;
400 
401 	return 0;
402 }
403 
404 static int instantiate_rng(void)
405 {
406 	struct result op;
407 	u32 *desc;
408 	u32 rdsta_val;
409 	int ret = 0;
410 	ccsr_sec_t __iomem *sec =
411 			(ccsr_sec_t __iomem *)CONFIG_SYS_FSL_SEC_ADDR;
412 	struct rng4tst __iomem *rng =
413 			(struct rng4tst __iomem *)&sec->rng;
414 
415 	memset(&op, 0, sizeof(struct result));
416 
417 	desc = memalign(ARCH_DMA_MINALIGN, sizeof(uint32_t) * 6);
418 	if (!desc) {
419 		printf("cannot allocate RNG init descriptor memory\n");
420 		return -1;
421 	}
422 
423 	inline_cnstr_jobdesc_rng_instantiation(desc);
424 	int size = roundup(sizeof(uint32_t) * 6, ARCH_DMA_MINALIGN);
425 	flush_dcache_range((unsigned long)desc,
426 			   (unsigned long)desc + size);
427 
428 	ret = run_descriptor_jr(desc);
429 
430 	if (ret)
431 		printf("RNG: Instantiation failed with error %x\n", ret);
432 
433 	rdsta_val = sec_in32(&rng->rdsta);
434 	if (op.status || !(rdsta_val & RNG_STATE0_HANDLE_INSTANTIATED))
435 		return -1;
436 
437 	return ret;
438 }
439 
440 static u8 get_rng_vid(void)
441 {
442 	ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR;
443 	u32 cha_vid = sec_in32(&sec->chavid_ls);
444 
445 	return (cha_vid & SEC_CHAVID_RNG_LS_MASK) >> SEC_CHAVID_LS_RNG_SHIFT;
446 }
447 
448 /*
449  * By default, the TRNG runs for 200 clocks per sample;
450  * 1200 clocks per sample generates better entropy.
451  */
452 static void kick_trng(int ent_delay)
453 {
454 	ccsr_sec_t __iomem *sec =
455 			(ccsr_sec_t __iomem *)CONFIG_SYS_FSL_SEC_ADDR;
456 	struct rng4tst __iomem *rng =
457 			(struct rng4tst __iomem *)&sec->rng;
458 	u32 val;
459 
460 	/* put RNG4 into program mode */
461 	sec_setbits32(&rng->rtmctl, RTMCTL_PRGM);
462 	/* rtsdctl bits 0-15 contain "Entropy Delay, which defines the
463 	 * length (in system clocks) of each Entropy sample taken
464 	 * */
465 	val = sec_in32(&rng->rtsdctl);
466 	val = (val & ~RTSDCTL_ENT_DLY_MASK) |
467 	      (ent_delay << RTSDCTL_ENT_DLY_SHIFT);
468 	sec_out32(&rng->rtsdctl, val);
469 	/* min. freq. count, equal to 1/4 of the entropy sample length */
470 	sec_out32(&rng->rtfreqmin, ent_delay >> 2);
471 	/* disable maximum frequency count */
472 	sec_out32(&rng->rtfreqmax, RTFRQMAX_DISABLE);
473 	/* read the control register */
474 	val = sec_in32(&rng->rtmctl);
475 	/*
476 	 * select raw sampling in both entropy shifter
477 	 * and statistical checker
478 	 */
479 	sec_setbits32(&val, RTMCTL_SAMP_MODE_RAW_ES_SC);
480 	/* put RNG4 into run mode */
481 	sec_clrbits32(&val, RTMCTL_PRGM);
482 	/* write back the control register */
483 	sec_out32(&rng->rtmctl, val);
484 }
485 
486 static int rng_init(void)
487 {
488 	int ret, ent_delay = RTSDCTL_ENT_DLY_MIN;
489 	ccsr_sec_t __iomem *sec =
490 			(ccsr_sec_t __iomem *)CONFIG_SYS_FSL_SEC_ADDR;
491 	struct rng4tst __iomem *rng =
492 			(struct rng4tst __iomem *)&sec->rng;
493 
494 	u32 rdsta = sec_in32(&rng->rdsta);
495 
496 	/* Check if RNG state 0 handler is already instantiated */
497 	if (rdsta & RNG_STATE0_HANDLE_INSTANTIATED)
498 		return 0;
499 
500 	do {
501 		/*
502 		 * If either of the SH's were instantiated by somebody else
503 		 * then it is assumed that the entropy
504 		 * parameters are properly set and thus the function
505 		 * setting these (kick_trng(...)) is skipped.
506 		 * Also, if a handle was instantiated, do not change
507 		 * the TRNG parameters.
508 		 */
509 		kick_trng(ent_delay);
510 		ent_delay += 400;
511 		/*
512 		 * if instantiate_rng(...) fails, the loop will rerun
513 		 * and the kick_trng(...) function will modfiy the
514 		 * upper and lower limits of the entropy sampling
515 		 * interval, leading to a sucessful initialization of
516 		 * the RNG.
517 		 */
518 		ret = instantiate_rng();
519 	} while ((ret == -1) && (ent_delay < RTSDCTL_ENT_DLY_MAX));
520 	if (ret) {
521 		printf("RNG: Failed to instantiate RNG\n");
522 		return ret;
523 	}
524 
525 	 /* Enable RDB bit so that RNG works faster */
526 	sec_setbits32(&sec->scfgr, SEC_SCFGR_RDBENABLE);
527 
528 	return ret;
529 }
530 
531 int sec_init(void)
532 {
533 	ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR;
534 	uint32_t mcr = sec_in32(&sec->mcfgr);
535 	int ret = 0;
536 
537 	mcr = (mcr & ~MCFGR_AWCACHE_MASK) | (0x2 << MCFGR_AWCACHE_SHIFT);
538 #ifdef CONFIG_PHYS_64BIT
539 	mcr |= (1 << MCFGR_PS_SHIFT);
540 #endif
541 	sec_out32(&sec->mcfgr, mcr);
542 
543 	ret = jr_init();
544 	if (ret < 0) {
545 		printf("SEC initialization failed\n");
546 		return -1;
547 	}
548 
549 	if (get_rng_vid() >= 4) {
550 		if (rng_init() < 0) {
551 			printf("RNG instantiation failed\n");
552 			return -1;
553 		}
554 		printf("SEC: RNG instantiated\n");
555 	}
556 
557 	return ret;
558 }
559