xref: /openbmc/u-boot/drivers/core/device.c (revision cbff9f80cedd4bd4c00ed3fe506b1fc2b209c681)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Device manager
4  *
5  * Copyright (c) 2013 Google, Inc
6  *
7  * (C) Copyright 2012
8  * Pavel Herrmann <morpheus.ibis@gmail.com>
9  */
10 
11 #include <common.h>
12 #include <asm/io.h>
13 #include <clk.h>
14 #include <fdtdec.h>
15 #include <fdt_support.h>
16 #include <malloc.h>
17 #include <dm/device.h>
18 #include <dm/device-internal.h>
19 #include <dm/lists.h>
20 #include <dm/of_access.h>
21 #include <dm/pinctrl.h>
22 #include <dm/platdata.h>
23 #include <dm/read.h>
24 #include <dm/uclass.h>
25 #include <dm/uclass-internal.h>
26 #include <dm/util.h>
27 #include <linux/err.h>
28 #include <linux/list.h>
29 #include <power-domain.h>
30 
31 DECLARE_GLOBAL_DATA_PTR;
32 
33 static int device_bind_common(struct udevice *parent, const struct driver *drv,
34 			      const char *name, void *platdata,
35 			      ulong driver_data, ofnode node,
36 			      uint of_platdata_size, struct udevice **devp)
37 {
38 	struct udevice *dev;
39 	struct uclass *uc;
40 	int size, ret = 0;
41 
42 	if (devp)
43 		*devp = NULL;
44 	if (!name)
45 		return -EINVAL;
46 
47 	ret = uclass_get(drv->id, &uc);
48 	if (ret) {
49 		debug("Missing uclass for driver %s\n", drv->name);
50 		return ret;
51 	}
52 
53 	dev = calloc(1, sizeof(struct udevice));
54 	if (!dev)
55 		return -ENOMEM;
56 
57 	INIT_LIST_HEAD(&dev->sibling_node);
58 	INIT_LIST_HEAD(&dev->child_head);
59 	INIT_LIST_HEAD(&dev->uclass_node);
60 #ifdef CONFIG_DEVRES
61 	INIT_LIST_HEAD(&dev->devres_head);
62 #endif
63 	dev->platdata = platdata;
64 	dev->driver_data = driver_data;
65 	dev->name = name;
66 	dev->node = node;
67 	dev->parent = parent;
68 	dev->driver = drv;
69 	dev->uclass = uc;
70 
71 	dev->seq = -1;
72 	dev->req_seq = -1;
73 	if (CONFIG_IS_ENABLED(OF_CONTROL) && CONFIG_IS_ENABLED(DM_SEQ_ALIAS)) {
74 		/*
75 		 * Some devices, such as a SPI bus, I2C bus and serial ports
76 		 * are numbered using aliases.
77 		 *
78 		 * This is just a 'requested' sequence, and will be
79 		 * resolved (and ->seq updated) when the device is probed.
80 		 */
81 		if (uc->uc_drv->flags & DM_UC_FLAG_SEQ_ALIAS) {
82 			if (uc->uc_drv->name && ofnode_valid(node)) {
83 				dev_read_alias_seq(dev, &dev->req_seq);
84 			}
85 		}
86 	}
87 
88 	if (drv->platdata_auto_alloc_size) {
89 		bool alloc = !platdata;
90 
91 		if (CONFIG_IS_ENABLED(OF_PLATDATA)) {
92 			if (of_platdata_size) {
93 				dev->flags |= DM_FLAG_OF_PLATDATA;
94 				if (of_platdata_size <
95 						drv->platdata_auto_alloc_size)
96 					alloc = true;
97 			}
98 		}
99 		if (alloc) {
100 			dev->flags |= DM_FLAG_ALLOC_PDATA;
101 			dev->platdata = calloc(1,
102 					       drv->platdata_auto_alloc_size);
103 			if (!dev->platdata) {
104 				ret = -ENOMEM;
105 				goto fail_alloc1;
106 			}
107 			if (CONFIG_IS_ENABLED(OF_PLATDATA) && platdata) {
108 				memcpy(dev->platdata, platdata,
109 				       of_platdata_size);
110 			}
111 		}
112 	}
113 
114 	size = uc->uc_drv->per_device_platdata_auto_alloc_size;
115 	if (size) {
116 		dev->flags |= DM_FLAG_ALLOC_UCLASS_PDATA;
117 		dev->uclass_platdata = calloc(1, size);
118 		if (!dev->uclass_platdata) {
119 			ret = -ENOMEM;
120 			goto fail_alloc2;
121 		}
122 	}
123 
124 	if (parent) {
125 		size = parent->driver->per_child_platdata_auto_alloc_size;
126 		if (!size) {
127 			size = parent->uclass->uc_drv->
128 					per_child_platdata_auto_alloc_size;
129 		}
130 		if (size) {
131 			dev->flags |= DM_FLAG_ALLOC_PARENT_PDATA;
132 			dev->parent_platdata = calloc(1, size);
133 			if (!dev->parent_platdata) {
134 				ret = -ENOMEM;
135 				goto fail_alloc3;
136 			}
137 		}
138 	}
139 
140 	/* put dev into parent's successor list */
141 	if (parent)
142 		list_add_tail(&dev->sibling_node, &parent->child_head);
143 
144 	ret = uclass_bind_device(dev);
145 	if (ret)
146 		goto fail_uclass_bind;
147 
148 	/* if we fail to bind we remove device from successors and free it */
149 	if (drv->bind) {
150 		ret = drv->bind(dev);
151 		if (ret)
152 			goto fail_bind;
153 	}
154 	if (parent && parent->driver->child_post_bind) {
155 		ret = parent->driver->child_post_bind(dev);
156 		if (ret)
157 			goto fail_child_post_bind;
158 	}
159 	if (uc->uc_drv->post_bind) {
160 		ret = uc->uc_drv->post_bind(dev);
161 		if (ret)
162 			goto fail_uclass_post_bind;
163 	}
164 
165 	if (parent)
166 		pr_debug("Bound device %s to %s\n", dev->name, parent->name);
167 	if (devp)
168 		*devp = dev;
169 
170 	dev->flags |= DM_FLAG_BOUND;
171 
172 	return 0;
173 
174 fail_uclass_post_bind:
175 	/* There is no child unbind() method, so no clean-up required */
176 fail_child_post_bind:
177 	if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) {
178 		if (drv->unbind && drv->unbind(dev)) {
179 			dm_warn("unbind() method failed on dev '%s' on error path\n",
180 				dev->name);
181 		}
182 	}
183 
184 fail_bind:
185 	if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) {
186 		if (uclass_unbind_device(dev)) {
187 			dm_warn("Failed to unbind dev '%s' on error path\n",
188 				dev->name);
189 		}
190 	}
191 fail_uclass_bind:
192 	if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) {
193 		list_del(&dev->sibling_node);
194 		if (dev->flags & DM_FLAG_ALLOC_PARENT_PDATA) {
195 			free(dev->parent_platdata);
196 			dev->parent_platdata = NULL;
197 		}
198 	}
199 fail_alloc3:
200 	if (dev->flags & DM_FLAG_ALLOC_UCLASS_PDATA) {
201 		free(dev->uclass_platdata);
202 		dev->uclass_platdata = NULL;
203 	}
204 fail_alloc2:
205 	if (dev->flags & DM_FLAG_ALLOC_PDATA) {
206 		free(dev->platdata);
207 		dev->platdata = NULL;
208 	}
209 fail_alloc1:
210 	devres_release_all(dev);
211 
212 	free(dev);
213 
214 	return ret;
215 }
216 
217 int device_bind_with_driver_data(struct udevice *parent,
218 				 const struct driver *drv, const char *name,
219 				 ulong driver_data, ofnode node,
220 				 struct udevice **devp)
221 {
222 	return device_bind_common(parent, drv, name, NULL, driver_data, node,
223 				  0, devp);
224 }
225 
226 int device_bind(struct udevice *parent, const struct driver *drv,
227 		const char *name, void *platdata, int of_offset,
228 		struct udevice **devp)
229 {
230 	return device_bind_common(parent, drv, name, platdata, 0,
231 				  offset_to_ofnode(of_offset), 0, devp);
232 }
233 
234 int device_bind_ofnode(struct udevice *parent, const struct driver *drv,
235 		       const char *name, void *platdata, ofnode node,
236 		       struct udevice **devp)
237 {
238 	return device_bind_common(parent, drv, name, platdata, 0, node, 0,
239 				  devp);
240 }
241 
242 int device_bind_by_name(struct udevice *parent, bool pre_reloc_only,
243 			const struct driver_info *info, struct udevice **devp)
244 {
245 	struct driver *drv;
246 	uint platdata_size = 0;
247 
248 	drv = lists_driver_lookup_name(info->name);
249 	if (!drv)
250 		return -ENOENT;
251 	if (pre_reloc_only && !(drv->flags & DM_FLAG_PRE_RELOC))
252 		return -EPERM;
253 
254 #if CONFIG_IS_ENABLED(OF_PLATDATA)
255 	platdata_size = info->platdata_size;
256 #endif
257 	return device_bind_common(parent, drv, info->name,
258 			(void *)info->platdata, 0, ofnode_null(), platdata_size,
259 			devp);
260 }
261 
262 static void *alloc_priv(int size, uint flags)
263 {
264 	void *priv;
265 
266 	if (flags & DM_FLAG_ALLOC_PRIV_DMA) {
267 		size = ROUND(size, ARCH_DMA_MINALIGN);
268 		priv = memalign(ARCH_DMA_MINALIGN, size);
269 		if (priv) {
270 			memset(priv, '\0', size);
271 
272 			/*
273 			 * Ensure that the zero bytes are flushed to memory.
274 			 * This prevents problems if the driver uses this as
275 			 * both an input and an output buffer:
276 			 *
277 			 * 1. Zeroes written to buffer (here) and sit in the
278 			 *	cache
279 			 * 2. Driver issues a read command to DMA
280 			 * 3. CPU runs out of cache space and evicts some cache
281 			 *	data in the buffer, writing zeroes to RAM from
282 			 *	the memset() above
283 			 * 4. DMA completes
284 			 * 5. Buffer now has some DMA data and some zeroes
285 			 * 6. Data being read is now incorrect
286 			 *
287 			 * To prevent this, ensure that the cache is clean
288 			 * within this range at the start. The driver can then
289 			 * use normal flush-after-write, invalidate-before-read
290 			 * procedures.
291 			 *
292 			 * TODO(sjg@chromium.org): Drop this microblaze
293 			 * exception.
294 			 */
295 #ifndef CONFIG_MICROBLAZE
296 			flush_dcache_range((ulong)priv, (ulong)priv + size);
297 #endif
298 		}
299 	} else {
300 		priv = calloc(1, size);
301 	}
302 
303 	return priv;
304 }
305 
306 int device_probe(struct udevice *dev)
307 {
308 	struct power_domain pd;
309 	const struct driver *drv;
310 	int size = 0;
311 	int ret;
312 	int seq;
313 
314 	if (!dev)
315 		return -EINVAL;
316 
317 	if (dev->flags & DM_FLAG_ACTIVATED)
318 		return 0;
319 
320 	drv = dev->driver;
321 	assert(drv);
322 
323 	/* Allocate private data if requested and not reentered */
324 	if (drv->priv_auto_alloc_size && !dev->priv) {
325 		dev->priv = alloc_priv(drv->priv_auto_alloc_size, drv->flags);
326 		if (!dev->priv) {
327 			ret = -ENOMEM;
328 			goto fail;
329 		}
330 	}
331 	/* Allocate private data if requested and not reentered */
332 	size = dev->uclass->uc_drv->per_device_auto_alloc_size;
333 	if (size && !dev->uclass_priv) {
334 		dev->uclass_priv = alloc_priv(size,
335 					      dev->uclass->uc_drv->flags);
336 		if (!dev->uclass_priv) {
337 			ret = -ENOMEM;
338 			goto fail;
339 		}
340 	}
341 
342 	/* Ensure all parents are probed */
343 	if (dev->parent) {
344 		size = dev->parent->driver->per_child_auto_alloc_size;
345 		if (!size) {
346 			size = dev->parent->uclass->uc_drv->
347 					per_child_auto_alloc_size;
348 		}
349 		if (size && !dev->parent_priv) {
350 			dev->parent_priv = alloc_priv(size, drv->flags);
351 			if (!dev->parent_priv) {
352 				ret = -ENOMEM;
353 				goto fail;
354 			}
355 		}
356 
357 		ret = device_probe(dev->parent);
358 		if (ret)
359 			goto fail;
360 
361 		/*
362 		 * The device might have already been probed during
363 		 * the call to device_probe() on its parent device
364 		 * (e.g. PCI bridge devices). Test the flags again
365 		 * so that we don't mess up the device.
366 		 */
367 		if (dev->flags & DM_FLAG_ACTIVATED)
368 			return 0;
369 	}
370 
371 	seq = uclass_resolve_seq(dev);
372 	if (seq < 0) {
373 		ret = seq;
374 		goto fail;
375 	}
376 	dev->seq = seq;
377 
378 	dev->flags |= DM_FLAG_ACTIVATED;
379 
380 	/*
381 	 * Process pinctrl for everything except the root device, and
382 	 * continue regardless of the result of pinctrl. Don't process pinctrl
383 	 * settings for pinctrl devices since the device may not yet be
384 	 * probed.
385 	 */
386 	if (dev->parent && device_get_uclass_id(dev) != UCLASS_PINCTRL)
387 		pinctrl_select_state(dev, "default");
388 
389 	if (dev->parent && device_get_uclass_id(dev) != UCLASS_POWER_DOMAIN) {
390 		if (!power_domain_get(dev, &pd))
391 			power_domain_on(&pd);
392 	}
393 
394 	ret = uclass_pre_probe_device(dev);
395 	if (ret)
396 		goto fail;
397 
398 	if (dev->parent && dev->parent->driver->child_pre_probe) {
399 		ret = dev->parent->driver->child_pre_probe(dev);
400 		if (ret)
401 			goto fail;
402 	}
403 
404 	if (drv->ofdata_to_platdata && dev_has_of_node(dev)) {
405 		ret = drv->ofdata_to_platdata(dev);
406 		if (ret)
407 			goto fail;
408 	}
409 
410 	/* Process 'assigned-{clocks/clock-parents/clock-rates}' properties */
411 	ret = clk_set_defaults(dev);
412 	if (ret)
413 		goto fail;
414 
415 	if (drv->probe) {
416 		ret = drv->probe(dev);
417 		if (ret) {
418 			dev->flags &= ~DM_FLAG_ACTIVATED;
419 			goto fail;
420 		}
421 	}
422 
423 	ret = uclass_post_probe_device(dev);
424 	if (ret)
425 		goto fail_uclass;
426 
427 	if (dev->parent && device_get_uclass_id(dev) == UCLASS_PINCTRL)
428 		pinctrl_select_state(dev, "default");
429 
430 	return 0;
431 fail_uclass:
432 	if (device_remove(dev, DM_REMOVE_NORMAL)) {
433 		dm_warn("%s: Device '%s' failed to remove on error path\n",
434 			__func__, dev->name);
435 	}
436 fail:
437 	dev->flags &= ~DM_FLAG_ACTIVATED;
438 
439 	dev->seq = -1;
440 	device_free(dev);
441 
442 	return ret;
443 }
444 
445 void *dev_get_platdata(const struct udevice *dev)
446 {
447 	if (!dev) {
448 		dm_warn("%s: null device\n", __func__);
449 		return NULL;
450 	}
451 
452 	return dev->platdata;
453 }
454 
455 void *dev_get_parent_platdata(const struct udevice *dev)
456 {
457 	if (!dev) {
458 		dm_warn("%s: null device\n", __func__);
459 		return NULL;
460 	}
461 
462 	return dev->parent_platdata;
463 }
464 
465 void *dev_get_uclass_platdata(const struct udevice *dev)
466 {
467 	if (!dev) {
468 		dm_warn("%s: null device\n", __func__);
469 		return NULL;
470 	}
471 
472 	return dev->uclass_platdata;
473 }
474 
475 void *dev_get_priv(const struct udevice *dev)
476 {
477 	if (!dev) {
478 		dm_warn("%s: null device\n", __func__);
479 		return NULL;
480 	}
481 
482 	return dev->priv;
483 }
484 
485 void *dev_get_uclass_priv(const struct udevice *dev)
486 {
487 	if (!dev) {
488 		dm_warn("%s: null device\n", __func__);
489 		return NULL;
490 	}
491 
492 	return dev->uclass_priv;
493 }
494 
495 void *dev_get_parent_priv(const struct udevice *dev)
496 {
497 	if (!dev) {
498 		dm_warn("%s: null device\n", __func__);
499 		return NULL;
500 	}
501 
502 	return dev->parent_priv;
503 }
504 
505 static int device_get_device_tail(struct udevice *dev, int ret,
506 				  struct udevice **devp)
507 {
508 	if (ret)
509 		return ret;
510 
511 	ret = device_probe(dev);
512 	if (ret)
513 		return ret;
514 
515 	*devp = dev;
516 
517 	return 0;
518 }
519 
520 /**
521  * device_find_by_ofnode() - Return device associated with given ofnode
522  *
523  * The returned device is *not* activated.
524  *
525  * @node: The ofnode for which a associated device should be looked up
526  * @devp: Pointer to structure to hold the found device
527  * Return: 0 if OK, -ve on error
528  */
529 static int device_find_by_ofnode(ofnode node, struct udevice **devp)
530 {
531 	struct uclass *uc;
532 	struct udevice *dev;
533 	int ret;
534 
535 	list_for_each_entry(uc, &gd->uclass_root, sibling_node) {
536 		ret = uclass_find_device_by_ofnode(uc->uc_drv->id, node,
537 						   &dev);
538 		if (!ret || dev) {
539 			*devp = dev;
540 			return 0;
541 		}
542 	}
543 
544 	return -ENODEV;
545 }
546 
547 int device_get_child(struct udevice *parent, int index, struct udevice **devp)
548 {
549 	struct udevice *dev;
550 
551 	list_for_each_entry(dev, &parent->child_head, sibling_node) {
552 		if (!index--)
553 			return device_get_device_tail(dev, 0, devp);
554 	}
555 
556 	return -ENODEV;
557 }
558 
559 int device_find_child_by_seq(struct udevice *parent, int seq_or_req_seq,
560 			     bool find_req_seq, struct udevice **devp)
561 {
562 	struct udevice *dev;
563 
564 	*devp = NULL;
565 	if (seq_or_req_seq == -1)
566 		return -ENODEV;
567 
568 	list_for_each_entry(dev, &parent->child_head, sibling_node) {
569 		if ((find_req_seq ? dev->req_seq : dev->seq) ==
570 				seq_or_req_seq) {
571 			*devp = dev;
572 			return 0;
573 		}
574 	}
575 
576 	return -ENODEV;
577 }
578 
579 int device_get_child_by_seq(struct udevice *parent, int seq,
580 			    struct udevice **devp)
581 {
582 	struct udevice *dev;
583 	int ret;
584 
585 	*devp = NULL;
586 	ret = device_find_child_by_seq(parent, seq, false, &dev);
587 	if (ret == -ENODEV) {
588 		/*
589 		 * We didn't find it in probed devices. See if there is one
590 		 * that will request this seq if probed.
591 		 */
592 		ret = device_find_child_by_seq(parent, seq, true, &dev);
593 	}
594 	return device_get_device_tail(dev, ret, devp);
595 }
596 
597 int device_find_child_by_of_offset(struct udevice *parent, int of_offset,
598 				   struct udevice **devp)
599 {
600 	struct udevice *dev;
601 
602 	*devp = NULL;
603 
604 	list_for_each_entry(dev, &parent->child_head, sibling_node) {
605 		if (dev_of_offset(dev) == of_offset) {
606 			*devp = dev;
607 			return 0;
608 		}
609 	}
610 
611 	return -ENODEV;
612 }
613 
614 int device_get_child_by_of_offset(struct udevice *parent, int node,
615 				  struct udevice **devp)
616 {
617 	struct udevice *dev;
618 	int ret;
619 
620 	*devp = NULL;
621 	ret = device_find_child_by_of_offset(parent, node, &dev);
622 	return device_get_device_tail(dev, ret, devp);
623 }
624 
625 static struct udevice *_device_find_global_by_ofnode(struct udevice *parent,
626 						     ofnode ofnode)
627 {
628 	struct udevice *dev, *found;
629 
630 	if (ofnode_equal(dev_ofnode(parent), ofnode))
631 		return parent;
632 
633 	list_for_each_entry(dev, &parent->child_head, sibling_node) {
634 		found = _device_find_global_by_ofnode(dev, ofnode);
635 		if (found)
636 			return found;
637 	}
638 
639 	return NULL;
640 }
641 
642 int device_find_global_by_ofnode(ofnode ofnode, struct udevice **devp)
643 {
644 	*devp = _device_find_global_by_ofnode(gd->dm_root, ofnode);
645 
646 	return *devp ? 0 : -ENOENT;
647 }
648 
649 int device_get_global_by_ofnode(ofnode ofnode, struct udevice **devp)
650 {
651 	struct udevice *dev;
652 
653 	dev = _device_find_global_by_ofnode(gd->dm_root, ofnode);
654 	return device_get_device_tail(dev, dev ? 0 : -ENOENT, devp);
655 }
656 
657 int device_find_first_child(struct udevice *parent, struct udevice **devp)
658 {
659 	if (list_empty(&parent->child_head)) {
660 		*devp = NULL;
661 	} else {
662 		*devp = list_first_entry(&parent->child_head, struct udevice,
663 					 sibling_node);
664 	}
665 
666 	return 0;
667 }
668 
669 int device_find_next_child(struct udevice **devp)
670 {
671 	struct udevice *dev = *devp;
672 	struct udevice *parent = dev->parent;
673 
674 	if (list_is_last(&dev->sibling_node, &parent->child_head)) {
675 		*devp = NULL;
676 	} else {
677 		*devp = list_entry(dev->sibling_node.next, struct udevice,
678 				   sibling_node);
679 	}
680 
681 	return 0;
682 }
683 
684 int device_find_first_inactive_child(struct udevice *parent,
685 				     enum uclass_id uclass_id,
686 				     struct udevice **devp)
687 {
688 	struct udevice *dev;
689 
690 	*devp = NULL;
691 	list_for_each_entry(dev, &parent->child_head, sibling_node) {
692 		if (!device_active(dev) &&
693 		    device_get_uclass_id(dev) == uclass_id) {
694 			*devp = dev;
695 			return 0;
696 		}
697 	}
698 
699 	return -ENODEV;
700 }
701 
702 int device_find_first_child_by_uclass(struct udevice *parent,
703 				      enum uclass_id uclass_id,
704 				      struct udevice **devp)
705 {
706 	struct udevice *dev;
707 
708 	*devp = NULL;
709 	list_for_each_entry(dev, &parent->child_head, sibling_node) {
710 		if (device_get_uclass_id(dev) == uclass_id) {
711 			*devp = dev;
712 			return 0;
713 		}
714 	}
715 
716 	return -ENODEV;
717 }
718 
719 int device_find_child_by_name(struct udevice *parent, const char *name,
720 			      struct udevice **devp)
721 {
722 	struct udevice *dev;
723 
724 	*devp = NULL;
725 
726 	list_for_each_entry(dev, &parent->child_head, sibling_node) {
727 		if (!strcmp(dev->name, name)) {
728 			*devp = dev;
729 			return 0;
730 		}
731 	}
732 
733 	return -ENODEV;
734 }
735 
736 struct udevice *dev_get_parent(const struct udevice *child)
737 {
738 	return child->parent;
739 }
740 
741 ulong dev_get_driver_data(const struct udevice *dev)
742 {
743 	return dev->driver_data;
744 }
745 
746 const void *dev_get_driver_ops(const struct udevice *dev)
747 {
748 	if (!dev || !dev->driver->ops)
749 		return NULL;
750 
751 	return dev->driver->ops;
752 }
753 
754 enum uclass_id device_get_uclass_id(const struct udevice *dev)
755 {
756 	return dev->uclass->uc_drv->id;
757 }
758 
759 const char *dev_get_uclass_name(const struct udevice *dev)
760 {
761 	if (!dev)
762 		return NULL;
763 
764 	return dev->uclass->uc_drv->name;
765 }
766 
767 bool device_has_children(const struct udevice *dev)
768 {
769 	return !list_empty(&dev->child_head);
770 }
771 
772 bool device_has_active_children(struct udevice *dev)
773 {
774 	struct udevice *child;
775 
776 	for (device_find_first_child(dev, &child);
777 	     child;
778 	     device_find_next_child(&child)) {
779 		if (device_active(child))
780 			return true;
781 	}
782 
783 	return false;
784 }
785 
786 bool device_is_last_sibling(struct udevice *dev)
787 {
788 	struct udevice *parent = dev->parent;
789 
790 	if (!parent)
791 		return false;
792 	return list_is_last(&dev->sibling_node, &parent->child_head);
793 }
794 
795 void device_set_name_alloced(struct udevice *dev)
796 {
797 	dev->flags |= DM_FLAG_NAME_ALLOCED;
798 }
799 
800 int device_set_name(struct udevice *dev, const char *name)
801 {
802 	name = strdup(name);
803 	if (!name)
804 		return -ENOMEM;
805 	dev->name = name;
806 	device_set_name_alloced(dev);
807 
808 	return 0;
809 }
810 
811 bool device_is_compatible(struct udevice *dev, const char *compat)
812 {
813 	return ofnode_device_is_compatible(dev_ofnode(dev), compat);
814 }
815 
816 bool of_machine_is_compatible(const char *compat)
817 {
818 	const void *fdt = gd->fdt_blob;
819 
820 	return !fdt_node_check_compatible(fdt, 0, compat);
821 }
822 
823 int dev_disable_by_path(const char *path)
824 {
825 	struct uclass *uc;
826 	ofnode node = ofnode_path(path);
827 	struct udevice *dev;
828 	int ret = 1;
829 
830 	if (!of_live_active())
831 		return -ENOSYS;
832 
833 	list_for_each_entry(uc, &gd->uclass_root, sibling_node) {
834 		ret = uclass_find_device_by_ofnode(uc->uc_drv->id, node, &dev);
835 		if (!ret)
836 			break;
837 	}
838 
839 	if (ret)
840 		return ret;
841 
842 	ret = device_remove(dev, DM_REMOVE_NORMAL);
843 	if (ret)
844 		return ret;
845 
846 	ret = device_unbind(dev);
847 	if (ret)
848 		return ret;
849 
850 	return ofnode_set_enabled(node, false);
851 }
852 
853 int dev_enable_by_path(const char *path)
854 {
855 	ofnode node = ofnode_path(path);
856 	ofnode pnode = ofnode_get_parent(node);
857 	struct udevice *parent;
858 	int ret = 1;
859 
860 	if (!of_live_active())
861 		return -ENOSYS;
862 
863 	ret = device_find_by_ofnode(pnode, &parent);
864 	if (ret)
865 		return ret;
866 
867 	ret = ofnode_set_enabled(node, true);
868 	if (ret)
869 		return ret;
870 
871 	return lists_bind_fdt(parent, node, NULL, false);
872 }
873