xref: /openbmc/u-boot/drivers/clk/rockchip/clk_rk3328.c (revision fd9884e292c8fb981bf25cf5aefaa1b685bda21e)
1 /*
2  * (C) Copyright 2017 Rockchip Electronics Co., Ltd
3  *
4  * SPDX-License-Identifier:	GPL-2.0
5  */
6 
7 #include <common.h>
8 #include <clk-uclass.h>
9 #include <dm.h>
10 #include <errno.h>
11 #include <syscon.h>
12 #include <asm/arch/clock.h>
13 #include <asm/arch/cru_rk3328.h>
14 #include <asm/arch/hardware.h>
15 #include <asm/io.h>
16 #include <dm/lists.h>
17 #include <dt-bindings/clock/rk3328-cru.h>
18 
19 DECLARE_GLOBAL_DATA_PTR;
20 
21 struct pll_div {
22 	u32 refdiv;
23 	u32 fbdiv;
24 	u32 postdiv1;
25 	u32 postdiv2;
26 	u32 frac;
27 };
28 
29 #define RATE_TO_DIV(input_rate, output_rate) \
30 	((input_rate) / (output_rate) - 1);
31 #define DIV_TO_RATE(input_rate, div)    ((input_rate) / ((div) + 1))
32 
33 #define PLL_DIVISORS(hz, _refdiv, _postdiv1, _postdiv2) {\
34 	.refdiv = _refdiv,\
35 	.fbdiv = (u32)((u64)hz * _refdiv * _postdiv1 * _postdiv2 / OSC_HZ),\
36 	.postdiv1 = _postdiv1, .postdiv2 = _postdiv2};
37 
38 static const struct pll_div gpll_init_cfg = PLL_DIVISORS(GPLL_HZ, 1, 4, 1);
39 static const struct pll_div cpll_init_cfg = PLL_DIVISORS(CPLL_HZ, 2, 2, 1);
40 
41 static const struct pll_div apll_816_cfg = PLL_DIVISORS(816 * MHz, 1, 2, 1);
42 static const struct pll_div apll_600_cfg = PLL_DIVISORS(600 * MHz, 1, 3, 1);
43 
44 static const struct pll_div *apll_cfgs[] = {
45 	[APLL_816_MHZ] = &apll_816_cfg,
46 	[APLL_600_MHZ] = &apll_600_cfg,
47 };
48 
49 enum {
50 	/* PLL_CON0 */
51 	PLL_POSTDIV1_SHIFT		= 12,
52 	PLL_POSTDIV1_MASK		= 0x7 << PLL_POSTDIV1_SHIFT,
53 	PLL_FBDIV_SHIFT			= 0,
54 	PLL_FBDIV_MASK			= 0xfff,
55 
56 	/* PLL_CON1 */
57 	PLL_DSMPD_SHIFT			= 12,
58 	PLL_DSMPD_MASK			= 1 << PLL_DSMPD_SHIFT,
59 	PLL_INTEGER_MODE		= 1,
60 	PLL_LOCK_STATUS_SHIFT		= 10,
61 	PLL_LOCK_STATUS_MASK		= 1 << PLL_LOCK_STATUS_SHIFT,
62 	PLL_POSTDIV2_SHIFT		= 6,
63 	PLL_POSTDIV2_MASK		= 0x7 << PLL_POSTDIV2_SHIFT,
64 	PLL_REFDIV_SHIFT		= 0,
65 	PLL_REFDIV_MASK			= 0x3f,
66 
67 	/* PLL_CON2 */
68 	PLL_FRACDIV_SHIFT		= 0,
69 	PLL_FRACDIV_MASK		= 0xffffff,
70 
71 	/* MODE_CON */
72 	APLL_MODE_SHIFT			= 0,
73 	NPLL_MODE_SHIFT			= 1,
74 	DPLL_MODE_SHIFT			= 4,
75 	CPLL_MODE_SHIFT			= 8,
76 	GPLL_MODE_SHIFT			= 12,
77 	PLL_MODE_SLOW			= 0,
78 	PLL_MODE_NORM,
79 
80 	/* CLKSEL_CON0 */
81 	CLK_CORE_PLL_SEL_APLL		= 0,
82 	CLK_CORE_PLL_SEL_GPLL,
83 	CLK_CORE_PLL_SEL_DPLL,
84 	CLK_CORE_PLL_SEL_NPLL,
85 	CLK_CORE_PLL_SEL_SHIFT		= 6,
86 	CLK_CORE_PLL_SEL_MASK		= 3 << CLK_CORE_PLL_SEL_SHIFT,
87 	CLK_CORE_DIV_SHIFT		= 0,
88 	CLK_CORE_DIV_MASK		= 0x1f,
89 
90 	/* CLKSEL_CON1 */
91 	ACLKM_CORE_DIV_SHIFT		= 4,
92 	ACLKM_CORE_DIV_MASK		= 0x7 << ACLKM_CORE_DIV_SHIFT,
93 	PCLK_DBG_DIV_SHIFT		= 0,
94 	PCLK_DBG_DIV_MASK		= 0xF << PCLK_DBG_DIV_SHIFT,
95 
96 	/* CLKSEL_CON28 */
97 	ACLK_PERIHP_PLL_SEL_CPLL	= 0,
98 	ACLK_PERIHP_PLL_SEL_GPLL,
99 	ACLK_PERIHP_PLL_SEL_HDMIPHY,
100 	ACLK_PERIHP_PLL_SEL_SHIFT	= 6,
101 	ACLK_PERIHP_PLL_SEL_MASK	= 3 << ACLK_PERIHP_PLL_SEL_SHIFT,
102 	ACLK_PERIHP_DIV_CON_SHIFT	= 0,
103 	ACLK_PERIHP_DIV_CON_MASK	= 0x1f,
104 
105 	/* CLKSEL_CON29 */
106 	PCLK_PERIHP_DIV_CON_SHIFT	= 4,
107 	PCLK_PERIHP_DIV_CON_MASK	= 0x7 << PCLK_PERIHP_DIV_CON_SHIFT,
108 	HCLK_PERIHP_DIV_CON_SHIFT	= 0,
109 	HCLK_PERIHP_DIV_CON_MASK	= 3 << HCLK_PERIHP_DIV_CON_SHIFT,
110 
111 	/* CLKSEL_CON22 */
112 	CLK_TSADC_DIV_CON_SHIFT		= 0,
113 	CLK_TSADC_DIV_CON_MASK		= 0x3ff,
114 
115 	/* CLKSEL_CON23 */
116 	CLK_SARADC_DIV_CON_SHIFT	= 0,
117 	CLK_SARADC_DIV_CON_MASK		= 0x3ff << CLK_SARADC_DIV_CON_SHIFT,
118 
119 	/* CLKSEL_CON24 */
120 	CLK_PWM_PLL_SEL_CPLL		= 0,
121 	CLK_PWM_PLL_SEL_GPLL,
122 	CLK_PWM_PLL_SEL_SHIFT		= 15,
123 	CLK_PWM_PLL_SEL_MASK		= 1 << CLK_PWM_PLL_SEL_SHIFT,
124 	CLK_PWM_DIV_CON_SHIFT		= 8,
125 	CLK_PWM_DIV_CON_MASK		= 0x7f << CLK_PWM_DIV_CON_SHIFT,
126 
127 	CLK_SPI_PLL_SEL_CPLL		= 0,
128 	CLK_SPI_PLL_SEL_GPLL,
129 	CLK_SPI_PLL_SEL_SHIFT		= 7,
130 	CLK_SPI_PLL_SEL_MASK		= 1 << CLK_SPI_PLL_SEL_SHIFT,
131 	CLK_SPI_DIV_CON_SHIFT		= 0,
132 	CLK_SPI_DIV_CON_MASK		= 0x7f << CLK_SPI_DIV_CON_SHIFT,
133 
134 	/* CLKSEL_CON30 */
135 	CLK_SDMMC_PLL_SEL_CPLL		= 0,
136 	CLK_SDMMC_PLL_SEL_GPLL,
137 	CLK_SDMMC_PLL_SEL_24M,
138 	CLK_SDMMC_PLL_SEL_USBPHY,
139 	CLK_SDMMC_PLL_SHIFT		= 8,
140 	CLK_SDMMC_PLL_MASK		= 0x3 << CLK_SDMMC_PLL_SHIFT,
141 	CLK_SDMMC_DIV_CON_SHIFT          = 0,
142 	CLK_SDMMC_DIV_CON_MASK           = 0xff << CLK_SDMMC_DIV_CON_SHIFT,
143 
144 	/* CLKSEL_CON32 */
145 	CLK_EMMC_PLL_SEL_CPLL		= 0,
146 	CLK_EMMC_PLL_SEL_GPLL,
147 	CLK_EMMC_PLL_SEL_24M,
148 	CLK_EMMC_PLL_SEL_USBPHY,
149 	CLK_EMMC_PLL_SHIFT		= 8,
150 	CLK_EMMC_PLL_MASK		= 0x3 << CLK_EMMC_PLL_SHIFT,
151 	CLK_EMMC_DIV_CON_SHIFT          = 0,
152 	CLK_EMMC_DIV_CON_MASK           = 0xff << CLK_EMMC_DIV_CON_SHIFT,
153 
154 	/* CLKSEL_CON34 */
155 	CLK_I2C_PLL_SEL_CPLL		= 0,
156 	CLK_I2C_PLL_SEL_GPLL,
157 	CLK_I2C_DIV_CON_MASK		= 0x7f,
158 	CLK_I2C_PLL_SEL_MASK		= 1,
159 	CLK_I2C1_PLL_SEL_SHIFT		= 15,
160 	CLK_I2C1_DIV_CON_SHIFT		= 8,
161 	CLK_I2C0_PLL_SEL_SHIFT		= 7,
162 	CLK_I2C0_DIV_CON_SHIFT		= 0,
163 
164 	/* CLKSEL_CON35 */
165 	CLK_I2C3_PLL_SEL_SHIFT		= 15,
166 	CLK_I2C3_DIV_CON_SHIFT		= 8,
167 	CLK_I2C2_PLL_SEL_SHIFT		= 7,
168 	CLK_I2C2_DIV_CON_SHIFT		= 0,
169 };
170 
171 #define VCO_MAX_KHZ	(3200 * (MHz / KHz))
172 #define VCO_MIN_KHZ	(800 * (MHz / KHz))
173 #define OUTPUT_MAX_KHZ	(3200 * (MHz / KHz))
174 #define OUTPUT_MIN_KHZ	(16 * (MHz / KHz))
175 
176 /*
177  *  the div restructions of pll in integer mode, these are defined in
178  *  * CRU_*PLL_CON0 or PMUCRU_*PLL_CON0
179  */
180 #define PLL_DIV_MIN	16
181 #define PLL_DIV_MAX	3200
182 
183 /*
184  * How to calculate the PLL(from TRM V0.3 Part 1 Page 63):
185  * Formulas also embedded within the Fractional PLL Verilog model:
186  * If DSMPD = 1 (DSM is disabled, "integer mode")
187  * FOUTVCO = FREF / REFDIV * FBDIV
188  * FOUTPOSTDIV = FOUTVCO / POSTDIV1 / POSTDIV2
189  * Where:
190  * FOUTVCO = Fractional PLL non-divided output frequency
191  * FOUTPOSTDIV = Fractional PLL divided output frequency
192  *               (output of second post divider)
193  * FREF = Fractional PLL input reference frequency, (the OSC_HZ 24MHz input)
194  * REFDIV = Fractional PLL input reference clock divider
195  * FBDIV = Integer value programmed into feedback divide
196  *
197  */
198 static void rkclk_set_pll(struct rk3328_cru *cru, enum rk_clk_id clk_id,
199 			const struct pll_div *div)
200 {
201 	u32 *pll_con;
202 	u32 mode_shift, mode_mask;
203 
204 	pll_con = NULL;
205 	mode_shift = 0;
206 	switch (clk_id) {
207 	case CLK_ARM:
208 		pll_con = cru->apll_con;
209 		mode_shift = APLL_MODE_SHIFT;
210 		break;
211 	case CLK_DDR:
212 		pll_con = cru->dpll_con;
213 		mode_shift = DPLL_MODE_SHIFT;
214 		break;
215 	case CLK_CODEC:
216 		pll_con = cru->cpll_con;
217 		mode_shift = CPLL_MODE_SHIFT;
218 		break;
219 	case CLK_GENERAL:
220 		pll_con = cru->gpll_con;
221 		mode_shift = GPLL_MODE_SHIFT;
222 		break;
223 	case CLK_NEW:
224 		pll_con = cru->npll_con;
225 		mode_shift = NPLL_MODE_SHIFT;
226 		break;
227 	default:
228 		break;
229 	}
230 	mode_mask = 1 << mode_shift;
231 
232 	/* All 8 PLLs have same VCO and output frequency range restrictions. */
233 	u32 vco_khz = OSC_HZ / 1000 * div->fbdiv / div->refdiv;
234 	u32 output_khz = vco_khz / div->postdiv1 / div->postdiv2;
235 
236 	debug("PLL at %p: fbdiv=%d, refdiv=%d, postdiv1=%d, \
237 	      postdiv2=%d, vco=%u khz, output=%u khz\n",
238 	      pll_con, div->fbdiv, div->refdiv, div->postdiv1,
239 	      div->postdiv2, vco_khz, output_khz);
240 	assert(vco_khz >= VCO_MIN_KHZ && vco_khz <= VCO_MAX_KHZ &&
241 	       output_khz >= OUTPUT_MIN_KHZ && output_khz <= OUTPUT_MAX_KHZ &&
242 	       div->fbdiv >= PLL_DIV_MIN && div->fbdiv <= PLL_DIV_MAX);
243 
244 	/*
245 	 * When power on or changing PLL setting,
246 	 * we must force PLL into slow mode to ensure output stable clock.
247 	 */
248 	rk_clrsetreg(&cru->mode_con, mode_mask, PLL_MODE_SLOW << mode_shift);
249 
250 	/* use integer mode */
251 	rk_clrsetreg(&pll_con[1], PLL_DSMPD_MASK,
252 		     PLL_INTEGER_MODE << PLL_DSMPD_SHIFT);
253 
254 	rk_clrsetreg(&pll_con[0],
255 		     PLL_FBDIV_MASK | PLL_POSTDIV1_MASK,
256 		     (div->fbdiv << PLL_FBDIV_SHIFT) |
257 		     (div->postdiv1 << PLL_POSTDIV1_SHIFT));
258 	rk_clrsetreg(&pll_con[1],
259 		     PLL_POSTDIV2_MASK | PLL_REFDIV_MASK,
260 		     (div->postdiv2 << PLL_POSTDIV2_SHIFT) |
261 		     (div->refdiv << PLL_REFDIV_SHIFT));
262 
263 	/* waiting for pll lock */
264 	while (!(readl(&pll_con[1]) & (1 << PLL_LOCK_STATUS_SHIFT)))
265 		udelay(1);
266 
267 	/* pll enter normal mode */
268 	rk_clrsetreg(&cru->mode_con, mode_mask, PLL_MODE_NORM << mode_shift);
269 }
270 
271 static void rkclk_init(struct rk3328_cru *cru)
272 {
273 	u32 aclk_div;
274 	u32 hclk_div;
275 	u32 pclk_div;
276 
277 	/* configure gpll cpll */
278 	rkclk_set_pll(cru, CLK_GENERAL, &gpll_init_cfg);
279 	rkclk_set_pll(cru, CLK_CODEC, &cpll_init_cfg);
280 
281 	/* configure perihp aclk, hclk, pclk */
282 	aclk_div = GPLL_HZ / PERIHP_ACLK_HZ - 1;
283 	hclk_div = PERIHP_ACLK_HZ / PERIHP_HCLK_HZ - 1;
284 	pclk_div = PERIHP_ACLK_HZ / PERIHP_PCLK_HZ - 1;
285 
286 	rk_clrsetreg(&cru->clksel_con[28],
287 		     ACLK_PERIHP_PLL_SEL_MASK | ACLK_PERIHP_DIV_CON_MASK,
288 		     ACLK_PERIHP_PLL_SEL_GPLL << ACLK_PERIHP_PLL_SEL_SHIFT |
289 		     aclk_div << ACLK_PERIHP_DIV_CON_SHIFT);
290 	rk_clrsetreg(&cru->clksel_con[29],
291 		     PCLK_PERIHP_DIV_CON_MASK | HCLK_PERIHP_DIV_CON_MASK,
292 		     pclk_div << PCLK_PERIHP_DIV_CON_SHIFT |
293 		     hclk_div << HCLK_PERIHP_DIV_CON_SHIFT);
294 }
295 
296 void rk3328_configure_cpu(struct rk3328_cru *cru,
297 			  enum apll_frequencies apll_freq)
298 {
299 	u32 clk_core_div;
300 	u32 aclkm_div;
301 	u32 pclk_dbg_div;
302 
303 	rkclk_set_pll(cru, CLK_ARM, apll_cfgs[apll_freq]);
304 
305 	clk_core_div = APLL_HZ / CLK_CORE_HZ - 1;
306 	aclkm_div = APLL_HZ / ACLKM_CORE_HZ / (clk_core_div + 1) - 1;
307 	pclk_dbg_div = APLL_HZ / PCLK_DBG_HZ / (clk_core_div + 1) - 1;
308 
309 	rk_clrsetreg(&cru->clksel_con[0],
310 		     CLK_CORE_PLL_SEL_MASK | CLK_CORE_DIV_MASK,
311 		     CLK_CORE_PLL_SEL_APLL << CLK_CORE_PLL_SEL_SHIFT |
312 		     clk_core_div << CLK_CORE_DIV_SHIFT);
313 
314 	rk_clrsetreg(&cru->clksel_con[1],
315 		     PCLK_DBG_DIV_MASK | ACLKM_CORE_DIV_MASK,
316 		     pclk_dbg_div << PCLK_DBG_DIV_SHIFT |
317 		     aclkm_div << ACLKM_CORE_DIV_SHIFT);
318 }
319 
320 
321 static ulong rk3328_i2c_get_clk(struct rk3328_cru *cru, ulong clk_id)
322 {
323 	u32 div, con;
324 
325 	switch (clk_id) {
326 	case SCLK_I2C0:
327 		con = readl(&cru->clksel_con[34]);
328 		div = con >> CLK_I2C0_DIV_CON_SHIFT & CLK_I2C_DIV_CON_MASK;
329 		break;
330 	case SCLK_I2C1:
331 		con = readl(&cru->clksel_con[34]);
332 		div = con >> CLK_I2C1_DIV_CON_SHIFT & CLK_I2C_DIV_CON_MASK;
333 		break;
334 	case SCLK_I2C2:
335 		con = readl(&cru->clksel_con[35]);
336 		div = con >> CLK_I2C2_DIV_CON_SHIFT & CLK_I2C_DIV_CON_MASK;
337 		break;
338 	case SCLK_I2C3:
339 		con = readl(&cru->clksel_con[35]);
340 		div = con >> CLK_I2C3_DIV_CON_SHIFT & CLK_I2C_DIV_CON_MASK;
341 		break;
342 	default:
343 		printf("do not support this i2c bus\n");
344 		return -EINVAL;
345 	}
346 
347 	return DIV_TO_RATE(GPLL_HZ, div);
348 }
349 
350 static ulong rk3328_i2c_set_clk(struct rk3328_cru *cru, ulong clk_id, uint hz)
351 {
352 	int src_clk_div;
353 
354 	src_clk_div = GPLL_HZ / hz;
355 	assert(src_clk_div - 1 < 127);
356 
357 	switch (clk_id) {
358 	case SCLK_I2C0:
359 		rk_clrsetreg(&cru->clksel_con[34],
360 			     CLK_I2C_DIV_CON_MASK << CLK_I2C0_DIV_CON_SHIFT |
361 			     CLK_I2C_PLL_SEL_MASK << CLK_I2C0_PLL_SEL_SHIFT,
362 			     (src_clk_div - 1) << CLK_I2C0_DIV_CON_SHIFT |
363 			     CLK_I2C_PLL_SEL_GPLL << CLK_I2C0_PLL_SEL_SHIFT);
364 		break;
365 	case SCLK_I2C1:
366 		rk_clrsetreg(&cru->clksel_con[34],
367 			     CLK_I2C_DIV_CON_MASK << CLK_I2C1_DIV_CON_SHIFT |
368 			     CLK_I2C_PLL_SEL_MASK << CLK_I2C1_PLL_SEL_SHIFT,
369 			     (src_clk_div - 1) << CLK_I2C1_DIV_CON_SHIFT |
370 			     CLK_I2C_PLL_SEL_GPLL << CLK_I2C1_PLL_SEL_SHIFT);
371 		break;
372 	case SCLK_I2C2:
373 		rk_clrsetreg(&cru->clksel_con[35],
374 			     CLK_I2C_DIV_CON_MASK << CLK_I2C2_DIV_CON_SHIFT |
375 			     CLK_I2C_PLL_SEL_MASK << CLK_I2C2_PLL_SEL_SHIFT,
376 			     (src_clk_div - 1) << CLK_I2C2_DIV_CON_SHIFT |
377 			     CLK_I2C_PLL_SEL_GPLL << CLK_I2C2_PLL_SEL_SHIFT);
378 		break;
379 	case SCLK_I2C3:
380 		rk_clrsetreg(&cru->clksel_con[35],
381 			     CLK_I2C_DIV_CON_MASK << CLK_I2C3_DIV_CON_SHIFT |
382 			     CLK_I2C_PLL_SEL_MASK << CLK_I2C3_PLL_SEL_SHIFT,
383 			     (src_clk_div - 1) << CLK_I2C3_DIV_CON_SHIFT |
384 			     CLK_I2C_PLL_SEL_GPLL << CLK_I2C3_PLL_SEL_SHIFT);
385 		break;
386 	default:
387 		printf("do not support this i2c bus\n");
388 		return -EINVAL;
389 	}
390 
391 	return DIV_TO_RATE(GPLL_HZ, src_clk_div);
392 }
393 
394 static ulong rk3328_mmc_get_clk(struct rk3328_cru *cru, uint clk_id)
395 {
396 	u32 div, con, con_id;
397 
398 	switch (clk_id) {
399 	case HCLK_SDMMC:
400 	case SCLK_SDMMC:
401 		con_id = 30;
402 		break;
403 	case HCLK_EMMC:
404 	case SCLK_EMMC:
405 		con_id = 32;
406 		break;
407 	default:
408 		return -EINVAL;
409 	}
410 	con = readl(&cru->clksel_con[con_id]);
411 	div = (con & CLK_EMMC_DIV_CON_MASK) >> CLK_EMMC_DIV_CON_SHIFT;
412 
413 	if ((con & CLK_EMMC_PLL_MASK) >> CLK_EMMC_PLL_SHIFT
414 	    == CLK_EMMC_PLL_SEL_24M)
415 		return DIV_TO_RATE(OSC_HZ, div);
416 	else
417 		return DIV_TO_RATE(GPLL_HZ, div);
418 }
419 
420 static ulong rk3328_mmc_set_clk(struct rk3328_cru *cru,
421 				ulong clk_id, ulong set_rate)
422 {
423 	int src_clk_div;
424 	u32 con_id;
425 
426 	switch (clk_id) {
427 	case HCLK_SDMMC:
428 	case SCLK_SDMMC:
429 		con_id = 30;
430 		break;
431 	case HCLK_EMMC:
432 	case SCLK_EMMC:
433 		con_id = 32;
434 		break;
435 	default:
436 		return -EINVAL;
437 	}
438 	/* Select clk_sdmmc/emmc source from GPLL by default */
439 	src_clk_div = GPLL_HZ / set_rate;
440 
441 	if (src_clk_div > 127) {
442 		/* use 24MHz source for 400KHz clock */
443 		src_clk_div = OSC_HZ / set_rate;
444 		rk_clrsetreg(&cru->clksel_con[con_id],
445 			     CLK_EMMC_PLL_MASK | CLK_EMMC_DIV_CON_MASK,
446 			     CLK_EMMC_PLL_SEL_24M << CLK_EMMC_PLL_SHIFT |
447 			     (src_clk_div - 1) << CLK_EMMC_DIV_CON_SHIFT);
448 	} else {
449 		rk_clrsetreg(&cru->clksel_con[con_id],
450 			     CLK_EMMC_PLL_MASK | CLK_EMMC_DIV_CON_MASK,
451 			     CLK_EMMC_PLL_SEL_GPLL << CLK_EMMC_PLL_SHIFT |
452 			     (src_clk_div - 1) << CLK_EMMC_DIV_CON_SHIFT);
453 	}
454 
455 	return rk3328_mmc_get_clk(cru, clk_id);
456 }
457 
458 static ulong rk3328_pwm_get_clk(struct rk3328_cru *cru)
459 {
460 	u32 div, con;
461 
462 	con = readl(&cru->clksel_con[24]);
463 	div = (con & CLK_PWM_DIV_CON_MASK) >> CLK_PWM_DIV_CON_SHIFT;
464 
465 	return DIV_TO_RATE(GPLL_HZ, div);
466 }
467 
468 static ulong rk3328_pwm_set_clk(struct rk3328_cru *cru, uint hz)
469 {
470 	u32 div = GPLL_HZ / hz;
471 
472 	rk_clrsetreg(&cru->clksel_con[24],
473 		     CLK_PWM_PLL_SEL_MASK | CLK_PWM_DIV_CON_MASK,
474 		     CLK_PWM_PLL_SEL_GPLL << CLK_PWM_PLL_SEL_SHIFT |
475 		     (div - 1) << CLK_PWM_DIV_CON_SHIFT);
476 
477 	return DIV_TO_RATE(GPLL_HZ, div);
478 }
479 
480 static ulong rk3328_clk_get_rate(struct clk *clk)
481 {
482 	struct rk3328_clk_priv *priv = dev_get_priv(clk->dev);
483 	ulong rate = 0;
484 
485 	switch (clk->id) {
486 	case 0 ... 29:
487 		return 0;
488 	case HCLK_SDMMC:
489 	case HCLK_EMMC:
490 	case SCLK_SDMMC:
491 	case SCLK_EMMC:
492 		rate = rk3328_mmc_get_clk(priv->cru, clk->id);
493 		break;
494 	case SCLK_I2C0:
495 	case SCLK_I2C1:
496 	case SCLK_I2C2:
497 	case SCLK_I2C3:
498 		rate = rk3328_i2c_get_clk(priv->cru, clk->id);
499 		break;
500 	case SCLK_PWM:
501 		rate = rk3328_pwm_get_clk(priv->cru);
502 		break;
503 	default:
504 		return -ENOENT;
505 	}
506 
507 	return rate;
508 }
509 
510 static ulong rk3328_clk_set_rate(struct clk *clk, ulong rate)
511 {
512 	struct rk3328_clk_priv *priv = dev_get_priv(clk->dev);
513 	ulong ret = 0;
514 
515 	switch (clk->id) {
516 	case 0 ... 29:
517 		return 0;
518 	case HCLK_SDMMC:
519 	case HCLK_EMMC:
520 	case SCLK_SDMMC:
521 	case SCLK_EMMC:
522 		ret = rk3328_mmc_set_clk(priv->cru, clk->id, rate);
523 		break;
524 	case SCLK_I2C0:
525 	case SCLK_I2C1:
526 	case SCLK_I2C2:
527 	case SCLK_I2C3:
528 		ret = rk3328_i2c_set_clk(priv->cru, clk->id, rate);
529 		break;
530 	case SCLK_PWM:
531 		ret = rk3328_pwm_set_clk(priv->cru, rate);
532 		break;
533 	default:
534 		return -ENOENT;
535 	}
536 
537 	return ret;
538 }
539 
540 static struct clk_ops rk3328_clk_ops = {
541 	.get_rate = rk3328_clk_get_rate,
542 	.set_rate = rk3328_clk_set_rate,
543 };
544 
545 static int rk3328_clk_probe(struct udevice *dev)
546 {
547 	struct rk3328_clk_priv *priv = dev_get_priv(dev);
548 
549 	rkclk_init(priv->cru);
550 
551 	return 0;
552 }
553 
554 static int rk3328_clk_ofdata_to_platdata(struct udevice *dev)
555 {
556 	struct rk3328_clk_priv *priv = dev_get_priv(dev);
557 
558 	priv->cru = (struct rk3328_cru *)dev_get_addr(dev);
559 
560 	return 0;
561 }
562 
563 static int rk3328_clk_bind(struct udevice *dev)
564 {
565 	int ret;
566 
567 	/* The reset driver does not have a device node, so bind it here */
568 	ret = device_bind_driver(gd->dm_root, "rk3328_sysreset", "reset", &dev);
569 	if (ret)
570 		printf("Warning: No RK3328 reset driver: ret=%d\n", ret);
571 
572 	return ret;
573 }
574 
575 static const struct udevice_id rk3328_clk_ids[] = {
576 	{ .compatible = "rockchip,rk3328-cru" },
577 	{ }
578 };
579 
580 U_BOOT_DRIVER(rockchip_rk3328_cru) = {
581 	.name		= "rockchip_rk3328_cru",
582 	.id		= UCLASS_CLK,
583 	.of_match	= rk3328_clk_ids,
584 	.priv_auto_alloc_size = sizeof(struct rk3328_clk_priv),
585 	.ofdata_to_platdata = rk3328_clk_ofdata_to_platdata,
586 	.ops		= &rk3328_clk_ops,
587 	.bind		= rk3328_clk_bind,
588 	.probe		= rk3328_clk_probe,
589 };
590