xref: /openbmc/u-boot/drivers/clk/clk_stm32mp1.c (revision e11ef3d26eff8d14a11f89b9bdc20471b425d2d7)
1 // SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
2 /*
3  * Copyright (C) 2018, STMicroelectronics - All Rights Reserved
4  */
5 
6 #include <common.h>
7 #include <clk-uclass.h>
8 #include <div64.h>
9 #include <dm.h>
10 #include <regmap.h>
11 #include <spl.h>
12 #include <syscon.h>
13 #include <linux/io.h>
14 #include <linux/iopoll.h>
15 #include <dt-bindings/clock/stm32mp1-clks.h>
16 #include <dt-bindings/clock/stm32mp1-clksrc.h>
17 
18 #if !defined(CONFIG_SPL) || defined(CONFIG_SPL_BUILD)
19 /* activate clock tree initialization in the driver */
20 #define STM32MP1_CLOCK_TREE_INIT
21 #endif
22 
23 #define MAX_HSI_HZ		64000000
24 
25 /* TIMEOUT */
26 #define TIMEOUT_200MS		200000
27 #define TIMEOUT_1S		1000000
28 
29 /* STGEN registers */
30 #define STGENC_CNTCR		0x00
31 #define STGENC_CNTSR		0x04
32 #define STGENC_CNTCVL		0x08
33 #define STGENC_CNTCVU		0x0C
34 #define STGENC_CNTFID0		0x20
35 
36 #define STGENC_CNTCR_EN		BIT(0)
37 
38 /* RCC registers */
39 #define RCC_OCENSETR		0x0C
40 #define RCC_OCENCLRR		0x10
41 #define RCC_HSICFGR		0x18
42 #define RCC_MPCKSELR		0x20
43 #define RCC_ASSCKSELR		0x24
44 #define RCC_RCK12SELR		0x28
45 #define RCC_MPCKDIVR		0x2C
46 #define RCC_AXIDIVR		0x30
47 #define RCC_APB4DIVR		0x3C
48 #define RCC_APB5DIVR		0x40
49 #define RCC_RTCDIVR		0x44
50 #define RCC_MSSCKSELR		0x48
51 #define RCC_PLL1CR		0x80
52 #define RCC_PLL1CFGR1		0x84
53 #define RCC_PLL1CFGR2		0x88
54 #define RCC_PLL1FRACR		0x8C
55 #define RCC_PLL1CSGR		0x90
56 #define RCC_PLL2CR		0x94
57 #define RCC_PLL2CFGR1		0x98
58 #define RCC_PLL2CFGR2		0x9C
59 #define RCC_PLL2FRACR		0xA0
60 #define RCC_PLL2CSGR		0xA4
61 #define RCC_I2C46CKSELR		0xC0
62 #define RCC_CPERCKSELR		0xD0
63 #define RCC_STGENCKSELR		0xD4
64 #define RCC_DDRITFCR		0xD8
65 #define RCC_BDCR		0x140
66 #define RCC_RDLSICR		0x144
67 #define RCC_MP_APB4ENSETR	0x200
68 #define RCC_MP_APB5ENSETR	0x208
69 #define RCC_MP_AHB5ENSETR	0x210
70 #define RCC_MP_AHB6ENSETR	0x218
71 #define RCC_OCRDYR		0x808
72 #define RCC_DBGCFGR		0x80C
73 #define RCC_RCK3SELR		0x820
74 #define RCC_RCK4SELR		0x824
75 #define RCC_MCUDIVR		0x830
76 #define RCC_APB1DIVR		0x834
77 #define RCC_APB2DIVR		0x838
78 #define RCC_APB3DIVR		0x83C
79 #define RCC_PLL3CR		0x880
80 #define RCC_PLL3CFGR1		0x884
81 #define RCC_PLL3CFGR2		0x888
82 #define RCC_PLL3FRACR		0x88C
83 #define RCC_PLL3CSGR		0x890
84 #define RCC_PLL4CR		0x894
85 #define RCC_PLL4CFGR1		0x898
86 #define RCC_PLL4CFGR2		0x89C
87 #define RCC_PLL4FRACR		0x8A0
88 #define RCC_PLL4CSGR		0x8A4
89 #define RCC_I2C12CKSELR		0x8C0
90 #define RCC_I2C35CKSELR		0x8C4
91 #define RCC_UART6CKSELR		0x8E4
92 #define RCC_UART24CKSELR	0x8E8
93 #define RCC_UART35CKSELR	0x8EC
94 #define RCC_UART78CKSELR	0x8F0
95 #define RCC_SDMMC12CKSELR	0x8F4
96 #define RCC_SDMMC3CKSELR	0x8F8
97 #define RCC_ETHCKSELR		0x8FC
98 #define RCC_QSPICKSELR		0x900
99 #define RCC_FMCCKSELR		0x904
100 #define RCC_USBCKSELR		0x91C
101 #define RCC_DSICKSELR		0x924
102 #define RCC_ADCCKSELR		0x928
103 #define RCC_MP_APB1ENSETR	0xA00
104 #define RCC_MP_APB2ENSETR	0XA08
105 #define RCC_MP_APB3ENSETR	0xA10
106 #define RCC_MP_AHB2ENSETR	0xA18
107 #define RCC_MP_AHB3ENSETR	0xA20
108 #define RCC_MP_AHB4ENSETR	0xA28
109 
110 /* used for most of SELR register */
111 #define RCC_SELR_SRC_MASK	GENMASK(2, 0)
112 #define RCC_SELR_SRCRDY		BIT(31)
113 
114 /* Values of RCC_MPCKSELR register */
115 #define RCC_MPCKSELR_HSI	0
116 #define RCC_MPCKSELR_HSE	1
117 #define RCC_MPCKSELR_PLL	2
118 #define RCC_MPCKSELR_PLL_MPUDIV	3
119 
120 /* Values of RCC_ASSCKSELR register */
121 #define RCC_ASSCKSELR_HSI	0
122 #define RCC_ASSCKSELR_HSE	1
123 #define RCC_ASSCKSELR_PLL	2
124 
125 /* Values of RCC_MSSCKSELR register */
126 #define RCC_MSSCKSELR_HSI	0
127 #define RCC_MSSCKSELR_HSE	1
128 #define RCC_MSSCKSELR_CSI	2
129 #define RCC_MSSCKSELR_PLL	3
130 
131 /* Values of RCC_CPERCKSELR register */
132 #define RCC_CPERCKSELR_HSI	0
133 #define RCC_CPERCKSELR_CSI	1
134 #define RCC_CPERCKSELR_HSE	2
135 
136 /* used for most of DIVR register : max div for RTC */
137 #define RCC_DIVR_DIV_MASK	GENMASK(5, 0)
138 #define RCC_DIVR_DIVRDY		BIT(31)
139 
140 /* Masks for specific DIVR registers */
141 #define RCC_APBXDIV_MASK	GENMASK(2, 0)
142 #define RCC_MPUDIV_MASK		GENMASK(2, 0)
143 #define RCC_AXIDIV_MASK		GENMASK(2, 0)
144 #define RCC_MCUDIV_MASK		GENMASK(3, 0)
145 
146 /*  offset between RCC_MP_xxxENSETR and RCC_MP_xxxENCLRR registers */
147 #define RCC_MP_ENCLRR_OFFSET	4
148 
149 /* Fields of RCC_BDCR register */
150 #define RCC_BDCR_LSEON		BIT(0)
151 #define RCC_BDCR_LSEBYP		BIT(1)
152 #define RCC_BDCR_LSERDY		BIT(2)
153 #define RCC_BDCR_DIGBYP		BIT(3)
154 #define RCC_BDCR_LSEDRV_MASK	GENMASK(5, 4)
155 #define RCC_BDCR_LSEDRV_SHIFT	4
156 #define RCC_BDCR_LSECSSON	BIT(8)
157 #define RCC_BDCR_RTCCKEN	BIT(20)
158 #define RCC_BDCR_RTCSRC_MASK	GENMASK(17, 16)
159 #define RCC_BDCR_RTCSRC_SHIFT	16
160 
161 /* Fields of RCC_RDLSICR register */
162 #define RCC_RDLSICR_LSION	BIT(0)
163 #define RCC_RDLSICR_LSIRDY	BIT(1)
164 
165 /* used for ALL PLLNCR registers */
166 #define RCC_PLLNCR_PLLON	BIT(0)
167 #define RCC_PLLNCR_PLLRDY	BIT(1)
168 #define RCC_PLLNCR_DIVPEN	BIT(4)
169 #define RCC_PLLNCR_DIVQEN	BIT(5)
170 #define RCC_PLLNCR_DIVREN	BIT(6)
171 #define RCC_PLLNCR_DIVEN_SHIFT	4
172 
173 /* used for ALL PLLNCFGR1 registers */
174 #define RCC_PLLNCFGR1_DIVM_SHIFT	16
175 #define RCC_PLLNCFGR1_DIVM_MASK		GENMASK(21, 16)
176 #define RCC_PLLNCFGR1_DIVN_SHIFT	0
177 #define RCC_PLLNCFGR1_DIVN_MASK		GENMASK(8, 0)
178 /* only for PLL3 and PLL4 */
179 #define RCC_PLLNCFGR1_IFRGE_SHIFT	24
180 #define RCC_PLLNCFGR1_IFRGE_MASK	GENMASK(25, 24)
181 
182 /* used for ALL PLLNCFGR2 registers , using stm32mp1_div_id */
183 #define RCC_PLLNCFGR2_SHIFT(div_id)	((div_id) * 8)
184 #define RCC_PLLNCFGR2_DIVX_MASK		GENMASK(6, 0)
185 #define RCC_PLLNCFGR2_DIVP_SHIFT	RCC_PLLNCFGR2_SHIFT(_DIV_P)
186 #define RCC_PLLNCFGR2_DIVP_MASK		GENMASK(6, 0)
187 #define RCC_PLLNCFGR2_DIVQ_SHIFT	RCC_PLLNCFGR2_SHIFT(_DIV_Q)
188 #define RCC_PLLNCFGR2_DIVQ_MASK		GENMASK(14, 8)
189 #define RCC_PLLNCFGR2_DIVR_SHIFT	RCC_PLLNCFGR2_SHIFT(_DIV_R)
190 #define RCC_PLLNCFGR2_DIVR_MASK		GENMASK(22, 16)
191 
192 /* used for ALL PLLNFRACR registers */
193 #define RCC_PLLNFRACR_FRACV_SHIFT	3
194 #define RCC_PLLNFRACR_FRACV_MASK	GENMASK(15, 3)
195 #define RCC_PLLNFRACR_FRACLE		BIT(16)
196 
197 /* used for ALL PLLNCSGR registers */
198 #define RCC_PLLNCSGR_INC_STEP_SHIFT	16
199 #define RCC_PLLNCSGR_INC_STEP_MASK	GENMASK(30, 16)
200 #define RCC_PLLNCSGR_MOD_PER_SHIFT	0
201 #define RCC_PLLNCSGR_MOD_PER_MASK	GENMASK(12, 0)
202 #define RCC_PLLNCSGR_SSCG_MODE_SHIFT	15
203 #define RCC_PLLNCSGR_SSCG_MODE_MASK	BIT(15)
204 
205 /* used for RCC_OCENSETR and RCC_OCENCLRR registers */
206 #define RCC_OCENR_HSION			BIT(0)
207 #define RCC_OCENR_CSION			BIT(4)
208 #define RCC_OCENR_DIGBYP		BIT(7)
209 #define RCC_OCENR_HSEON			BIT(8)
210 #define RCC_OCENR_HSEBYP		BIT(10)
211 #define RCC_OCENR_HSECSSON		BIT(11)
212 
213 /* Fields of RCC_OCRDYR register */
214 #define RCC_OCRDYR_HSIRDY		BIT(0)
215 #define RCC_OCRDYR_HSIDIVRDY		BIT(2)
216 #define RCC_OCRDYR_CSIRDY		BIT(4)
217 #define RCC_OCRDYR_HSERDY		BIT(8)
218 
219 /* Fields of DDRITFCR register */
220 #define RCC_DDRITFCR_DDRCKMOD_MASK	GENMASK(22, 20)
221 #define RCC_DDRITFCR_DDRCKMOD_SHIFT	20
222 #define RCC_DDRITFCR_DDRCKMOD_SSR	0
223 
224 /* Fields of RCC_HSICFGR register */
225 #define RCC_HSICFGR_HSIDIV_MASK		GENMASK(1, 0)
226 
227 /* used for MCO related operations */
228 #define RCC_MCOCFG_MCOON		BIT(12)
229 #define RCC_MCOCFG_MCODIV_MASK		GENMASK(7, 4)
230 #define RCC_MCOCFG_MCODIV_SHIFT		4
231 #define RCC_MCOCFG_MCOSRC_MASK		GENMASK(2, 0)
232 
233 enum stm32mp1_parent_id {
234 /*
235  * _HSI, _HSE, _CSI, _LSI, _LSE should not be moved
236  * they are used as index in osc[] as entry point
237  */
238 	_HSI,
239 	_HSE,
240 	_CSI,
241 	_LSI,
242 	_LSE,
243 	_I2S_CKIN,
244 	_USB_PHY_48,
245 	NB_OSC,
246 
247 /* other parent source */
248 	_HSI_KER = NB_OSC,
249 	_HSE_KER,
250 	_HSE_KER_DIV2,
251 	_CSI_KER,
252 	_PLL1_P,
253 	_PLL1_Q,
254 	_PLL1_R,
255 	_PLL2_P,
256 	_PLL2_Q,
257 	_PLL2_R,
258 	_PLL3_P,
259 	_PLL3_Q,
260 	_PLL3_R,
261 	_PLL4_P,
262 	_PLL4_Q,
263 	_PLL4_R,
264 	_ACLK,
265 	_PCLK1,
266 	_PCLK2,
267 	_PCLK3,
268 	_PCLK4,
269 	_PCLK5,
270 	_HCLK6,
271 	_HCLK2,
272 	_CK_PER,
273 	_CK_MPU,
274 	_CK_MCU,
275 	_DSI_PHY,
276 	_PARENT_NB,
277 	_UNKNOWN_ID = 0xff,
278 };
279 
280 enum stm32mp1_parent_sel {
281 	_I2C12_SEL,
282 	_I2C35_SEL,
283 	_I2C46_SEL,
284 	_UART6_SEL,
285 	_UART24_SEL,
286 	_UART35_SEL,
287 	_UART78_SEL,
288 	_SDMMC12_SEL,
289 	_SDMMC3_SEL,
290 	_ETH_SEL,
291 	_QSPI_SEL,
292 	_FMC_SEL,
293 	_USBPHY_SEL,
294 	_USBO_SEL,
295 	_STGEN_SEL,
296 	_DSI_SEL,
297 	_ADC12_SEL,
298 	_PARENT_SEL_NB,
299 	_UNKNOWN_SEL = 0xff,
300 };
301 
302 enum stm32mp1_pll_id {
303 	_PLL1,
304 	_PLL2,
305 	_PLL3,
306 	_PLL4,
307 	_PLL_NB
308 };
309 
310 enum stm32mp1_div_id {
311 	_DIV_P,
312 	_DIV_Q,
313 	_DIV_R,
314 	_DIV_NB,
315 };
316 
317 enum stm32mp1_clksrc_id {
318 	CLKSRC_MPU,
319 	CLKSRC_AXI,
320 	CLKSRC_MCU,
321 	CLKSRC_PLL12,
322 	CLKSRC_PLL3,
323 	CLKSRC_PLL4,
324 	CLKSRC_RTC,
325 	CLKSRC_MCO1,
326 	CLKSRC_MCO2,
327 	CLKSRC_NB
328 };
329 
330 enum stm32mp1_clkdiv_id {
331 	CLKDIV_MPU,
332 	CLKDIV_AXI,
333 	CLKDIV_MCU,
334 	CLKDIV_APB1,
335 	CLKDIV_APB2,
336 	CLKDIV_APB3,
337 	CLKDIV_APB4,
338 	CLKDIV_APB5,
339 	CLKDIV_RTC,
340 	CLKDIV_MCO1,
341 	CLKDIV_MCO2,
342 	CLKDIV_NB
343 };
344 
345 enum stm32mp1_pllcfg {
346 	PLLCFG_M,
347 	PLLCFG_N,
348 	PLLCFG_P,
349 	PLLCFG_Q,
350 	PLLCFG_R,
351 	PLLCFG_O,
352 	PLLCFG_NB
353 };
354 
355 enum stm32mp1_pllcsg {
356 	PLLCSG_MOD_PER,
357 	PLLCSG_INC_STEP,
358 	PLLCSG_SSCG_MODE,
359 	PLLCSG_NB
360 };
361 
362 enum stm32mp1_plltype {
363 	PLL_800,
364 	PLL_1600,
365 	PLL_TYPE_NB
366 };
367 
368 struct stm32mp1_pll {
369 	u8 refclk_min;
370 	u8 refclk_max;
371 	u8 divn_max;
372 };
373 
374 struct stm32mp1_clk_gate {
375 	u16 offset;
376 	u8 bit;
377 	u8 index;
378 	u8 set_clr;
379 	u8 sel;
380 	u8 fixed;
381 };
382 
383 struct stm32mp1_clk_sel {
384 	u16 offset;
385 	u8 src;
386 	u8 msk;
387 	u8 nb_parent;
388 	const u8 *parent;
389 };
390 
391 #define REFCLK_SIZE 4
392 struct stm32mp1_clk_pll {
393 	enum stm32mp1_plltype plltype;
394 	u16 rckxselr;
395 	u16 pllxcfgr1;
396 	u16 pllxcfgr2;
397 	u16 pllxfracr;
398 	u16 pllxcr;
399 	u16 pllxcsgr;
400 	u8 refclk[REFCLK_SIZE];
401 };
402 
403 struct stm32mp1_clk_data {
404 	const struct stm32mp1_clk_gate *gate;
405 	const struct stm32mp1_clk_sel *sel;
406 	const struct stm32mp1_clk_pll *pll;
407 	const int nb_gate;
408 };
409 
410 struct stm32mp1_clk_priv {
411 	fdt_addr_t base;
412 	const struct stm32mp1_clk_data *data;
413 	ulong osc[NB_OSC];
414 	struct udevice *osc_dev[NB_OSC];
415 };
416 
417 #define STM32MP1_CLK(off, b, idx, s)		\
418 	{					\
419 		.offset = (off),		\
420 		.bit = (b),			\
421 		.index = (idx),			\
422 		.set_clr = 0,			\
423 		.sel = (s),			\
424 		.fixed = _UNKNOWN_ID,		\
425 	}
426 
427 #define STM32MP1_CLK_F(off, b, idx, f)		\
428 	{					\
429 		.offset = (off),		\
430 		.bit = (b),			\
431 		.index = (idx),			\
432 		.set_clr = 0,			\
433 		.sel = _UNKNOWN_SEL,		\
434 		.fixed = (f),			\
435 	}
436 
437 #define STM32MP1_CLK_SET_CLR(off, b, idx, s)	\
438 	{					\
439 		.offset = (off),		\
440 		.bit = (b),			\
441 		.index = (idx),			\
442 		.set_clr = 1,			\
443 		.sel = (s),			\
444 		.fixed = _UNKNOWN_ID,		\
445 	}
446 
447 #define STM32MP1_CLK_SET_CLR_F(off, b, idx, f)	\
448 	{					\
449 		.offset = (off),		\
450 		.bit = (b),			\
451 		.index = (idx),			\
452 		.set_clr = 1,			\
453 		.sel = _UNKNOWN_SEL,		\
454 		.fixed = (f),			\
455 	}
456 
457 #define STM32MP1_CLK_PARENT(idx, off, s, m, p)   \
458 	[(idx)] = {				\
459 		.offset = (off),		\
460 		.src = (s),			\
461 		.msk = (m),			\
462 		.parent = (p),			\
463 		.nb_parent = ARRAY_SIZE((p))	\
464 	}
465 
466 #define STM32MP1_CLK_PLL(idx, type, off1, off2, off3, off4, off5, off6,\
467 			p1, p2, p3, p4) \
468 	[(idx)] = {				\
469 		.plltype = (type),			\
470 		.rckxselr = (off1),		\
471 		.pllxcfgr1 = (off2),		\
472 		.pllxcfgr2 = (off3),		\
473 		.pllxfracr = (off4),		\
474 		.pllxcr = (off5),		\
475 		.pllxcsgr = (off6),		\
476 		.refclk[0] = (p1),		\
477 		.refclk[1] = (p2),		\
478 		.refclk[2] = (p3),		\
479 		.refclk[3] = (p4),		\
480 	}
481 
482 static const u8 stm32mp1_clks[][2] = {
483 	{CK_PER, _CK_PER},
484 	{CK_MPU, _CK_MPU},
485 	{CK_AXI, _ACLK},
486 	{CK_MCU, _CK_MCU},
487 	{CK_HSE, _HSE},
488 	{CK_CSI, _CSI},
489 	{CK_LSI, _LSI},
490 	{CK_LSE, _LSE},
491 	{CK_HSI, _HSI},
492 	{CK_HSE_DIV2, _HSE_KER_DIV2},
493 };
494 
495 static const struct stm32mp1_clk_gate stm32mp1_clk_gate[] = {
496 	STM32MP1_CLK(RCC_DDRITFCR, 0, DDRC1, _UNKNOWN_SEL),
497 	STM32MP1_CLK(RCC_DDRITFCR, 1, DDRC1LP, _UNKNOWN_SEL),
498 	STM32MP1_CLK(RCC_DDRITFCR, 2, DDRC2, _UNKNOWN_SEL),
499 	STM32MP1_CLK(RCC_DDRITFCR, 3, DDRC2LP, _UNKNOWN_SEL),
500 	STM32MP1_CLK_F(RCC_DDRITFCR, 4, DDRPHYC, _PLL2_R),
501 	STM32MP1_CLK(RCC_DDRITFCR, 5, DDRPHYCLP, _UNKNOWN_SEL),
502 	STM32MP1_CLK(RCC_DDRITFCR, 6, DDRCAPB, _UNKNOWN_SEL),
503 	STM32MP1_CLK(RCC_DDRITFCR, 7, DDRCAPBLP, _UNKNOWN_SEL),
504 	STM32MP1_CLK(RCC_DDRITFCR, 8, AXIDCG, _UNKNOWN_SEL),
505 	STM32MP1_CLK(RCC_DDRITFCR, 9, DDRPHYCAPB, _UNKNOWN_SEL),
506 	STM32MP1_CLK(RCC_DDRITFCR, 10, DDRPHYCAPBLP, _UNKNOWN_SEL),
507 
508 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 14, USART2_K, _UART24_SEL),
509 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 15, USART3_K, _UART35_SEL),
510 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 16, UART4_K, _UART24_SEL),
511 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 17, UART5_K, _UART35_SEL),
512 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 18, UART7_K, _UART78_SEL),
513 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 19, UART8_K, _UART78_SEL),
514 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 21, I2C1_K, _I2C12_SEL),
515 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 22, I2C2_K, _I2C12_SEL),
516 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 23, I2C3_K, _I2C35_SEL),
517 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 24, I2C5_K, _I2C35_SEL),
518 
519 	STM32MP1_CLK_SET_CLR(RCC_MP_APB2ENSETR, 13, USART6_K, _UART6_SEL),
520 
521 	STM32MP1_CLK_SET_CLR_F(RCC_MP_APB3ENSETR, 13, VREF, _PCLK3),
522 
523 	STM32MP1_CLK_SET_CLR_F(RCC_MP_APB4ENSETR, 0, LTDC_PX, _PLL4_Q),
524 	STM32MP1_CLK_SET_CLR_F(RCC_MP_APB4ENSETR, 4, DSI_PX, _PLL4_Q),
525 	STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 4, DSI_K, _DSI_SEL),
526 	STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 8, DDRPERFM, _UNKNOWN_SEL),
527 	STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 15, IWDG2, _UNKNOWN_SEL),
528 	STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 16, USBPHY_K, _USBPHY_SEL),
529 
530 	STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 2, I2C4_K, _I2C46_SEL),
531 	STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 20, STGEN_K, _STGEN_SEL),
532 
533 	STM32MP1_CLK_SET_CLR_F(RCC_MP_AHB2ENSETR, 5, ADC12, _HCLK2),
534 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB2ENSETR, 5, ADC12_K, _ADC12_SEL),
535 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB2ENSETR, 8, USBO_K, _USBO_SEL),
536 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB2ENSETR, 16, SDMMC3_K, _SDMMC3_SEL),
537 
538 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB3ENSETR, 11, HSEM, _UNKNOWN_SEL),
539 
540 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 0, GPIOA, _UNKNOWN_SEL),
541 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 1, GPIOB, _UNKNOWN_SEL),
542 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 2, GPIOC, _UNKNOWN_SEL),
543 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 3, GPIOD, _UNKNOWN_SEL),
544 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 4, GPIOE, _UNKNOWN_SEL),
545 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 5, GPIOF, _UNKNOWN_SEL),
546 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 6, GPIOG, _UNKNOWN_SEL),
547 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 7, GPIOH, _UNKNOWN_SEL),
548 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 8, GPIOI, _UNKNOWN_SEL),
549 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 9, GPIOJ, _UNKNOWN_SEL),
550 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 10, GPIOK, _UNKNOWN_SEL),
551 
552 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB5ENSETR, 0, GPIOZ, _UNKNOWN_SEL),
553 
554 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 7, ETHCK, _ETH_SEL),
555 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 8, ETHTX, _UNKNOWN_SEL),
556 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 9, ETHRX, _UNKNOWN_SEL),
557 	STM32MP1_CLK_SET_CLR_F(RCC_MP_AHB6ENSETR, 10, ETHMAC, _ACLK),
558 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 12, FMC_K, _FMC_SEL),
559 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 14, QSPI_K, _QSPI_SEL),
560 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 16, SDMMC1_K, _SDMMC12_SEL),
561 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 17, SDMMC2_K, _SDMMC12_SEL),
562 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 24, USBH, _UNKNOWN_SEL),
563 
564 	STM32MP1_CLK(RCC_DBGCFGR, 8, CK_DBG, _UNKNOWN_SEL),
565 };
566 
567 static const u8 i2c12_parents[] = {_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER};
568 static const u8 i2c35_parents[] = {_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER};
569 static const u8 i2c46_parents[] = {_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER};
570 static const u8 uart6_parents[] = {_PCLK2, _PLL4_Q, _HSI_KER, _CSI_KER,
571 					_HSE_KER};
572 static const u8 uart24_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
573 					 _HSE_KER};
574 static const u8 uart35_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
575 					 _HSE_KER};
576 static const u8 uart78_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
577 					 _HSE_KER};
578 static const u8 sdmmc12_parents[] = {_HCLK6, _PLL3_R, _PLL4_P, _HSI_KER};
579 static const u8 sdmmc3_parents[] = {_HCLK2, _PLL3_R, _PLL4_P, _HSI_KER};
580 static const u8 eth_parents[] = {_PLL4_P, _PLL3_Q};
581 static const u8 qspi_parents[] = {_ACLK, _PLL3_R, _PLL4_P, _CK_PER};
582 static const u8 fmc_parents[] = {_ACLK, _PLL3_R, _PLL4_P, _CK_PER};
583 static const u8 usbphy_parents[] = {_HSE_KER, _PLL4_R, _HSE_KER_DIV2};
584 static const u8 usbo_parents[] = {_PLL4_R, _USB_PHY_48};
585 static const u8 stgen_parents[] = {_HSI_KER, _HSE_KER};
586 static const u8 dsi_parents[] = {_DSI_PHY, _PLL4_P};
587 static const u8 adc_parents[] = {_PLL4_R, _CK_PER, _PLL3_Q};
588 
589 static const struct stm32mp1_clk_sel stm32mp1_clk_sel[_PARENT_SEL_NB] = {
590 	STM32MP1_CLK_PARENT(_I2C12_SEL, RCC_I2C12CKSELR, 0, 0x7, i2c12_parents),
591 	STM32MP1_CLK_PARENT(_I2C35_SEL, RCC_I2C35CKSELR, 0, 0x7, i2c35_parents),
592 	STM32MP1_CLK_PARENT(_I2C46_SEL, RCC_I2C46CKSELR, 0, 0x7, i2c46_parents),
593 	STM32MP1_CLK_PARENT(_UART6_SEL, RCC_UART6CKSELR, 0, 0x7, uart6_parents),
594 	STM32MP1_CLK_PARENT(_UART24_SEL, RCC_UART24CKSELR, 0, 0x7,
595 			    uart24_parents),
596 	STM32MP1_CLK_PARENT(_UART35_SEL, RCC_UART35CKSELR, 0, 0x7,
597 			    uart35_parents),
598 	STM32MP1_CLK_PARENT(_UART78_SEL, RCC_UART78CKSELR, 0, 0x7,
599 			    uart78_parents),
600 	STM32MP1_CLK_PARENT(_SDMMC12_SEL, RCC_SDMMC12CKSELR, 0, 0x7,
601 			    sdmmc12_parents),
602 	STM32MP1_CLK_PARENT(_SDMMC3_SEL, RCC_SDMMC3CKSELR, 0, 0x7,
603 			    sdmmc3_parents),
604 	STM32MP1_CLK_PARENT(_ETH_SEL, RCC_ETHCKSELR, 0, 0x3, eth_parents),
605 	STM32MP1_CLK_PARENT(_QSPI_SEL, RCC_QSPICKSELR, 0, 0xf, qspi_parents),
606 	STM32MP1_CLK_PARENT(_FMC_SEL, RCC_FMCCKSELR, 0, 0xf, fmc_parents),
607 	STM32MP1_CLK_PARENT(_USBPHY_SEL, RCC_USBCKSELR, 0, 0x3, usbphy_parents),
608 	STM32MP1_CLK_PARENT(_USBO_SEL, RCC_USBCKSELR, 4, 0x1, usbo_parents),
609 	STM32MP1_CLK_PARENT(_STGEN_SEL, RCC_STGENCKSELR, 0, 0x3, stgen_parents),
610 	STM32MP1_CLK_PARENT(_DSI_SEL, RCC_DSICKSELR, 0, 0x1, dsi_parents),
611 	STM32MP1_CLK_PARENT(_ADC12_SEL, RCC_ADCCKSELR, 0, 0x1, adc_parents),
612 };
613 
614 #ifdef STM32MP1_CLOCK_TREE_INIT
615 /* define characteristic of PLL according type */
616 #define DIVN_MIN	24
617 static const struct stm32mp1_pll stm32mp1_pll[PLL_TYPE_NB] = {
618 	[PLL_800] = {
619 		.refclk_min = 4,
620 		.refclk_max = 16,
621 		.divn_max = 99,
622 		},
623 	[PLL_1600] = {
624 		.refclk_min = 8,
625 		.refclk_max = 16,
626 		.divn_max = 199,
627 		},
628 };
629 #endif /* STM32MP1_CLOCK_TREE_INIT */
630 
631 static const struct stm32mp1_clk_pll stm32mp1_clk_pll[_PLL_NB] = {
632 	STM32MP1_CLK_PLL(_PLL1, PLL_1600,
633 			 RCC_RCK12SELR, RCC_PLL1CFGR1, RCC_PLL1CFGR2,
634 			 RCC_PLL1FRACR, RCC_PLL1CR, RCC_PLL1CSGR,
635 			 _HSI, _HSE, _UNKNOWN_ID, _UNKNOWN_ID),
636 	STM32MP1_CLK_PLL(_PLL2, PLL_1600,
637 			 RCC_RCK12SELR, RCC_PLL2CFGR1, RCC_PLL2CFGR2,
638 			 RCC_PLL2FRACR, RCC_PLL2CR, RCC_PLL2CSGR,
639 			 _HSI, _HSE, _UNKNOWN_ID, _UNKNOWN_ID),
640 	STM32MP1_CLK_PLL(_PLL3, PLL_800,
641 			 RCC_RCK3SELR, RCC_PLL3CFGR1, RCC_PLL3CFGR2,
642 			 RCC_PLL3FRACR, RCC_PLL3CR, RCC_PLL3CSGR,
643 			 _HSI, _HSE, _CSI, _UNKNOWN_ID),
644 	STM32MP1_CLK_PLL(_PLL4, PLL_800,
645 			 RCC_RCK4SELR, RCC_PLL4CFGR1, RCC_PLL4CFGR2,
646 			 RCC_PLL4FRACR, RCC_PLL4CR, RCC_PLL4CSGR,
647 			 _HSI, _HSE, _CSI, _I2S_CKIN),
648 };
649 
650 /* Prescaler table lookups for clock computation */
651 /* div = /1 /2 /4 /8 / 16 /64 /128 /512 */
652 static const u8 stm32mp1_mcu_div[16] = {
653 	0, 1, 2, 3, 4, 6, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9
654 };
655 
656 /* div = /1 /2 /4 /8 /16 : same divider for pmu and apbx*/
657 #define stm32mp1_mpu_div stm32mp1_mpu_apbx_div
658 #define stm32mp1_apbx_div stm32mp1_mpu_apbx_div
659 static const u8 stm32mp1_mpu_apbx_div[8] = {
660 	0, 1, 2, 3, 4, 4, 4, 4
661 };
662 
663 /* div = /1 /2 /3 /4 */
664 static const u8 stm32mp1_axi_div[8] = {
665 	1, 2, 3, 4, 4, 4, 4, 4
666 };
667 
668 #ifdef DEBUG
669 static const char * const stm32mp1_clk_parent_name[_PARENT_NB] = {
670 	[_HSI] = "HSI",
671 	[_HSE] = "HSE",
672 	[_CSI] = "CSI",
673 	[_LSI] = "LSI",
674 	[_LSE] = "LSE",
675 	[_I2S_CKIN] = "I2S_CKIN",
676 	[_HSI_KER] = "HSI_KER",
677 	[_HSE_KER] = "HSE_KER",
678 	[_HSE_KER_DIV2] = "HSE_KER_DIV2",
679 	[_CSI_KER] = "CSI_KER",
680 	[_PLL1_P] = "PLL1_P",
681 	[_PLL1_Q] = "PLL1_Q",
682 	[_PLL1_R] = "PLL1_R",
683 	[_PLL2_P] = "PLL2_P",
684 	[_PLL2_Q] = "PLL2_Q",
685 	[_PLL2_R] = "PLL2_R",
686 	[_PLL3_P] = "PLL3_P",
687 	[_PLL3_Q] = "PLL3_Q",
688 	[_PLL3_R] = "PLL3_R",
689 	[_PLL4_P] = "PLL4_P",
690 	[_PLL4_Q] = "PLL4_Q",
691 	[_PLL4_R] = "PLL4_R",
692 	[_ACLK] = "ACLK",
693 	[_PCLK1] = "PCLK1",
694 	[_PCLK2] = "PCLK2",
695 	[_PCLK3] = "PCLK3",
696 	[_PCLK4] = "PCLK4",
697 	[_PCLK5] = "PCLK5",
698 	[_HCLK6] = "KCLK6",
699 	[_HCLK2] = "HCLK2",
700 	[_CK_PER] = "CK_PER",
701 	[_CK_MPU] = "CK_MPU",
702 	[_CK_MCU] = "CK_MCU",
703 	[_USB_PHY_48] = "USB_PHY_48",
704 	[_DSI_PHY] = "DSI_PHY_PLL",
705 };
706 
707 static const char * const stm32mp1_clk_parent_sel_name[_PARENT_SEL_NB] = {
708 	[_I2C12_SEL] = "I2C12",
709 	[_I2C35_SEL] = "I2C35",
710 	[_I2C46_SEL] = "I2C46",
711 	[_UART6_SEL] = "UART6",
712 	[_UART24_SEL] = "UART24",
713 	[_UART35_SEL] = "UART35",
714 	[_UART78_SEL] = "UART78",
715 	[_SDMMC12_SEL] = "SDMMC12",
716 	[_SDMMC3_SEL] = "SDMMC3",
717 	[_ETH_SEL] = "ETH",
718 	[_QSPI_SEL] = "QSPI",
719 	[_FMC_SEL] = "FMC",
720 	[_USBPHY_SEL] = "USBPHY",
721 	[_USBO_SEL] = "USBO",
722 	[_STGEN_SEL] = "STGEN",
723 	[_DSI_SEL] = "DSI",
724 	[_ADC12_SEL] = "ADC12",
725 };
726 #endif
727 
728 static const struct stm32mp1_clk_data stm32mp1_data = {
729 	.gate = stm32mp1_clk_gate,
730 	.sel = stm32mp1_clk_sel,
731 	.pll = stm32mp1_clk_pll,
732 	.nb_gate = ARRAY_SIZE(stm32mp1_clk_gate),
733 };
734 
735 static ulong stm32mp1_clk_get_fixed(struct stm32mp1_clk_priv *priv, int idx)
736 {
737 	if (idx >= NB_OSC) {
738 		debug("%s: clk id %d not found\n", __func__, idx);
739 		return 0;
740 	}
741 
742 	debug("%s: clk id %d = %x : %ld kHz\n", __func__, idx,
743 	      (u32)priv->osc[idx], priv->osc[idx] / 1000);
744 
745 	return priv->osc[idx];
746 }
747 
748 static int stm32mp1_clk_get_id(struct stm32mp1_clk_priv *priv, unsigned long id)
749 {
750 	const struct stm32mp1_clk_gate *gate = priv->data->gate;
751 	int i, nb_clks = priv->data->nb_gate;
752 
753 	for (i = 0; i < nb_clks; i++) {
754 		if (gate[i].index == id)
755 			break;
756 	}
757 
758 	if (i == nb_clks) {
759 		printf("%s: clk id %d not found\n", __func__, (u32)id);
760 		return -EINVAL;
761 	}
762 
763 	return i;
764 }
765 
766 static int stm32mp1_clk_get_sel(struct stm32mp1_clk_priv *priv,
767 				int i)
768 {
769 	const struct stm32mp1_clk_gate *gate = priv->data->gate;
770 
771 	if (gate[i].sel > _PARENT_SEL_NB) {
772 		printf("%s: parents for clk id %d not found\n",
773 		       __func__, i);
774 		return -EINVAL;
775 	}
776 
777 	return gate[i].sel;
778 }
779 
780 static int stm32mp1_clk_get_fixed_parent(struct stm32mp1_clk_priv *priv,
781 					 int i)
782 {
783 	const struct stm32mp1_clk_gate *gate = priv->data->gate;
784 
785 	if (gate[i].fixed == _UNKNOWN_ID)
786 		return -ENOENT;
787 
788 	return gate[i].fixed;
789 }
790 
791 static int stm32mp1_clk_get_parent(struct stm32mp1_clk_priv *priv,
792 				   unsigned long id)
793 {
794 	const struct stm32mp1_clk_sel *sel = priv->data->sel;
795 	int i;
796 	int s, p;
797 
798 	for (i = 0; i < ARRAY_SIZE(stm32mp1_clks); i++)
799 		if (stm32mp1_clks[i][0] == id)
800 			return stm32mp1_clks[i][1];
801 
802 	i = stm32mp1_clk_get_id(priv, id);
803 	if (i < 0)
804 		return i;
805 
806 	p = stm32mp1_clk_get_fixed_parent(priv, i);
807 	if (p >= 0 && p < _PARENT_NB)
808 		return p;
809 
810 	s = stm32mp1_clk_get_sel(priv, i);
811 	if (s < 0)
812 		return s;
813 
814 	p = (readl(priv->base + sel[s].offset) >> sel[s].src) & sel[s].msk;
815 
816 	if (p < sel[s].nb_parent) {
817 #ifdef DEBUG
818 		debug("%s: %s clock is the parent %s of clk id %d\n", __func__,
819 		      stm32mp1_clk_parent_name[sel[s].parent[p]],
820 		      stm32mp1_clk_parent_sel_name[s],
821 		      (u32)id);
822 #endif
823 		return sel[s].parent[p];
824 	}
825 
826 	pr_err("%s: no parents defined for clk id %d\n",
827 	       __func__, (u32)id);
828 
829 	return -EINVAL;
830 }
831 
832 static ulong  pll_get_fref_ck(struct stm32mp1_clk_priv *priv,
833 			      int pll_id)
834 {
835 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
836 	u32 selr;
837 	int src;
838 	ulong refclk;
839 
840 	/* Get current refclk */
841 	selr = readl(priv->base + pll[pll_id].rckxselr);
842 	src = selr & RCC_SELR_SRC_MASK;
843 
844 	refclk = stm32mp1_clk_get_fixed(priv, pll[pll_id].refclk[src]);
845 	debug("PLL%d : selr=%x refclk = %d kHz\n",
846 	      pll_id, selr, (u32)(refclk / 1000));
847 
848 	return refclk;
849 }
850 
851 /*
852  * pll_get_fvco() : return the VCO or (VCO / 2) frequency for the requested PLL
853  * - PLL1 & PLL2 => return VCO / 2 with Fpll_y_ck = FVCO / 2 * (DIVy + 1)
854  * - PLL3 & PLL4 => return VCO     with Fpll_y_ck = FVCO / (DIVy + 1)
855  * => in all the case Fpll_y_ck = pll_get_fvco() / (DIVy + 1)
856  */
857 static ulong pll_get_fvco(struct stm32mp1_clk_priv *priv,
858 			  int pll_id)
859 {
860 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
861 	int divm, divn;
862 	ulong refclk, fvco;
863 	u32 cfgr1, fracr;
864 
865 	cfgr1 = readl(priv->base + pll[pll_id].pllxcfgr1);
866 	fracr = readl(priv->base + pll[pll_id].pllxfracr);
867 
868 	divm = (cfgr1 & (RCC_PLLNCFGR1_DIVM_MASK)) >> RCC_PLLNCFGR1_DIVM_SHIFT;
869 	divn = cfgr1 & RCC_PLLNCFGR1_DIVN_MASK;
870 
871 	debug("PLL%d : cfgr1=%x fracr=%x DIVN=%d DIVM=%d\n",
872 	      pll_id, cfgr1, fracr, divn, divm);
873 
874 	refclk = pll_get_fref_ck(priv, pll_id);
875 
876 	/* with FRACV :
877 	 *   Fvco = Fck_ref * ((DIVN + 1) + FRACV / 2^13) / (DIVM + 1)
878 	 * without FRACV
879 	 *   Fvco = Fck_ref * ((DIVN + 1) / (DIVM + 1)
880 	 */
881 	if (fracr & RCC_PLLNFRACR_FRACLE) {
882 		u32 fracv = (fracr & RCC_PLLNFRACR_FRACV_MASK)
883 			    >> RCC_PLLNFRACR_FRACV_SHIFT;
884 		fvco = (ulong)lldiv((unsigned long long)refclk *
885 				     (((divn + 1) << 13) + fracv),
886 				     ((unsigned long long)(divm + 1)) << 13);
887 	} else {
888 		fvco = (ulong)(refclk * (divn + 1) / (divm + 1));
889 	}
890 	debug("PLL%d : %s = %ld\n", pll_id, __func__, fvco);
891 
892 	return fvco;
893 }
894 
895 static ulong stm32mp1_read_pll_freq(struct stm32mp1_clk_priv *priv,
896 				    int pll_id, int div_id)
897 {
898 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
899 	int divy;
900 	ulong dfout;
901 	u32 cfgr2;
902 
903 	debug("%s(%d, %d)\n", __func__, pll_id, div_id);
904 	if (div_id >= _DIV_NB)
905 		return 0;
906 
907 	cfgr2 = readl(priv->base + pll[pll_id].pllxcfgr2);
908 	divy = (cfgr2 >> RCC_PLLNCFGR2_SHIFT(div_id)) & RCC_PLLNCFGR2_DIVX_MASK;
909 
910 	debug("PLL%d : cfgr2=%x DIVY=%d\n", pll_id, cfgr2, divy);
911 
912 	dfout = pll_get_fvco(priv, pll_id) / (divy + 1);
913 	debug("        => dfout = %d kHz\n", (u32)(dfout / 1000));
914 
915 	return dfout;
916 }
917 
918 static ulong stm32mp1_clk_get(struct stm32mp1_clk_priv *priv, int p)
919 {
920 	u32 reg;
921 	ulong clock = 0;
922 
923 	switch (p) {
924 	case _CK_MPU:
925 	/* MPU sub system */
926 		reg = readl(priv->base + RCC_MPCKSELR);
927 		switch (reg & RCC_SELR_SRC_MASK) {
928 		case RCC_MPCKSELR_HSI:
929 			clock = stm32mp1_clk_get_fixed(priv, _HSI);
930 			break;
931 		case RCC_MPCKSELR_HSE:
932 			clock = stm32mp1_clk_get_fixed(priv, _HSE);
933 			break;
934 		case RCC_MPCKSELR_PLL:
935 		case RCC_MPCKSELR_PLL_MPUDIV:
936 			clock = stm32mp1_read_pll_freq(priv, _PLL1, _DIV_P);
937 			if (p == RCC_MPCKSELR_PLL_MPUDIV) {
938 				reg = readl(priv->base + RCC_MPCKDIVR);
939 				clock /= stm32mp1_mpu_div[reg &
940 							  RCC_MPUDIV_MASK];
941 			}
942 			break;
943 		}
944 		break;
945 	/* AXI sub system */
946 	case _ACLK:
947 	case _HCLK2:
948 	case _HCLK6:
949 	case _PCLK4:
950 	case _PCLK5:
951 		reg = readl(priv->base + RCC_ASSCKSELR);
952 		switch (reg & RCC_SELR_SRC_MASK) {
953 		case RCC_ASSCKSELR_HSI:
954 			clock = stm32mp1_clk_get_fixed(priv, _HSI);
955 			break;
956 		case RCC_ASSCKSELR_HSE:
957 			clock = stm32mp1_clk_get_fixed(priv, _HSE);
958 			break;
959 		case RCC_ASSCKSELR_PLL:
960 			clock = stm32mp1_read_pll_freq(priv, _PLL2, _DIV_P);
961 			break;
962 		}
963 
964 		/* System clock divider */
965 		reg = readl(priv->base + RCC_AXIDIVR);
966 		clock /= stm32mp1_axi_div[reg & RCC_AXIDIV_MASK];
967 
968 		switch (p) {
969 		case _PCLK4:
970 			reg = readl(priv->base + RCC_APB4DIVR);
971 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
972 			break;
973 		case _PCLK5:
974 			reg = readl(priv->base + RCC_APB5DIVR);
975 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
976 			break;
977 		default:
978 			break;
979 		}
980 		break;
981 	/* MCU sub system */
982 	case _CK_MCU:
983 	case _PCLK1:
984 	case _PCLK2:
985 	case _PCLK3:
986 		reg = readl(priv->base + RCC_MSSCKSELR);
987 		switch (reg & RCC_SELR_SRC_MASK) {
988 		case RCC_MSSCKSELR_HSI:
989 			clock = stm32mp1_clk_get_fixed(priv, _HSI);
990 			break;
991 		case RCC_MSSCKSELR_HSE:
992 			clock = stm32mp1_clk_get_fixed(priv, _HSE);
993 			break;
994 		case RCC_MSSCKSELR_CSI:
995 			clock = stm32mp1_clk_get_fixed(priv, _CSI);
996 			break;
997 		case RCC_MSSCKSELR_PLL:
998 			clock = stm32mp1_read_pll_freq(priv, _PLL3, _DIV_P);
999 			break;
1000 		}
1001 
1002 		/* MCU clock divider */
1003 		reg = readl(priv->base + RCC_MCUDIVR);
1004 		clock >>= stm32mp1_mcu_div[reg & RCC_MCUDIV_MASK];
1005 
1006 		switch (p) {
1007 		case _PCLK1:
1008 			reg = readl(priv->base + RCC_APB1DIVR);
1009 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
1010 			break;
1011 		case _PCLK2:
1012 			reg = readl(priv->base + RCC_APB2DIVR);
1013 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
1014 			break;
1015 		case _PCLK3:
1016 			reg = readl(priv->base + RCC_APB3DIVR);
1017 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
1018 			break;
1019 		case _CK_MCU:
1020 		default:
1021 			break;
1022 		}
1023 		break;
1024 	case _CK_PER:
1025 		reg = readl(priv->base + RCC_CPERCKSELR);
1026 		switch (reg & RCC_SELR_SRC_MASK) {
1027 		case RCC_CPERCKSELR_HSI:
1028 			clock = stm32mp1_clk_get_fixed(priv, _HSI);
1029 			break;
1030 		case RCC_CPERCKSELR_HSE:
1031 			clock = stm32mp1_clk_get_fixed(priv, _HSE);
1032 			break;
1033 		case RCC_CPERCKSELR_CSI:
1034 			clock = stm32mp1_clk_get_fixed(priv, _CSI);
1035 			break;
1036 		}
1037 		break;
1038 	case _HSI:
1039 	case _HSI_KER:
1040 		clock = stm32mp1_clk_get_fixed(priv, _HSI);
1041 		break;
1042 	case _CSI:
1043 	case _CSI_KER:
1044 		clock = stm32mp1_clk_get_fixed(priv, _CSI);
1045 		break;
1046 	case _HSE:
1047 	case _HSE_KER:
1048 	case _HSE_KER_DIV2:
1049 		clock = stm32mp1_clk_get_fixed(priv, _HSE);
1050 		if (p == _HSE_KER_DIV2)
1051 			clock >>= 1;
1052 		break;
1053 	case _LSI:
1054 		clock = stm32mp1_clk_get_fixed(priv, _LSI);
1055 		break;
1056 	case _LSE:
1057 		clock = stm32mp1_clk_get_fixed(priv, _LSE);
1058 		break;
1059 	/* PLL */
1060 	case _PLL1_P:
1061 	case _PLL1_Q:
1062 	case _PLL1_R:
1063 		clock = stm32mp1_read_pll_freq(priv, _PLL1, p - _PLL1_P);
1064 		break;
1065 	case _PLL2_P:
1066 	case _PLL2_Q:
1067 	case _PLL2_R:
1068 		clock = stm32mp1_read_pll_freq(priv, _PLL2, p - _PLL2_P);
1069 		break;
1070 	case _PLL3_P:
1071 	case _PLL3_Q:
1072 	case _PLL3_R:
1073 		clock = stm32mp1_read_pll_freq(priv, _PLL3, p - _PLL3_P);
1074 		break;
1075 	case _PLL4_P:
1076 	case _PLL4_Q:
1077 	case _PLL4_R:
1078 		clock = stm32mp1_read_pll_freq(priv, _PLL4, p - _PLL4_P);
1079 		break;
1080 	/* other */
1081 	case _USB_PHY_48:
1082 		clock = stm32mp1_clk_get_fixed(priv, _USB_PHY_48);
1083 		break;
1084 	case _DSI_PHY:
1085 	{
1086 		struct clk clk;
1087 		struct udevice *dev = NULL;
1088 
1089 		if (!uclass_get_device_by_name(UCLASS_CLK, "ck_dsi_phy",
1090 					       &dev)) {
1091 			if (clk_request(dev, &clk)) {
1092 				pr_err("ck_dsi_phy request");
1093 			} else {
1094 				clk.id = 0;
1095 				clock = clk_get_rate(&clk);
1096 			}
1097 		}
1098 		break;
1099 	}
1100 	default:
1101 		break;
1102 	}
1103 
1104 	debug("%s(%d) clock = %lx : %ld kHz\n",
1105 	      __func__, p, clock, clock / 1000);
1106 
1107 	return clock;
1108 }
1109 
1110 static int stm32mp1_clk_enable(struct clk *clk)
1111 {
1112 	struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
1113 	const struct stm32mp1_clk_gate *gate = priv->data->gate;
1114 	int i = stm32mp1_clk_get_id(priv, clk->id);
1115 
1116 	if (i < 0)
1117 		return i;
1118 
1119 	if (gate[i].set_clr)
1120 		writel(BIT(gate[i].bit), priv->base + gate[i].offset);
1121 	else
1122 		setbits_le32(priv->base + gate[i].offset, BIT(gate[i].bit));
1123 
1124 	debug("%s: id clock %d has been enabled\n", __func__, (u32)clk->id);
1125 
1126 	return 0;
1127 }
1128 
1129 static int stm32mp1_clk_disable(struct clk *clk)
1130 {
1131 	struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
1132 	const struct stm32mp1_clk_gate *gate = priv->data->gate;
1133 	int i = stm32mp1_clk_get_id(priv, clk->id);
1134 
1135 	if (i < 0)
1136 		return i;
1137 
1138 	if (gate[i].set_clr)
1139 		writel(BIT(gate[i].bit),
1140 		       priv->base + gate[i].offset
1141 		       + RCC_MP_ENCLRR_OFFSET);
1142 	else
1143 		clrbits_le32(priv->base + gate[i].offset, BIT(gate[i].bit));
1144 
1145 	debug("%s: id clock %d has been disabled\n", __func__, (u32)clk->id);
1146 
1147 	return 0;
1148 }
1149 
1150 static ulong stm32mp1_clk_get_rate(struct clk *clk)
1151 {
1152 	struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
1153 	int p = stm32mp1_clk_get_parent(priv, clk->id);
1154 	ulong rate;
1155 
1156 	if (p < 0)
1157 		return 0;
1158 
1159 	rate = stm32mp1_clk_get(priv, p);
1160 
1161 #ifdef DEBUG
1162 	debug("%s: computed rate for id clock %d is %d (parent is %s)\n",
1163 	      __func__, (u32)clk->id, (u32)rate, stm32mp1_clk_parent_name[p]);
1164 #endif
1165 	return rate;
1166 }
1167 
1168 #ifdef STM32MP1_CLOCK_TREE_INIT
1169 static void stm32mp1_ls_osc_set(int enable, fdt_addr_t rcc, u32 offset,
1170 				u32 mask_on)
1171 {
1172 	u32 address = rcc + offset;
1173 
1174 	if (enable)
1175 		setbits_le32(address, mask_on);
1176 	else
1177 		clrbits_le32(address, mask_on);
1178 }
1179 
1180 static void stm32mp1_hs_ocs_set(int enable, fdt_addr_t rcc, u32 mask_on)
1181 {
1182 	if (enable)
1183 		setbits_le32(rcc + RCC_OCENSETR, mask_on);
1184 	else
1185 		setbits_le32(rcc + RCC_OCENCLRR, mask_on);
1186 }
1187 
1188 static int stm32mp1_osc_wait(int enable, fdt_addr_t rcc, u32 offset,
1189 			     u32 mask_rdy)
1190 {
1191 	u32 mask_test = 0;
1192 	u32 address = rcc + offset;
1193 	u32 val;
1194 	int ret;
1195 
1196 	if (enable)
1197 		mask_test = mask_rdy;
1198 
1199 	ret = readl_poll_timeout(address, val,
1200 				 (val & mask_rdy) == mask_test,
1201 				 TIMEOUT_1S);
1202 
1203 	if (ret)
1204 		pr_err("OSC %x @ %x timeout for enable=%d : 0x%x\n",
1205 		       mask_rdy, address, enable, readl(address));
1206 
1207 	return ret;
1208 }
1209 
1210 static void stm32mp1_lse_enable(fdt_addr_t rcc, int bypass, int digbyp,
1211 				int lsedrv)
1212 {
1213 	u32 value;
1214 
1215 	if (digbyp)
1216 		setbits_le32(rcc + RCC_BDCR, RCC_BDCR_DIGBYP);
1217 
1218 	if (bypass || digbyp)
1219 		setbits_le32(rcc + RCC_BDCR, RCC_BDCR_LSEBYP);
1220 
1221 	/*
1222 	 * warning: not recommended to switch directly from "high drive"
1223 	 * to "medium low drive", and vice-versa.
1224 	 */
1225 	value = (readl(rcc + RCC_BDCR) & RCC_BDCR_LSEDRV_MASK)
1226 		>> RCC_BDCR_LSEDRV_SHIFT;
1227 
1228 	while (value != lsedrv) {
1229 		if (value > lsedrv)
1230 			value--;
1231 		else
1232 			value++;
1233 
1234 		clrsetbits_le32(rcc + RCC_BDCR,
1235 				RCC_BDCR_LSEDRV_MASK,
1236 				value << RCC_BDCR_LSEDRV_SHIFT);
1237 	}
1238 
1239 	stm32mp1_ls_osc_set(1, rcc, RCC_BDCR, RCC_BDCR_LSEON);
1240 }
1241 
1242 static void stm32mp1_lse_wait(fdt_addr_t rcc)
1243 {
1244 	stm32mp1_osc_wait(1, rcc, RCC_BDCR, RCC_BDCR_LSERDY);
1245 }
1246 
1247 static void stm32mp1_lsi_set(fdt_addr_t rcc, int enable)
1248 {
1249 	stm32mp1_ls_osc_set(enable, rcc, RCC_RDLSICR, RCC_RDLSICR_LSION);
1250 	stm32mp1_osc_wait(enable, rcc, RCC_RDLSICR, RCC_RDLSICR_LSIRDY);
1251 }
1252 
1253 static void stm32mp1_hse_enable(fdt_addr_t rcc, int bypass, int digbyp, int css)
1254 {
1255 	if (digbyp)
1256 		setbits_le32(rcc + RCC_OCENSETR, RCC_OCENR_DIGBYP);
1257 	if (bypass || digbyp)
1258 		setbits_le32(rcc + RCC_OCENSETR, RCC_OCENR_HSEBYP);
1259 
1260 	stm32mp1_hs_ocs_set(1, rcc, RCC_OCENR_HSEON);
1261 	stm32mp1_osc_wait(1, rcc, RCC_OCRDYR, RCC_OCRDYR_HSERDY);
1262 
1263 	if (css)
1264 		setbits_le32(rcc + RCC_OCENSETR, RCC_OCENR_HSECSSON);
1265 }
1266 
1267 static void stm32mp1_csi_set(fdt_addr_t rcc, int enable)
1268 {
1269 	stm32mp1_ls_osc_set(enable, rcc, RCC_OCENSETR, RCC_OCENR_CSION);
1270 	stm32mp1_osc_wait(enable, rcc, RCC_OCRDYR, RCC_OCRDYR_CSIRDY);
1271 }
1272 
1273 static void stm32mp1_hsi_set(fdt_addr_t rcc, int enable)
1274 {
1275 	stm32mp1_hs_ocs_set(enable, rcc, RCC_OCENR_HSION);
1276 	stm32mp1_osc_wait(enable, rcc, RCC_OCRDYR, RCC_OCRDYR_HSIRDY);
1277 }
1278 
1279 static int stm32mp1_set_hsidiv(fdt_addr_t rcc, u8 hsidiv)
1280 {
1281 	u32 address = rcc + RCC_OCRDYR;
1282 	u32 val;
1283 	int ret;
1284 
1285 	clrsetbits_le32(rcc + RCC_HSICFGR,
1286 			RCC_HSICFGR_HSIDIV_MASK,
1287 			RCC_HSICFGR_HSIDIV_MASK & hsidiv);
1288 
1289 	ret = readl_poll_timeout(address, val,
1290 				 val & RCC_OCRDYR_HSIDIVRDY,
1291 				 TIMEOUT_200MS);
1292 	if (ret)
1293 		pr_err("HSIDIV failed @ 0x%x: 0x%x\n",
1294 		       address, readl(address));
1295 
1296 	return ret;
1297 }
1298 
1299 static int stm32mp1_hsidiv(fdt_addr_t rcc, ulong hsifreq)
1300 {
1301 	u8 hsidiv;
1302 	u32 hsidivfreq = MAX_HSI_HZ;
1303 
1304 	for (hsidiv = 0; hsidiv < 4; hsidiv++,
1305 	     hsidivfreq = hsidivfreq / 2)
1306 		if (hsidivfreq == hsifreq)
1307 			break;
1308 
1309 	if (hsidiv == 4) {
1310 		pr_err("clk-hsi frequency invalid");
1311 		return -1;
1312 	}
1313 
1314 	if (hsidiv > 0)
1315 		return stm32mp1_set_hsidiv(rcc, hsidiv);
1316 
1317 	return 0;
1318 }
1319 
1320 static void pll_start(struct stm32mp1_clk_priv *priv, int pll_id)
1321 {
1322 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
1323 
1324 	writel(RCC_PLLNCR_PLLON, priv->base + pll[pll_id].pllxcr);
1325 }
1326 
1327 static int pll_output(struct stm32mp1_clk_priv *priv, int pll_id, int output)
1328 {
1329 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
1330 	u32 pllxcr = priv->base + pll[pll_id].pllxcr;
1331 	u32 val;
1332 	int ret;
1333 
1334 	ret = readl_poll_timeout(pllxcr, val, val & RCC_PLLNCR_PLLRDY,
1335 				 TIMEOUT_200MS);
1336 
1337 	if (ret) {
1338 		pr_err("PLL%d start failed @ 0x%x: 0x%x\n",
1339 		       pll_id, pllxcr, readl(pllxcr));
1340 		return ret;
1341 	}
1342 
1343 	/* start the requested output */
1344 	setbits_le32(pllxcr, output << RCC_PLLNCR_DIVEN_SHIFT);
1345 
1346 	return 0;
1347 }
1348 
1349 static int pll_stop(struct stm32mp1_clk_priv *priv, int pll_id)
1350 {
1351 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
1352 	u32 pllxcr = priv->base + pll[pll_id].pllxcr;
1353 	u32 val;
1354 
1355 	/* stop all output */
1356 	clrbits_le32(pllxcr,
1357 		     RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN | RCC_PLLNCR_DIVREN);
1358 
1359 	/* stop PLL */
1360 	clrbits_le32(pllxcr, RCC_PLLNCR_PLLON);
1361 
1362 	/* wait PLL stopped */
1363 	return readl_poll_timeout(pllxcr, val, (val & RCC_PLLNCR_PLLRDY) == 0,
1364 				  TIMEOUT_200MS);
1365 }
1366 
1367 static void pll_config_output(struct stm32mp1_clk_priv *priv,
1368 			      int pll_id, u32 *pllcfg)
1369 {
1370 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
1371 	fdt_addr_t rcc = priv->base;
1372 	u32 value;
1373 
1374 	value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT)
1375 		& RCC_PLLNCFGR2_DIVP_MASK;
1376 	value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT)
1377 		 & RCC_PLLNCFGR2_DIVQ_MASK;
1378 	value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT)
1379 		 & RCC_PLLNCFGR2_DIVR_MASK;
1380 	writel(value, rcc + pll[pll_id].pllxcfgr2);
1381 }
1382 
1383 static int pll_config(struct stm32mp1_clk_priv *priv, int pll_id,
1384 		      u32 *pllcfg, u32 fracv)
1385 {
1386 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
1387 	fdt_addr_t rcc = priv->base;
1388 	enum stm32mp1_plltype type = pll[pll_id].plltype;
1389 	int src;
1390 	ulong refclk;
1391 	u8 ifrge = 0;
1392 	u32 value;
1393 
1394 	src = readl(priv->base + pll[pll_id].rckxselr) & RCC_SELR_SRC_MASK;
1395 
1396 	refclk = stm32mp1_clk_get_fixed(priv, pll[pll_id].refclk[src]) /
1397 		 (pllcfg[PLLCFG_M] + 1);
1398 
1399 	if (refclk < (stm32mp1_pll[type].refclk_min * 1000000) ||
1400 	    refclk > (stm32mp1_pll[type].refclk_max * 1000000)) {
1401 		debug("invalid refclk = %x\n", (u32)refclk);
1402 		return -EINVAL;
1403 	}
1404 	if (type == PLL_800 && refclk >= 8000000)
1405 		ifrge = 1;
1406 
1407 	value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT)
1408 		 & RCC_PLLNCFGR1_DIVN_MASK;
1409 	value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT)
1410 		 & RCC_PLLNCFGR1_DIVM_MASK;
1411 	value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT)
1412 		 & RCC_PLLNCFGR1_IFRGE_MASK;
1413 	writel(value, rcc + pll[pll_id].pllxcfgr1);
1414 
1415 	/* fractional configuration: load sigma-delta modulator (SDM) */
1416 
1417 	/* Write into FRACV the new fractional value , and FRACLE to 0 */
1418 	writel(fracv << RCC_PLLNFRACR_FRACV_SHIFT,
1419 	       rcc + pll[pll_id].pllxfracr);
1420 
1421 	/* Write FRACLE to 1 : FRACV value is loaded into the SDM */
1422 	setbits_le32(rcc + pll[pll_id].pllxfracr,
1423 		     RCC_PLLNFRACR_FRACLE);
1424 
1425 	pll_config_output(priv, pll_id, pllcfg);
1426 
1427 	return 0;
1428 }
1429 
1430 static void pll_csg(struct stm32mp1_clk_priv *priv, int pll_id, u32 *csg)
1431 {
1432 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
1433 	u32 pllxcsg;
1434 
1435 	pllxcsg = ((csg[PLLCSG_MOD_PER] << RCC_PLLNCSGR_MOD_PER_SHIFT) &
1436 		    RCC_PLLNCSGR_MOD_PER_MASK) |
1437 		  ((csg[PLLCSG_INC_STEP] << RCC_PLLNCSGR_INC_STEP_SHIFT) &
1438 		    RCC_PLLNCSGR_INC_STEP_MASK) |
1439 		  ((csg[PLLCSG_SSCG_MODE] << RCC_PLLNCSGR_SSCG_MODE_SHIFT) &
1440 		    RCC_PLLNCSGR_SSCG_MODE_MASK);
1441 
1442 	writel(pllxcsg, priv->base + pll[pll_id].pllxcsgr);
1443 }
1444 
1445 static int set_clksrc(struct stm32mp1_clk_priv *priv, unsigned int clksrc)
1446 {
1447 	u32 address = priv->base + (clksrc >> 4);
1448 	u32 val;
1449 	int ret;
1450 
1451 	clrsetbits_le32(address, RCC_SELR_SRC_MASK, clksrc & RCC_SELR_SRC_MASK);
1452 	ret = readl_poll_timeout(address, val, val & RCC_SELR_SRCRDY,
1453 				 TIMEOUT_200MS);
1454 	if (ret)
1455 		pr_err("CLKSRC %x start failed @ 0x%x: 0x%x\n",
1456 		       clksrc, address, readl(address));
1457 
1458 	return ret;
1459 }
1460 
1461 static void stgen_config(struct stm32mp1_clk_priv *priv)
1462 {
1463 	int p;
1464 	u32 stgenc, cntfid0;
1465 	ulong rate;
1466 
1467 	stgenc = (u32)syscon_get_first_range(STM32MP_SYSCON_STGEN);
1468 
1469 	cntfid0 = readl(stgenc + STGENC_CNTFID0);
1470 	p = stm32mp1_clk_get_parent(priv, STGEN_K);
1471 	rate = stm32mp1_clk_get(priv, p);
1472 
1473 	if (cntfid0 != rate) {
1474 		pr_debug("System Generic Counter (STGEN) update\n");
1475 		clrbits_le32(stgenc + STGENC_CNTCR, STGENC_CNTCR_EN);
1476 		writel(0x0, stgenc + STGENC_CNTCVL);
1477 		writel(0x0, stgenc + STGENC_CNTCVU);
1478 		writel(rate, stgenc + STGENC_CNTFID0);
1479 		setbits_le32(stgenc + STGENC_CNTCR, STGENC_CNTCR_EN);
1480 
1481 		__asm__ volatile("mcr p15, 0, %0, c14, c0, 0" : : "r" (rate));
1482 
1483 		/* need to update gd->arch.timer_rate_hz with new frequency */
1484 		timer_init();
1485 		pr_debug("gd->arch.timer_rate_hz = %x\n",
1486 			 (u32)gd->arch.timer_rate_hz);
1487 		pr_debug("Tick = %x\n", (u32)(get_ticks()));
1488 	}
1489 }
1490 
1491 static int set_clkdiv(unsigned int clkdiv, u32 address)
1492 {
1493 	u32 val;
1494 	int ret;
1495 
1496 	clrsetbits_le32(address, RCC_DIVR_DIV_MASK, clkdiv & RCC_DIVR_DIV_MASK);
1497 	ret = readl_poll_timeout(address, val, val & RCC_DIVR_DIVRDY,
1498 				 TIMEOUT_200MS);
1499 	if (ret)
1500 		pr_err("CLKDIV %x start failed @ 0x%x: 0x%x\n",
1501 		       clkdiv, address, readl(address));
1502 
1503 	return ret;
1504 }
1505 
1506 static void stm32mp1_mco_csg(struct stm32mp1_clk_priv *priv,
1507 			     u32 clksrc, u32 clkdiv)
1508 {
1509 	u32 address = priv->base + (clksrc >> 4);
1510 
1511 	/*
1512 	 * binding clksrc : bit15-4 offset
1513 	 *                  bit3:   disable
1514 	 *                  bit2-0: MCOSEL[2:0]
1515 	 */
1516 	if (clksrc & 0x8) {
1517 		clrbits_le32(address, RCC_MCOCFG_MCOON);
1518 	} else {
1519 		clrsetbits_le32(address,
1520 				RCC_MCOCFG_MCOSRC_MASK,
1521 				clksrc & RCC_MCOCFG_MCOSRC_MASK);
1522 		clrsetbits_le32(address,
1523 				RCC_MCOCFG_MCODIV_MASK,
1524 				clkdiv << RCC_MCOCFG_MCODIV_SHIFT);
1525 		setbits_le32(address, RCC_MCOCFG_MCOON);
1526 	}
1527 }
1528 
1529 static void set_rtcsrc(struct stm32mp1_clk_priv *priv,
1530 		       unsigned int clksrc,
1531 		       int lse_css)
1532 {
1533 	u32 address = priv->base + RCC_BDCR;
1534 
1535 	if (readl(address) & RCC_BDCR_RTCCKEN)
1536 		goto skip_rtc;
1537 
1538 	if (clksrc == CLK_RTC_DISABLED)
1539 		goto skip_rtc;
1540 
1541 	clrsetbits_le32(address,
1542 			RCC_BDCR_RTCSRC_MASK,
1543 			clksrc << RCC_BDCR_RTCSRC_SHIFT);
1544 
1545 	setbits_le32(address, RCC_BDCR_RTCCKEN);
1546 
1547 skip_rtc:
1548 	if (lse_css)
1549 		setbits_le32(address, RCC_BDCR_LSECSSON);
1550 }
1551 
1552 static void pkcs_config(struct stm32mp1_clk_priv *priv, u32 pkcs)
1553 {
1554 	u32 address = priv->base + ((pkcs >> 4) & 0xFFF);
1555 	u32 value = pkcs & 0xF;
1556 	u32 mask = 0xF;
1557 
1558 	if (pkcs & BIT(31)) {
1559 		mask <<= 4;
1560 		value <<= 4;
1561 	}
1562 	clrsetbits_le32(address, mask, value);
1563 }
1564 
1565 static int stm32mp1_clktree(struct udevice *dev)
1566 {
1567 	struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
1568 	fdt_addr_t rcc = priv->base;
1569 	unsigned int clksrc[CLKSRC_NB];
1570 	unsigned int clkdiv[CLKDIV_NB];
1571 	unsigned int pllcfg[_PLL_NB][PLLCFG_NB];
1572 	ofnode plloff[_PLL_NB];
1573 	int ret;
1574 	int i, len;
1575 	int lse_css = 0;
1576 	const u32 *pkcs_cell;
1577 
1578 	/* check mandatory field */
1579 	ret = dev_read_u32_array(dev, "st,clksrc", clksrc, CLKSRC_NB);
1580 	if (ret < 0) {
1581 		debug("field st,clksrc invalid: error %d\n", ret);
1582 		return -FDT_ERR_NOTFOUND;
1583 	}
1584 
1585 	ret = dev_read_u32_array(dev, "st,clkdiv", clkdiv, CLKDIV_NB);
1586 	if (ret < 0) {
1587 		debug("field st,clkdiv invalid: error %d\n", ret);
1588 		return -FDT_ERR_NOTFOUND;
1589 	}
1590 
1591 	/* check mandatory field in each pll */
1592 	for (i = 0; i < _PLL_NB; i++) {
1593 		char name[12];
1594 
1595 		sprintf(name, "st,pll@%d", i);
1596 		plloff[i] = dev_read_subnode(dev, name);
1597 		if (!ofnode_valid(plloff[i]))
1598 			continue;
1599 		ret = ofnode_read_u32_array(plloff[i], "cfg",
1600 					    pllcfg[i], PLLCFG_NB);
1601 		if (ret < 0) {
1602 			debug("field cfg invalid: error %d\n", ret);
1603 			return -FDT_ERR_NOTFOUND;
1604 		}
1605 	}
1606 
1607 	debug("configuration MCO\n");
1608 	stm32mp1_mco_csg(priv, clksrc[CLKSRC_MCO1], clkdiv[CLKDIV_MCO1]);
1609 	stm32mp1_mco_csg(priv, clksrc[CLKSRC_MCO2], clkdiv[CLKDIV_MCO2]);
1610 
1611 	debug("switch ON osillator\n");
1612 	/*
1613 	 * switch ON oscillator found in device-tree,
1614 	 * HSI already ON after bootrom
1615 	 */
1616 	if (priv->osc[_LSI])
1617 		stm32mp1_lsi_set(rcc, 1);
1618 
1619 	if (priv->osc[_LSE]) {
1620 		int bypass, digbyp, lsedrv;
1621 		struct udevice *dev = priv->osc_dev[_LSE];
1622 
1623 		bypass = dev_read_bool(dev, "st,bypass");
1624 		digbyp = dev_read_bool(dev, "st,digbypass");
1625 		lse_css = dev_read_bool(dev, "st,css");
1626 		lsedrv = dev_read_u32_default(dev, "st,drive",
1627 					      LSEDRV_MEDIUM_HIGH);
1628 
1629 		stm32mp1_lse_enable(rcc, bypass, digbyp, lsedrv);
1630 	}
1631 
1632 	if (priv->osc[_HSE]) {
1633 		int bypass, digbyp, css;
1634 		struct udevice *dev = priv->osc_dev[_HSE];
1635 
1636 		bypass = dev_read_bool(dev, "st,bypass");
1637 		digbyp = dev_read_bool(dev, "st,digbypass");
1638 		css = dev_read_bool(dev, "st,css");
1639 
1640 		stm32mp1_hse_enable(rcc, bypass, digbyp, css);
1641 	}
1642 	/* CSI is mandatory for automatic I/O compensation (SYSCFG_CMPCR)
1643 	 * => switch on CSI even if node is not present in device tree
1644 	 */
1645 	stm32mp1_csi_set(rcc, 1);
1646 
1647 	/* come back to HSI */
1648 	debug("come back to HSI\n");
1649 	set_clksrc(priv, CLK_MPU_HSI);
1650 	set_clksrc(priv, CLK_AXI_HSI);
1651 	set_clksrc(priv, CLK_MCU_HSI);
1652 
1653 	debug("pll stop\n");
1654 	for (i = 0; i < _PLL_NB; i++)
1655 		pll_stop(priv, i);
1656 
1657 	/* configure HSIDIV */
1658 	debug("configure HSIDIV\n");
1659 	if (priv->osc[_HSI]) {
1660 		stm32mp1_hsidiv(rcc, priv->osc[_HSI]);
1661 		stgen_config(priv);
1662 	}
1663 
1664 	/* select DIV */
1665 	debug("select DIV\n");
1666 	/* no ready bit when MPUSRC != CLK_MPU_PLL1P_DIV, MPUDIV is disabled */
1667 	writel(clkdiv[CLKDIV_MPU] & RCC_DIVR_DIV_MASK, rcc + RCC_MPCKDIVR);
1668 	set_clkdiv(clkdiv[CLKDIV_AXI], rcc + RCC_AXIDIVR);
1669 	set_clkdiv(clkdiv[CLKDIV_APB4], rcc + RCC_APB4DIVR);
1670 	set_clkdiv(clkdiv[CLKDIV_APB5], rcc + RCC_APB5DIVR);
1671 	set_clkdiv(clkdiv[CLKDIV_MCU], rcc + RCC_MCUDIVR);
1672 	set_clkdiv(clkdiv[CLKDIV_APB1], rcc + RCC_APB1DIVR);
1673 	set_clkdiv(clkdiv[CLKDIV_APB2], rcc + RCC_APB2DIVR);
1674 	set_clkdiv(clkdiv[CLKDIV_APB3], rcc + RCC_APB3DIVR);
1675 
1676 	/* no ready bit for RTC */
1677 	writel(clkdiv[CLKDIV_RTC] & RCC_DIVR_DIV_MASK, rcc + RCC_RTCDIVR);
1678 
1679 	/* configure PLLs source */
1680 	debug("configure PLLs source\n");
1681 	set_clksrc(priv, clksrc[CLKSRC_PLL12]);
1682 	set_clksrc(priv, clksrc[CLKSRC_PLL3]);
1683 	set_clksrc(priv, clksrc[CLKSRC_PLL4]);
1684 
1685 	/* configure and start PLLs */
1686 	debug("configure PLLs\n");
1687 	for (i = 0; i < _PLL_NB; i++) {
1688 		u32 fracv;
1689 		u32 csg[PLLCSG_NB];
1690 
1691 		debug("configure PLL %d @ %d\n", i,
1692 		      ofnode_to_offset(plloff[i]));
1693 		if (!ofnode_valid(plloff[i]))
1694 			continue;
1695 
1696 		fracv = ofnode_read_u32_default(plloff[i], "frac", 0);
1697 		pll_config(priv, i, pllcfg[i], fracv);
1698 		ret = ofnode_read_u32_array(plloff[i], "csg", csg, PLLCSG_NB);
1699 		if (!ret) {
1700 			pll_csg(priv, i, csg);
1701 		} else if (ret != -FDT_ERR_NOTFOUND) {
1702 			debug("invalid csg node for pll@%d res=%d\n", i, ret);
1703 			return ret;
1704 		}
1705 		pll_start(priv, i);
1706 	}
1707 
1708 	/* wait and start PLLs ouptut when ready */
1709 	for (i = 0; i < _PLL_NB; i++) {
1710 		if (!ofnode_valid(plloff[i]))
1711 			continue;
1712 		debug("output PLL %d\n", i);
1713 		pll_output(priv, i, pllcfg[i][PLLCFG_O]);
1714 	}
1715 
1716 	/* wait LSE ready before to use it */
1717 	if (priv->osc[_LSE])
1718 		stm32mp1_lse_wait(rcc);
1719 
1720 	/* configure with expected clock source */
1721 	debug("CLKSRC\n");
1722 	set_clksrc(priv, clksrc[CLKSRC_MPU]);
1723 	set_clksrc(priv, clksrc[CLKSRC_AXI]);
1724 	set_clksrc(priv, clksrc[CLKSRC_MCU]);
1725 	set_rtcsrc(priv, clksrc[CLKSRC_RTC], lse_css);
1726 
1727 	/* configure PKCK */
1728 	debug("PKCK\n");
1729 	pkcs_cell = dev_read_prop(dev, "st,pkcs", &len);
1730 	if (pkcs_cell) {
1731 		bool ckper_disabled = false;
1732 
1733 		for (i = 0; i < len / sizeof(u32); i++) {
1734 			u32 pkcs = (u32)fdt32_to_cpu(pkcs_cell[i]);
1735 
1736 			if (pkcs == CLK_CKPER_DISABLED) {
1737 				ckper_disabled = true;
1738 				continue;
1739 			}
1740 			pkcs_config(priv, pkcs);
1741 		}
1742 		/* CKPER is source for some peripheral clock
1743 		 * (FMC-NAND / QPSI-NOR) and switching source is allowed
1744 		 * only if previous clock is still ON
1745 		 * => deactivated CKPER only after switching clock
1746 		 */
1747 		if (ckper_disabled)
1748 			pkcs_config(priv, CLK_CKPER_DISABLED);
1749 	}
1750 
1751 	/* STGEN clock source can change with CLK_STGEN_XXX */
1752 	stgen_config(priv);
1753 
1754 	debug("oscillator off\n");
1755 	/* switch OFF HSI if not found in device-tree */
1756 	if (!priv->osc[_HSI])
1757 		stm32mp1_hsi_set(rcc, 0);
1758 
1759 	/* Software Self-Refresh mode (SSR) during DDR initilialization */
1760 	clrsetbits_le32(priv->base + RCC_DDRITFCR,
1761 			RCC_DDRITFCR_DDRCKMOD_MASK,
1762 			RCC_DDRITFCR_DDRCKMOD_SSR <<
1763 			RCC_DDRITFCR_DDRCKMOD_SHIFT);
1764 
1765 	return 0;
1766 }
1767 #endif /* STM32MP1_CLOCK_TREE_INIT */
1768 
1769 static int pll_set_output_rate(struct udevice *dev,
1770 			       int pll_id,
1771 			       int div_id,
1772 			       unsigned long clk_rate)
1773 {
1774 	struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
1775 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
1776 	u32 pllxcr = priv->base + pll[pll_id].pllxcr;
1777 	int div;
1778 	ulong fvco;
1779 
1780 	if (div_id > _DIV_NB)
1781 		return -EINVAL;
1782 
1783 	fvco = pll_get_fvco(priv, pll_id);
1784 
1785 	if (fvco <= clk_rate)
1786 		div = 1;
1787 	else
1788 		div = DIV_ROUND_UP(fvco, clk_rate);
1789 
1790 	if (div > 128)
1791 		div = 128;
1792 
1793 	debug("fvco = %ld, clk_rate = %ld, div=%d\n", fvco, clk_rate, div);
1794 	/* stop the requested output */
1795 	clrbits_le32(pllxcr, 0x1 << div_id << RCC_PLLNCR_DIVEN_SHIFT);
1796 	/* change divider */
1797 	clrsetbits_le32(priv->base + pll[pll_id].pllxcfgr2,
1798 			RCC_PLLNCFGR2_DIVX_MASK << RCC_PLLNCFGR2_SHIFT(div_id),
1799 			(div - 1) << RCC_PLLNCFGR2_SHIFT(div_id));
1800 	/* start the requested output */
1801 	setbits_le32(pllxcr, 0x1 << div_id << RCC_PLLNCR_DIVEN_SHIFT);
1802 
1803 	return 0;
1804 }
1805 
1806 static ulong stm32mp1_clk_set_rate(struct clk *clk, unsigned long clk_rate)
1807 {
1808 	struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
1809 	int p;
1810 
1811 	switch (clk->id) {
1812 	case LTDC_PX:
1813 	case DSI_PX:
1814 		break;
1815 	default:
1816 		pr_err("not supported");
1817 		return -EINVAL;
1818 	}
1819 
1820 	p = stm32mp1_clk_get_parent(priv, clk->id);
1821 	if (p < 0)
1822 		return -EINVAL;
1823 
1824 	switch (p) {
1825 	case _PLL4_Q:
1826 		/* for LTDC_PX and DSI_PX case */
1827 		return pll_set_output_rate(clk->dev, _PLL4, _DIV_Q, clk_rate);
1828 	}
1829 
1830 	return -EINVAL;
1831 }
1832 
1833 static void stm32mp1_osc_clk_init(const char *name,
1834 				  struct stm32mp1_clk_priv *priv,
1835 				  int index)
1836 {
1837 	struct clk clk;
1838 	struct udevice *dev = NULL;
1839 
1840 	priv->osc[index] = 0;
1841 	clk.id = 0;
1842 	if (!uclass_get_device_by_name(UCLASS_CLK, name, &dev)) {
1843 		if (clk_request(dev, &clk))
1844 			pr_err("%s request", name);
1845 		else
1846 			priv->osc[index] = clk_get_rate(&clk);
1847 	}
1848 	priv->osc_dev[index] = dev;
1849 }
1850 
1851 static void stm32mp1_osc_init(struct udevice *dev)
1852 {
1853 	struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
1854 	int i;
1855 	const char *name[NB_OSC] = {
1856 		[_LSI] = "clk-lsi",
1857 		[_LSE] = "clk-lse",
1858 		[_HSI] = "clk-hsi",
1859 		[_HSE] = "clk-hse",
1860 		[_CSI] = "clk-csi",
1861 		[_I2S_CKIN] = "i2s_ckin",
1862 		[_USB_PHY_48] = "ck_usbo_48m"};
1863 
1864 	for (i = 0; i < NB_OSC; i++) {
1865 		stm32mp1_osc_clk_init(name[i], priv, i);
1866 		debug("%d: %s => %x\n", i, name[i], (u32)priv->osc[i]);
1867 	}
1868 }
1869 
1870 static int stm32mp1_clk_probe(struct udevice *dev)
1871 {
1872 	int result = 0;
1873 	struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
1874 
1875 	priv->base = dev_read_addr(dev->parent);
1876 	if (priv->base == FDT_ADDR_T_NONE)
1877 		return -EINVAL;
1878 
1879 	priv->data = (void *)&stm32mp1_data;
1880 
1881 	if (!priv->data->gate || !priv->data->sel ||
1882 	    !priv->data->pll)
1883 		return -EINVAL;
1884 
1885 	stm32mp1_osc_init(dev);
1886 
1887 #ifdef STM32MP1_CLOCK_TREE_INIT
1888 	/* clock tree init is done only one time, before relocation */
1889 	if (!(gd->flags & GD_FLG_RELOC))
1890 		result = stm32mp1_clktree(dev);
1891 #endif
1892 
1893 	return result;
1894 }
1895 
1896 static const struct clk_ops stm32mp1_clk_ops = {
1897 	.enable = stm32mp1_clk_enable,
1898 	.disable = stm32mp1_clk_disable,
1899 	.get_rate = stm32mp1_clk_get_rate,
1900 	.set_rate = stm32mp1_clk_set_rate,
1901 };
1902 
1903 U_BOOT_DRIVER(stm32mp1_clock) = {
1904 	.name = "stm32mp1_clk",
1905 	.id = UCLASS_CLK,
1906 	.ops = &stm32mp1_clk_ops,
1907 	.priv_auto_alloc_size = sizeof(struct stm32mp1_clk_priv),
1908 	.probe = stm32mp1_clk_probe,
1909 };
1910