xref: /openbmc/u-boot/common/dlmalloc.c (revision d59476b6446799c21e64147d86483140154c1886)
1 #include <common.h>
2 
3 #if 0	/* Moved to malloc.h */
4 /* ---------- To make a malloc.h, start cutting here ------------ */
5 
6 /*
7   A version of malloc/free/realloc written by Doug Lea and released to the
8   public domain.  Send questions/comments/complaints/performance data
9   to dl@cs.oswego.edu
10 
11 * VERSION 2.6.6  Sun Mar  5 19:10:03 2000  Doug Lea  (dl at gee)
12 
13    Note: There may be an updated version of this malloc obtainable at
14 	   ftp://g.oswego.edu/pub/misc/malloc.c
15 	 Check before installing!
16 
17 * Why use this malloc?
18 
19   This is not the fastest, most space-conserving, most portable, or
20   most tunable malloc ever written. However it is among the fastest
21   while also being among the most space-conserving, portable and tunable.
22   Consistent balance across these factors results in a good general-purpose
23   allocator. For a high-level description, see
24      http://g.oswego.edu/dl/html/malloc.html
25 
26 * Synopsis of public routines
27 
28   (Much fuller descriptions are contained in the program documentation below.)
29 
30   malloc(size_t n);
31      Return a pointer to a newly allocated chunk of at least n bytes, or null
32      if no space is available.
33   free(Void_t* p);
34      Release the chunk of memory pointed to by p, or no effect if p is null.
35   realloc(Void_t* p, size_t n);
36      Return a pointer to a chunk of size n that contains the same data
37      as does chunk p up to the minimum of (n, p's size) bytes, or null
38      if no space is available. The returned pointer may or may not be
39      the same as p. If p is null, equivalent to malloc.  Unless the
40      #define REALLOC_ZERO_BYTES_FREES below is set, realloc with a
41      size argument of zero (re)allocates a minimum-sized chunk.
42   memalign(size_t alignment, size_t n);
43      Return a pointer to a newly allocated chunk of n bytes, aligned
44      in accord with the alignment argument, which must be a power of
45      two.
46   valloc(size_t n);
47      Equivalent to memalign(pagesize, n), where pagesize is the page
48      size of the system (or as near to this as can be figured out from
49      all the includes/defines below.)
50   pvalloc(size_t n);
51      Equivalent to valloc(minimum-page-that-holds(n)), that is,
52      round up n to nearest pagesize.
53   calloc(size_t unit, size_t quantity);
54      Returns a pointer to quantity * unit bytes, with all locations
55      set to zero.
56   cfree(Void_t* p);
57      Equivalent to free(p).
58   malloc_trim(size_t pad);
59      Release all but pad bytes of freed top-most memory back
60      to the system. Return 1 if successful, else 0.
61   malloc_usable_size(Void_t* p);
62      Report the number usable allocated bytes associated with allocated
63      chunk p. This may or may not report more bytes than were requested,
64      due to alignment and minimum size constraints.
65   malloc_stats();
66      Prints brief summary statistics.
67   mallinfo()
68      Returns (by copy) a struct containing various summary statistics.
69   mallopt(int parameter_number, int parameter_value)
70      Changes one of the tunable parameters described below. Returns
71      1 if successful in changing the parameter, else 0.
72 
73 * Vital statistics:
74 
75   Alignment:                            8-byte
76        8 byte alignment is currently hardwired into the design.  This
77        seems to suffice for all current machines and C compilers.
78 
79   Assumed pointer representation:       4 or 8 bytes
80        Code for 8-byte pointers is untested by me but has worked
81        reliably by Wolfram Gloger, who contributed most of the
82        changes supporting this.
83 
84   Assumed size_t  representation:       4 or 8 bytes
85        Note that size_t is allowed to be 4 bytes even if pointers are 8.
86 
87   Minimum overhead per allocated chunk: 4 or 8 bytes
88        Each malloced chunk has a hidden overhead of 4 bytes holding size
89        and status information.
90 
91   Minimum allocated size: 4-byte ptrs:  16 bytes    (including 4 overhead)
92 			  8-byte ptrs:  24/32 bytes (including, 4/8 overhead)
93 
94        When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
95        ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
96        needed; 4 (8) for a trailing size field
97        and 8 (16) bytes for free list pointers. Thus, the minimum
98        allocatable size is 16/24/32 bytes.
99 
100        Even a request for zero bytes (i.e., malloc(0)) returns a
101        pointer to something of the minimum allocatable size.
102 
103   Maximum allocated size: 4-byte size_t: 2^31 -  8 bytes
104 			  8-byte size_t: 2^63 - 16 bytes
105 
106        It is assumed that (possibly signed) size_t bit values suffice to
107        represent chunk sizes. `Possibly signed' is due to the fact
108        that `size_t' may be defined on a system as either a signed or
109        an unsigned type. To be conservative, values that would appear
110        as negative numbers are avoided.
111        Requests for sizes with a negative sign bit when the request
112        size is treaded as a long will return null.
113 
114   Maximum overhead wastage per allocated chunk: normally 15 bytes
115 
116        Alignnment demands, plus the minimum allocatable size restriction
117        make the normal worst-case wastage 15 bytes (i.e., up to 15
118        more bytes will be allocated than were requested in malloc), with
119        two exceptions:
120 	 1. Because requests for zero bytes allocate non-zero space,
121 	    the worst case wastage for a request of zero bytes is 24 bytes.
122 	 2. For requests >= mmap_threshold that are serviced via
123 	    mmap(), the worst case wastage is 8 bytes plus the remainder
124 	    from a system page (the minimal mmap unit); typically 4096 bytes.
125 
126 * Limitations
127 
128     Here are some features that are NOT currently supported
129 
130     * No user-definable hooks for callbacks and the like.
131     * No automated mechanism for fully checking that all accesses
132       to malloced memory stay within their bounds.
133     * No support for compaction.
134 
135 * Synopsis of compile-time options:
136 
137     People have reported using previous versions of this malloc on all
138     versions of Unix, sometimes by tweaking some of the defines
139     below. It has been tested most extensively on Solaris and
140     Linux. It is also reported to work on WIN32 platforms.
141     People have also reported adapting this malloc for use in
142     stand-alone embedded systems.
143 
144     The implementation is in straight, hand-tuned ANSI C.  Among other
145     consequences, it uses a lot of macros.  Because of this, to be at
146     all usable, this code should be compiled using an optimizing compiler
147     (for example gcc -O2) that can simplify expressions and control
148     paths.
149 
150   __STD_C                  (default: derived from C compiler defines)
151      Nonzero if using ANSI-standard C compiler, a C++ compiler, or
152      a C compiler sufficiently close to ANSI to get away with it.
153   DEBUG                    (default: NOT defined)
154      Define to enable debugging. Adds fairly extensive assertion-based
155      checking to help track down memory errors, but noticeably slows down
156      execution.
157   REALLOC_ZERO_BYTES_FREES (default: NOT defined)
158      Define this if you think that realloc(p, 0) should be equivalent
159      to free(p). Otherwise, since malloc returns a unique pointer for
160      malloc(0), so does realloc(p, 0).
161   HAVE_MEMCPY               (default: defined)
162      Define if you are not otherwise using ANSI STD C, but still
163      have memcpy and memset in your C library and want to use them.
164      Otherwise, simple internal versions are supplied.
165   USE_MEMCPY               (default: 1 if HAVE_MEMCPY is defined, 0 otherwise)
166      Define as 1 if you want the C library versions of memset and
167      memcpy called in realloc and calloc (otherwise macro versions are used).
168      At least on some platforms, the simple macro versions usually
169      outperform libc versions.
170   HAVE_MMAP                 (default: defined as 1)
171      Define to non-zero to optionally make malloc() use mmap() to
172      allocate very large blocks.
173   HAVE_MREMAP                 (default: defined as 0 unless Linux libc set)
174      Define to non-zero to optionally make realloc() use mremap() to
175      reallocate very large blocks.
176   malloc_getpagesize        (default: derived from system #includes)
177      Either a constant or routine call returning the system page size.
178   HAVE_USR_INCLUDE_MALLOC_H (default: NOT defined)
179      Optionally define if you are on a system with a /usr/include/malloc.h
180      that declares struct mallinfo. It is not at all necessary to
181      define this even if you do, but will ensure consistency.
182   INTERNAL_SIZE_T           (default: size_t)
183      Define to a 32-bit type (probably `unsigned int') if you are on a
184      64-bit machine, yet do not want or need to allow malloc requests of
185      greater than 2^31 to be handled. This saves space, especially for
186      very small chunks.
187   INTERNAL_LINUX_C_LIB      (default: NOT defined)
188      Defined only when compiled as part of Linux libc.
189      Also note that there is some odd internal name-mangling via defines
190      (for example, internally, `malloc' is named `mALLOc') needed
191      when compiling in this case. These look funny but don't otherwise
192      affect anything.
193   WIN32                     (default: undefined)
194      Define this on MS win (95, nt) platforms to compile in sbrk emulation.
195   LACKS_UNISTD_H            (default: undefined if not WIN32)
196      Define this if your system does not have a <unistd.h>.
197   LACKS_SYS_PARAM_H         (default: undefined if not WIN32)
198      Define this if your system does not have a <sys/param.h>.
199   MORECORE                  (default: sbrk)
200      The name of the routine to call to obtain more memory from the system.
201   MORECORE_FAILURE          (default: -1)
202      The value returned upon failure of MORECORE.
203   MORECORE_CLEARS           (default 1)
204      true (1) if the routine mapped to MORECORE zeroes out memory (which
205      holds for sbrk).
206   DEFAULT_TRIM_THRESHOLD
207   DEFAULT_TOP_PAD
208   DEFAULT_MMAP_THRESHOLD
209   DEFAULT_MMAP_MAX
210      Default values of tunable parameters (described in detail below)
211      controlling interaction with host system routines (sbrk, mmap, etc).
212      These values may also be changed dynamically via mallopt(). The
213      preset defaults are those that give best performance for typical
214      programs/systems.
215   USE_DL_PREFIX             (default: undefined)
216      Prefix all public routines with the string 'dl'.  Useful to
217      quickly avoid procedure declaration conflicts and linker symbol
218      conflicts with existing memory allocation routines.
219 
220 
221 */
222 
223 
224 
225 /* Preliminaries */
226 
227 #ifndef __STD_C
228 #ifdef __STDC__
229 #define __STD_C     1
230 #else
231 #if __cplusplus
232 #define __STD_C     1
233 #else
234 #define __STD_C     0
235 #endif /*__cplusplus*/
236 #endif /*__STDC__*/
237 #endif /*__STD_C*/
238 
239 #ifndef Void_t
240 #if (__STD_C || defined(WIN32))
241 #define Void_t      void
242 #else
243 #define Void_t      char
244 #endif
245 #endif /*Void_t*/
246 
247 #if __STD_C
248 #include <stddef.h>   /* for size_t */
249 #else
250 #include <sys/types.h>
251 #endif
252 
253 #ifdef __cplusplus
254 extern "C" {
255 #endif
256 
257 #include <stdio.h>    /* needed for malloc_stats */
258 
259 
260 /*
261   Compile-time options
262 */
263 
264 
265 /*
266     Debugging:
267 
268     Because freed chunks may be overwritten with link fields, this
269     malloc will often die when freed memory is overwritten by user
270     programs.  This can be very effective (albeit in an annoying way)
271     in helping track down dangling pointers.
272 
273     If you compile with -DDEBUG, a number of assertion checks are
274     enabled that will catch more memory errors. You probably won't be
275     able to make much sense of the actual assertion errors, but they
276     should help you locate incorrectly overwritten memory.  The
277     checking is fairly extensive, and will slow down execution
278     noticeably. Calling malloc_stats or mallinfo with DEBUG set will
279     attempt to check every non-mmapped allocated and free chunk in the
280     course of computing the summmaries. (By nature, mmapped regions
281     cannot be checked very much automatically.)
282 
283     Setting DEBUG may also be helpful if you are trying to modify
284     this code. The assertions in the check routines spell out in more
285     detail the assumptions and invariants underlying the algorithms.
286 
287 */
288 
289 /*
290   INTERNAL_SIZE_T is the word-size used for internal bookkeeping
291   of chunk sizes. On a 64-bit machine, you can reduce malloc
292   overhead by defining INTERNAL_SIZE_T to be a 32 bit `unsigned int'
293   at the expense of not being able to handle requests greater than
294   2^31. This limitation is hardly ever a concern; you are encouraged
295   to set this. However, the default version is the same as size_t.
296 */
297 
298 #ifndef INTERNAL_SIZE_T
299 #define INTERNAL_SIZE_T size_t
300 #endif
301 
302 /*
303   REALLOC_ZERO_BYTES_FREES should be set if a call to
304   realloc with zero bytes should be the same as a call to free.
305   Some people think it should. Otherwise, since this malloc
306   returns a unique pointer for malloc(0), so does realloc(p, 0).
307 */
308 
309 
310 /*   #define REALLOC_ZERO_BYTES_FREES */
311 
312 
313 /*
314   WIN32 causes an emulation of sbrk to be compiled in
315   mmap-based options are not currently supported in WIN32.
316 */
317 
318 /* #define WIN32 */
319 #ifdef WIN32
320 #define MORECORE wsbrk
321 #define HAVE_MMAP 0
322 
323 #define LACKS_UNISTD_H
324 #define LACKS_SYS_PARAM_H
325 
326 /*
327   Include 'windows.h' to get the necessary declarations for the
328   Microsoft Visual C++ data structures and routines used in the 'sbrk'
329   emulation.
330 
331   Define WIN32_LEAN_AND_MEAN so that only the essential Microsoft
332   Visual C++ header files are included.
333 */
334 #define WIN32_LEAN_AND_MEAN
335 #include <windows.h>
336 #endif
337 
338 
339 /*
340   HAVE_MEMCPY should be defined if you are not otherwise using
341   ANSI STD C, but still have memcpy and memset in your C library
342   and want to use them in calloc and realloc. Otherwise simple
343   macro versions are defined here.
344 
345   USE_MEMCPY should be defined as 1 if you actually want to
346   have memset and memcpy called. People report that the macro
347   versions are often enough faster than libc versions on many
348   systems that it is better to use them.
349 
350 */
351 
352 #define HAVE_MEMCPY
353 
354 #ifndef USE_MEMCPY
355 #ifdef HAVE_MEMCPY
356 #define USE_MEMCPY 1
357 #else
358 #define USE_MEMCPY 0
359 #endif
360 #endif
361 
362 #if (__STD_C || defined(HAVE_MEMCPY))
363 
364 #if __STD_C
365 void* memset(void*, int, size_t);
366 void* memcpy(void*, const void*, size_t);
367 #else
368 #ifdef WIN32
369 /* On Win32 platforms, 'memset()' and 'memcpy()' are already declared in */
370 /* 'windows.h' */
371 #else
372 Void_t* memset();
373 Void_t* memcpy();
374 #endif
375 #endif
376 #endif
377 
378 #if USE_MEMCPY
379 
380 /* The following macros are only invoked with (2n+1)-multiples of
381    INTERNAL_SIZE_T units, with a positive integer n. This is exploited
382    for fast inline execution when n is small. */
383 
384 #define MALLOC_ZERO(charp, nbytes)                                            \
385 do {                                                                          \
386   INTERNAL_SIZE_T mzsz = (nbytes);                                            \
387   if(mzsz <= 9*sizeof(mzsz)) {                                                \
388     INTERNAL_SIZE_T* mz = (INTERNAL_SIZE_T*) (charp);                         \
389     if(mzsz >= 5*sizeof(mzsz)) {     *mz++ = 0;                               \
390 				     *mz++ = 0;                               \
391       if(mzsz >= 7*sizeof(mzsz)) {   *mz++ = 0;                               \
392 				     *mz++ = 0;                               \
393 	if(mzsz >= 9*sizeof(mzsz)) { *mz++ = 0;                               \
394 				     *mz++ = 0; }}}                           \
395 				     *mz++ = 0;                               \
396 				     *mz++ = 0;                               \
397 				     *mz   = 0;                               \
398   } else memset((charp), 0, mzsz);                                            \
399 } while(0)
400 
401 #define MALLOC_COPY(dest,src,nbytes)                                          \
402 do {                                                                          \
403   INTERNAL_SIZE_T mcsz = (nbytes);                                            \
404   if(mcsz <= 9*sizeof(mcsz)) {                                                \
405     INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) (src);                        \
406     INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) (dest);                       \
407     if(mcsz >= 5*sizeof(mcsz)) {     *mcdst++ = *mcsrc++;                     \
408 				     *mcdst++ = *mcsrc++;                     \
409       if(mcsz >= 7*sizeof(mcsz)) {   *mcdst++ = *mcsrc++;                     \
410 				     *mcdst++ = *mcsrc++;                     \
411 	if(mcsz >= 9*sizeof(mcsz)) { *mcdst++ = *mcsrc++;                     \
412 				     *mcdst++ = *mcsrc++; }}}                 \
413 				     *mcdst++ = *mcsrc++;                     \
414 				     *mcdst++ = *mcsrc++;                     \
415 				     *mcdst   = *mcsrc  ;                     \
416   } else memcpy(dest, src, mcsz);                                             \
417 } while(0)
418 
419 #else /* !USE_MEMCPY */
420 
421 /* Use Duff's device for good zeroing/copying performance. */
422 
423 #define MALLOC_ZERO(charp, nbytes)                                            \
424 do {                                                                          \
425   INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp);                           \
426   long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn;                         \
427   if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
428   switch (mctmp) {                                                            \
429     case 0: for(;;) { *mzp++ = 0;                                             \
430     case 7:           *mzp++ = 0;                                             \
431     case 6:           *mzp++ = 0;                                             \
432     case 5:           *mzp++ = 0;                                             \
433     case 4:           *mzp++ = 0;                                             \
434     case 3:           *mzp++ = 0;                                             \
435     case 2:           *mzp++ = 0;                                             \
436     case 1:           *mzp++ = 0; if(mcn <= 0) break; mcn--; }                \
437   }                                                                           \
438 } while(0)
439 
440 #define MALLOC_COPY(dest,src,nbytes)                                          \
441 do {                                                                          \
442   INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src;                            \
443   INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest;                           \
444   long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn;                         \
445   if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
446   switch (mctmp) {                                                            \
447     case 0: for(;;) { *mcdst++ = *mcsrc++;                                    \
448     case 7:           *mcdst++ = *mcsrc++;                                    \
449     case 6:           *mcdst++ = *mcsrc++;                                    \
450     case 5:           *mcdst++ = *mcsrc++;                                    \
451     case 4:           *mcdst++ = *mcsrc++;                                    \
452     case 3:           *mcdst++ = *mcsrc++;                                    \
453     case 2:           *mcdst++ = *mcsrc++;                                    \
454     case 1:           *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; }       \
455   }                                                                           \
456 } while(0)
457 
458 #endif
459 
460 
461 /*
462   Define HAVE_MMAP to optionally make malloc() use mmap() to
463   allocate very large blocks.  These will be returned to the
464   operating system immediately after a free().
465 */
466 
467 #ifndef HAVE_MMAP
468 #define HAVE_MMAP 1
469 #endif
470 
471 /*
472   Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
473   large blocks.  This is currently only possible on Linux with
474   kernel versions newer than 1.3.77.
475 */
476 
477 #ifndef HAVE_MREMAP
478 #ifdef INTERNAL_LINUX_C_LIB
479 #define HAVE_MREMAP 1
480 #else
481 #define HAVE_MREMAP 0
482 #endif
483 #endif
484 
485 #if HAVE_MMAP
486 
487 #include <unistd.h>
488 #include <fcntl.h>
489 #include <sys/mman.h>
490 
491 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
492 #define MAP_ANONYMOUS MAP_ANON
493 #endif
494 
495 #endif /* HAVE_MMAP */
496 
497 /*
498   Access to system page size. To the extent possible, this malloc
499   manages memory from the system in page-size units.
500 
501   The following mechanics for getpagesize were adapted from
502   bsd/gnu getpagesize.h
503 */
504 
505 #ifndef LACKS_UNISTD_H
506 #  include <unistd.h>
507 #endif
508 
509 #ifndef malloc_getpagesize
510 #  ifdef _SC_PAGESIZE         /* some SVR4 systems omit an underscore */
511 #    ifndef _SC_PAGE_SIZE
512 #      define _SC_PAGE_SIZE _SC_PAGESIZE
513 #    endif
514 #  endif
515 #  ifdef _SC_PAGE_SIZE
516 #    define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
517 #  else
518 #    if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
519        extern size_t getpagesize();
520 #      define malloc_getpagesize getpagesize()
521 #    else
522 #      ifdef WIN32
523 #        define malloc_getpagesize (4096) /* TBD: Use 'GetSystemInfo' instead */
524 #      else
525 #        ifndef LACKS_SYS_PARAM_H
526 #          include <sys/param.h>
527 #        endif
528 #        ifdef EXEC_PAGESIZE
529 #          define malloc_getpagesize EXEC_PAGESIZE
530 #        else
531 #          ifdef NBPG
532 #            ifndef CLSIZE
533 #              define malloc_getpagesize NBPG
534 #            else
535 #              define malloc_getpagesize (NBPG * CLSIZE)
536 #            endif
537 #          else
538 #            ifdef NBPC
539 #              define malloc_getpagesize NBPC
540 #            else
541 #              ifdef PAGESIZE
542 #                define malloc_getpagesize PAGESIZE
543 #              else
544 #                define malloc_getpagesize (4096) /* just guess */
545 #              endif
546 #            endif
547 #          endif
548 #        endif
549 #      endif
550 #    endif
551 #  endif
552 #endif
553 
554 
555 /*
556 
557   This version of malloc supports the standard SVID/XPG mallinfo
558   routine that returns a struct containing the same kind of
559   information you can get from malloc_stats. It should work on
560   any SVID/XPG compliant system that has a /usr/include/malloc.h
561   defining struct mallinfo. (If you'd like to install such a thing
562   yourself, cut out the preliminary declarations as described above
563   and below and save them in a malloc.h file. But there's no
564   compelling reason to bother to do this.)
565 
566   The main declaration needed is the mallinfo struct that is returned
567   (by-copy) by mallinfo().  The SVID/XPG malloinfo struct contains a
568   bunch of fields, most of which are not even meaningful in this
569   version of malloc. Some of these fields are are instead filled by
570   mallinfo() with other numbers that might possibly be of interest.
571 
572   HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
573   /usr/include/malloc.h file that includes a declaration of struct
574   mallinfo.  If so, it is included; else an SVID2/XPG2 compliant
575   version is declared below.  These must be precisely the same for
576   mallinfo() to work.
577 
578 */
579 
580 /* #define HAVE_USR_INCLUDE_MALLOC_H */
581 
582 #if HAVE_USR_INCLUDE_MALLOC_H
583 #include "/usr/include/malloc.h"
584 #else
585 
586 /* SVID2/XPG mallinfo structure */
587 
588 struct mallinfo {
589   int arena;    /* total space allocated from system */
590   int ordblks;  /* number of non-inuse chunks */
591   int smblks;   /* unused -- always zero */
592   int hblks;    /* number of mmapped regions */
593   int hblkhd;   /* total space in mmapped regions */
594   int usmblks;  /* unused -- always zero */
595   int fsmblks;  /* unused -- always zero */
596   int uordblks; /* total allocated space */
597   int fordblks; /* total non-inuse space */
598   int keepcost; /* top-most, releasable (via malloc_trim) space */
599 };
600 
601 /* SVID2/XPG mallopt options */
602 
603 #define M_MXFAST  1    /* UNUSED in this malloc */
604 #define M_NLBLKS  2    /* UNUSED in this malloc */
605 #define M_GRAIN   3    /* UNUSED in this malloc */
606 #define M_KEEP    4    /* UNUSED in this malloc */
607 
608 #endif
609 
610 /* mallopt options that actually do something */
611 
612 #define M_TRIM_THRESHOLD    -1
613 #define M_TOP_PAD           -2
614 #define M_MMAP_THRESHOLD    -3
615 #define M_MMAP_MAX          -4
616 
617 
618 #ifndef DEFAULT_TRIM_THRESHOLD
619 #define DEFAULT_TRIM_THRESHOLD (128 * 1024)
620 #endif
621 
622 /*
623     M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
624       to keep before releasing via malloc_trim in free().
625 
626       Automatic trimming is mainly useful in long-lived programs.
627       Because trimming via sbrk can be slow on some systems, and can
628       sometimes be wasteful (in cases where programs immediately
629       afterward allocate more large chunks) the value should be high
630       enough so that your overall system performance would improve by
631       releasing.
632 
633       The trim threshold and the mmap control parameters (see below)
634       can be traded off with one another. Trimming and mmapping are
635       two different ways of releasing unused memory back to the
636       system. Between these two, it is often possible to keep
637       system-level demands of a long-lived program down to a bare
638       minimum. For example, in one test suite of sessions measuring
639       the XF86 X server on Linux, using a trim threshold of 128K and a
640       mmap threshold of 192K led to near-minimal long term resource
641       consumption.
642 
643       If you are using this malloc in a long-lived program, it should
644       pay to experiment with these values.  As a rough guide, you
645       might set to a value close to the average size of a process
646       (program) running on your system.  Releasing this much memory
647       would allow such a process to run in memory.  Generally, it's
648       worth it to tune for trimming rather tham memory mapping when a
649       program undergoes phases where several large chunks are
650       allocated and released in ways that can reuse each other's
651       storage, perhaps mixed with phases where there are no such
652       chunks at all.  And in well-behaved long-lived programs,
653       controlling release of large blocks via trimming versus mapping
654       is usually faster.
655 
656       However, in most programs, these parameters serve mainly as
657       protection against the system-level effects of carrying around
658       massive amounts of unneeded memory. Since frequent calls to
659       sbrk, mmap, and munmap otherwise degrade performance, the default
660       parameters are set to relatively high values that serve only as
661       safeguards.
662 
663       The default trim value is high enough to cause trimming only in
664       fairly extreme (by current memory consumption standards) cases.
665       It must be greater than page size to have any useful effect.  To
666       disable trimming completely, you can set to (unsigned long)(-1);
667 
668 
669 */
670 
671 
672 #ifndef DEFAULT_TOP_PAD
673 #define DEFAULT_TOP_PAD        (0)
674 #endif
675 
676 /*
677     M_TOP_PAD is the amount of extra `padding' space to allocate or
678       retain whenever sbrk is called. It is used in two ways internally:
679 
680       * When sbrk is called to extend the top of the arena to satisfy
681 	a new malloc request, this much padding is added to the sbrk
682 	request.
683 
684       * When malloc_trim is called automatically from free(),
685 	it is used as the `pad' argument.
686 
687       In both cases, the actual amount of padding is rounded
688       so that the end of the arena is always a system page boundary.
689 
690       The main reason for using padding is to avoid calling sbrk so
691       often. Having even a small pad greatly reduces the likelihood
692       that nearly every malloc request during program start-up (or
693       after trimming) will invoke sbrk, which needlessly wastes
694       time.
695 
696       Automatic rounding-up to page-size units is normally sufficient
697       to avoid measurable overhead, so the default is 0.  However, in
698       systems where sbrk is relatively slow, it can pay to increase
699       this value, at the expense of carrying around more memory than
700       the program needs.
701 
702 */
703 
704 
705 #ifndef DEFAULT_MMAP_THRESHOLD
706 #define DEFAULT_MMAP_THRESHOLD (128 * 1024)
707 #endif
708 
709 /*
710 
711     M_MMAP_THRESHOLD is the request size threshold for using mmap()
712       to service a request. Requests of at least this size that cannot
713       be allocated using already-existing space will be serviced via mmap.
714       (If enough normal freed space already exists it is used instead.)
715 
716       Using mmap segregates relatively large chunks of memory so that
717       they can be individually obtained and released from the host
718       system. A request serviced through mmap is never reused by any
719       other request (at least not directly; the system may just so
720       happen to remap successive requests to the same locations).
721 
722       Segregating space in this way has the benefit that mmapped space
723       can ALWAYS be individually released back to the system, which
724       helps keep the system level memory demands of a long-lived
725       program low. Mapped memory can never become `locked' between
726       other chunks, as can happen with normally allocated chunks, which
727       menas that even trimming via malloc_trim would not release them.
728 
729       However, it has the disadvantages that:
730 
731 	 1. The space cannot be reclaimed, consolidated, and then
732 	    used to service later requests, as happens with normal chunks.
733 	 2. It can lead to more wastage because of mmap page alignment
734 	    requirements
735 	 3. It causes malloc performance to be more dependent on host
736 	    system memory management support routines which may vary in
737 	    implementation quality and may impose arbitrary
738 	    limitations. Generally, servicing a request via normal
739 	    malloc steps is faster than going through a system's mmap.
740 
741       All together, these considerations should lead you to use mmap
742       only for relatively large requests.
743 
744 
745 */
746 
747 
748 #ifndef DEFAULT_MMAP_MAX
749 #if HAVE_MMAP
750 #define DEFAULT_MMAP_MAX       (64)
751 #else
752 #define DEFAULT_MMAP_MAX       (0)
753 #endif
754 #endif
755 
756 /*
757     M_MMAP_MAX is the maximum number of requests to simultaneously
758       service using mmap. This parameter exists because:
759 
760 	 1. Some systems have a limited number of internal tables for
761 	    use by mmap.
762 	 2. In most systems, overreliance on mmap can degrade overall
763 	    performance.
764 	 3. If a program allocates many large regions, it is probably
765 	    better off using normal sbrk-based allocation routines that
766 	    can reclaim and reallocate normal heap memory. Using a
767 	    small value allows transition into this mode after the
768 	    first few allocations.
769 
770       Setting to 0 disables all use of mmap.  If HAVE_MMAP is not set,
771       the default value is 0, and attempts to set it to non-zero values
772       in mallopt will fail.
773 */
774 
775 
776 /*
777     USE_DL_PREFIX will prefix all public routines with the string 'dl'.
778       Useful to quickly avoid procedure declaration conflicts and linker
779       symbol conflicts with existing memory allocation routines.
780 
781 */
782 
783 /* #define USE_DL_PREFIX */
784 
785 
786 /*
787 
788   Special defines for linux libc
789 
790   Except when compiled using these special defines for Linux libc
791   using weak aliases, this malloc is NOT designed to work in
792   multithreaded applications.  No semaphores or other concurrency
793   control are provided to ensure that multiple malloc or free calls
794   don't run at the same time, which could be disasterous. A single
795   semaphore could be used across malloc, realloc, and free (which is
796   essentially the effect of the linux weak alias approach). It would
797   be hard to obtain finer granularity.
798 
799 */
800 
801 
802 #ifdef INTERNAL_LINUX_C_LIB
803 
804 #if __STD_C
805 
806 Void_t * __default_morecore_init (ptrdiff_t);
807 Void_t *(*__morecore)(ptrdiff_t) = __default_morecore_init;
808 
809 #else
810 
811 Void_t * __default_morecore_init ();
812 Void_t *(*__morecore)() = __default_morecore_init;
813 
814 #endif
815 
816 #define MORECORE (*__morecore)
817 #define MORECORE_FAILURE 0
818 #define MORECORE_CLEARS 1
819 
820 #else /* INTERNAL_LINUX_C_LIB */
821 
822 #if __STD_C
823 extern Void_t*     sbrk(ptrdiff_t);
824 #else
825 extern Void_t*     sbrk();
826 #endif
827 
828 #ifndef MORECORE
829 #define MORECORE sbrk
830 #endif
831 
832 #ifndef MORECORE_FAILURE
833 #define MORECORE_FAILURE -1
834 #endif
835 
836 #ifndef MORECORE_CLEARS
837 #define MORECORE_CLEARS 1
838 #endif
839 
840 #endif /* INTERNAL_LINUX_C_LIB */
841 
842 #if defined(INTERNAL_LINUX_C_LIB) && defined(__ELF__)
843 
844 #define cALLOc		__libc_calloc
845 #define fREe		__libc_free
846 #define mALLOc		__libc_malloc
847 #define mEMALIGn	__libc_memalign
848 #define rEALLOc		__libc_realloc
849 #define vALLOc		__libc_valloc
850 #define pvALLOc		__libc_pvalloc
851 #define mALLINFo	__libc_mallinfo
852 #define mALLOPt		__libc_mallopt
853 
854 #pragma weak calloc = __libc_calloc
855 #pragma weak free = __libc_free
856 #pragma weak cfree = __libc_free
857 #pragma weak malloc = __libc_malloc
858 #pragma weak memalign = __libc_memalign
859 #pragma weak realloc = __libc_realloc
860 #pragma weak valloc = __libc_valloc
861 #pragma weak pvalloc = __libc_pvalloc
862 #pragma weak mallinfo = __libc_mallinfo
863 #pragma weak mallopt = __libc_mallopt
864 
865 #else
866 
867 #ifdef USE_DL_PREFIX
868 #define cALLOc		dlcalloc
869 #define fREe		dlfree
870 #define mALLOc		dlmalloc
871 #define mEMALIGn	dlmemalign
872 #define rEALLOc		dlrealloc
873 #define vALLOc		dlvalloc
874 #define pvALLOc		dlpvalloc
875 #define mALLINFo	dlmallinfo
876 #define mALLOPt		dlmallopt
877 #else /* USE_DL_PREFIX */
878 #define cALLOc		calloc
879 #define fREe		free
880 #define mALLOc		malloc
881 #define mEMALIGn	memalign
882 #define rEALLOc		realloc
883 #define vALLOc		valloc
884 #define pvALLOc		pvalloc
885 #define mALLINFo	mallinfo
886 #define mALLOPt		mallopt
887 #endif /* USE_DL_PREFIX */
888 
889 #endif
890 
891 /* Public routines */
892 
893 #if __STD_C
894 
895 Void_t* mALLOc(size_t);
896 void    fREe(Void_t*);
897 Void_t* rEALLOc(Void_t*, size_t);
898 Void_t* mEMALIGn(size_t, size_t);
899 Void_t* vALLOc(size_t);
900 Void_t* pvALLOc(size_t);
901 Void_t* cALLOc(size_t, size_t);
902 void    cfree(Void_t*);
903 int     malloc_trim(size_t);
904 size_t  malloc_usable_size(Void_t*);
905 void    malloc_stats();
906 int     mALLOPt(int, int);
907 struct mallinfo mALLINFo(void);
908 #else
909 Void_t* mALLOc();
910 void    fREe();
911 Void_t* rEALLOc();
912 Void_t* mEMALIGn();
913 Void_t* vALLOc();
914 Void_t* pvALLOc();
915 Void_t* cALLOc();
916 void    cfree();
917 int     malloc_trim();
918 size_t  malloc_usable_size();
919 void    malloc_stats();
920 int     mALLOPt();
921 struct mallinfo mALLINFo();
922 #endif
923 
924 
925 #ifdef __cplusplus
926 };  /* end of extern "C" */
927 #endif
928 
929 /* ---------- To make a malloc.h, end cutting here ------------ */
930 #endif	/* 0 */			/* Moved to malloc.h */
931 
932 #include <malloc.h>
933 #include <asm/io.h>
934 
935 #ifdef DEBUG
936 #if __STD_C
937 static void malloc_update_mallinfo (void);
938 void malloc_stats (void);
939 #else
940 static void malloc_update_mallinfo ();
941 void malloc_stats();
942 #endif
943 #endif	/* DEBUG */
944 
945 DECLARE_GLOBAL_DATA_PTR;
946 
947 /*
948   Emulation of sbrk for WIN32
949   All code within the ifdef WIN32 is untested by me.
950 
951   Thanks to Martin Fong and others for supplying this.
952 */
953 
954 
955 #ifdef WIN32
956 
957 #define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \
958 ~(malloc_getpagesize-1))
959 #define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1))
960 
961 /* resrve 64MB to insure large contiguous space */
962 #define RESERVED_SIZE (1024*1024*64)
963 #define NEXT_SIZE (2048*1024)
964 #define TOP_MEMORY ((unsigned long)2*1024*1024*1024)
965 
966 struct GmListElement;
967 typedef struct GmListElement GmListElement;
968 
969 struct GmListElement
970 {
971 	GmListElement* next;
972 	void* base;
973 };
974 
975 static GmListElement* head = 0;
976 static unsigned int gNextAddress = 0;
977 static unsigned int gAddressBase = 0;
978 static unsigned int gAllocatedSize = 0;
979 
980 static
981 GmListElement* makeGmListElement (void* bas)
982 {
983 	GmListElement* this;
984 	this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement));
985 	assert (this);
986 	if (this)
987 	{
988 		this->base = bas;
989 		this->next = head;
990 		head = this;
991 	}
992 	return this;
993 }
994 
995 void gcleanup ()
996 {
997 	BOOL rval;
998 	assert ( (head == NULL) || (head->base == (void*)gAddressBase));
999 	if (gAddressBase && (gNextAddress - gAddressBase))
1000 	{
1001 		rval = VirtualFree ((void*)gAddressBase,
1002 							gNextAddress - gAddressBase,
1003 							MEM_DECOMMIT);
1004 	assert (rval);
1005 	}
1006 	while (head)
1007 	{
1008 		GmListElement* next = head->next;
1009 		rval = VirtualFree (head->base, 0, MEM_RELEASE);
1010 		assert (rval);
1011 		LocalFree (head);
1012 		head = next;
1013 	}
1014 }
1015 
1016 static
1017 void* findRegion (void* start_address, unsigned long size)
1018 {
1019 	MEMORY_BASIC_INFORMATION info;
1020 	if (size >= TOP_MEMORY) return NULL;
1021 
1022 	while ((unsigned long)start_address + size < TOP_MEMORY)
1023 	{
1024 		VirtualQuery (start_address, &info, sizeof (info));
1025 		if ((info.State == MEM_FREE) && (info.RegionSize >= size))
1026 			return start_address;
1027 		else
1028 		{
1029 			/* Requested region is not available so see if the */
1030 			/* next region is available.  Set 'start_address' */
1031 			/* to the next region and call 'VirtualQuery()' */
1032 			/* again. */
1033 
1034 			start_address = (char*)info.BaseAddress + info.RegionSize;
1035 
1036 			/* Make sure we start looking for the next region */
1037 			/* on the *next* 64K boundary.  Otherwise, even if */
1038 			/* the new region is free according to */
1039 			/* 'VirtualQuery()', the subsequent call to */
1040 			/* 'VirtualAlloc()' (which follows the call to */
1041 			/* this routine in 'wsbrk()') will round *down* */
1042 			/* the requested address to a 64K boundary which */
1043 			/* we already know is an address in the */
1044 			/* unavailable region.  Thus, the subsequent call */
1045 			/* to 'VirtualAlloc()' will fail and bring us back */
1046 			/* here, causing us to go into an infinite loop. */
1047 
1048 			start_address =
1049 				(void *) AlignPage64K((unsigned long) start_address);
1050 		}
1051 	}
1052 	return NULL;
1053 
1054 }
1055 
1056 
1057 void* wsbrk (long size)
1058 {
1059 	void* tmp;
1060 	if (size > 0)
1061 	{
1062 		if (gAddressBase == 0)
1063 		{
1064 			gAllocatedSize = max (RESERVED_SIZE, AlignPage (size));
1065 			gNextAddress = gAddressBase =
1066 				(unsigned int)VirtualAlloc (NULL, gAllocatedSize,
1067 											MEM_RESERVE, PAGE_NOACCESS);
1068 		} else if (AlignPage (gNextAddress + size) > (gAddressBase +
1069 gAllocatedSize))
1070 		{
1071 			long new_size = max (NEXT_SIZE, AlignPage (size));
1072 			void* new_address = (void*)(gAddressBase+gAllocatedSize);
1073 			do
1074 			{
1075 				new_address = findRegion (new_address, new_size);
1076 
1077 				if (new_address == 0)
1078 					return (void*)-1;
1079 
1080 				gAddressBase = gNextAddress =
1081 					(unsigned int)VirtualAlloc (new_address, new_size,
1082 												MEM_RESERVE, PAGE_NOACCESS);
1083 				/* repeat in case of race condition */
1084 				/* The region that we found has been snagged */
1085 				/* by another thread */
1086 			}
1087 			while (gAddressBase == 0);
1088 
1089 			assert (new_address == (void*)gAddressBase);
1090 
1091 			gAllocatedSize = new_size;
1092 
1093 			if (!makeGmListElement ((void*)gAddressBase))
1094 				return (void*)-1;
1095 		}
1096 		if ((size + gNextAddress) > AlignPage (gNextAddress))
1097 		{
1098 			void* res;
1099 			res = VirtualAlloc ((void*)AlignPage (gNextAddress),
1100 								(size + gNextAddress -
1101 								 AlignPage (gNextAddress)),
1102 								MEM_COMMIT, PAGE_READWRITE);
1103 			if (res == 0)
1104 				return (void*)-1;
1105 		}
1106 		tmp = (void*)gNextAddress;
1107 		gNextAddress = (unsigned int)tmp + size;
1108 		return tmp;
1109 	}
1110 	else if (size < 0)
1111 	{
1112 		unsigned int alignedGoal = AlignPage (gNextAddress + size);
1113 		/* Trim by releasing the virtual memory */
1114 		if (alignedGoal >= gAddressBase)
1115 		{
1116 			VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal,
1117 						 MEM_DECOMMIT);
1118 			gNextAddress = gNextAddress + size;
1119 			return (void*)gNextAddress;
1120 		}
1121 		else
1122 		{
1123 			VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase,
1124 						 MEM_DECOMMIT);
1125 			gNextAddress = gAddressBase;
1126 			return (void*)-1;
1127 		}
1128 	}
1129 	else
1130 	{
1131 		return (void*)gNextAddress;
1132 	}
1133 }
1134 
1135 #endif
1136 
1137 
1138 
1139 /*
1140   Type declarations
1141 */
1142 
1143 
1144 struct malloc_chunk
1145 {
1146   INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
1147   INTERNAL_SIZE_T size;      /* Size in bytes, including overhead. */
1148   struct malloc_chunk* fd;   /* double links -- used only if free. */
1149   struct malloc_chunk* bk;
1150 } __attribute__((__may_alias__)) ;
1151 
1152 typedef struct malloc_chunk* mchunkptr;
1153 
1154 /*
1155 
1156    malloc_chunk details:
1157 
1158     (The following includes lightly edited explanations by Colin Plumb.)
1159 
1160     Chunks of memory are maintained using a `boundary tag' method as
1161     described in e.g., Knuth or Standish.  (See the paper by Paul
1162     Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
1163     survey of such techniques.)  Sizes of free chunks are stored both
1164     in the front of each chunk and at the end.  This makes
1165     consolidating fragmented chunks into bigger chunks very fast.  The
1166     size fields also hold bits representing whether chunks are free or
1167     in use.
1168 
1169     An allocated chunk looks like this:
1170 
1171 
1172     chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1173 	    |             Size of previous chunk, if allocated            | |
1174 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1175 	    |             Size of chunk, in bytes                         |P|
1176       mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1177 	    |             User data starts here...                          .
1178 	    .                                                               .
1179 	    .             (malloc_usable_space() bytes)                     .
1180 	    .                                                               |
1181 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1182 	    |             Size of chunk                                     |
1183 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1184 
1185 
1186     Where "chunk" is the front of the chunk for the purpose of most of
1187     the malloc code, but "mem" is the pointer that is returned to the
1188     user.  "Nextchunk" is the beginning of the next contiguous chunk.
1189 
1190     Chunks always begin on even word boundries, so the mem portion
1191     (which is returned to the user) is also on an even word boundary, and
1192     thus double-word aligned.
1193 
1194     Free chunks are stored in circular doubly-linked lists, and look like this:
1195 
1196     chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1197 	    |             Size of previous chunk                            |
1198 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1199     `head:' |             Size of chunk, in bytes                         |P|
1200       mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1201 	    |             Forward pointer to next chunk in list             |
1202 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1203 	    |             Back pointer to previous chunk in list            |
1204 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1205 	    |             Unused space (may be 0 bytes long)                .
1206 	    .                                                               .
1207 	    .                                                               |
1208 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1209     `foot:' |             Size of chunk, in bytes                           |
1210 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1211 
1212     The P (PREV_INUSE) bit, stored in the unused low-order bit of the
1213     chunk size (which is always a multiple of two words), is an in-use
1214     bit for the *previous* chunk.  If that bit is *clear*, then the
1215     word before the current chunk size contains the previous chunk
1216     size, and can be used to find the front of the previous chunk.
1217     (The very first chunk allocated always has this bit set,
1218     preventing access to non-existent (or non-owned) memory.)
1219 
1220     Note that the `foot' of the current chunk is actually represented
1221     as the prev_size of the NEXT chunk. (This makes it easier to
1222     deal with alignments etc).
1223 
1224     The two exceptions to all this are
1225 
1226      1. The special chunk `top', which doesn't bother using the
1227 	trailing size field since there is no
1228 	next contiguous chunk that would have to index off it. (After
1229 	initialization, `top' is forced to always exist.  If it would
1230 	become less than MINSIZE bytes long, it is replenished via
1231 	malloc_extend_top.)
1232 
1233      2. Chunks allocated via mmap, which have the second-lowest-order
1234 	bit (IS_MMAPPED) set in their size fields.  Because they are
1235 	never merged or traversed from any other chunk, they have no
1236 	foot size or inuse information.
1237 
1238     Available chunks are kept in any of several places (all declared below):
1239 
1240     * `av': An array of chunks serving as bin headers for consolidated
1241        chunks. Each bin is doubly linked.  The bins are approximately
1242        proportionally (log) spaced.  There are a lot of these bins
1243        (128). This may look excessive, but works very well in
1244        practice.  All procedures maintain the invariant that no
1245        consolidated chunk physically borders another one. Chunks in
1246        bins are kept in size order, with ties going to the
1247        approximately least recently used chunk.
1248 
1249        The chunks in each bin are maintained in decreasing sorted order by
1250        size.  This is irrelevant for the small bins, which all contain
1251        the same-sized chunks, but facilitates best-fit allocation for
1252        larger chunks. (These lists are just sequential. Keeping them in
1253        order almost never requires enough traversal to warrant using
1254        fancier ordered data structures.)  Chunks of the same size are
1255        linked with the most recently freed at the front, and allocations
1256        are taken from the back.  This results in LRU or FIFO allocation
1257        order, which tends to give each chunk an equal opportunity to be
1258        consolidated with adjacent freed chunks, resulting in larger free
1259        chunks and less fragmentation.
1260 
1261     * `top': The top-most available chunk (i.e., the one bordering the
1262        end of available memory) is treated specially. It is never
1263        included in any bin, is used only if no other chunk is
1264        available, and is released back to the system if it is very
1265        large (see M_TRIM_THRESHOLD).
1266 
1267     * `last_remainder': A bin holding only the remainder of the
1268        most recently split (non-top) chunk. This bin is checked
1269        before other non-fitting chunks, so as to provide better
1270        locality for runs of sequentially allocated chunks.
1271 
1272     *  Implicitly, through the host system's memory mapping tables.
1273        If supported, requests greater than a threshold are usually
1274        serviced via calls to mmap, and then later released via munmap.
1275 
1276 */
1277 
1278 /*  sizes, alignments */
1279 
1280 #define SIZE_SZ                (sizeof(INTERNAL_SIZE_T))
1281 #define MALLOC_ALIGNMENT       (SIZE_SZ + SIZE_SZ)
1282 #define MALLOC_ALIGN_MASK      (MALLOC_ALIGNMENT - 1)
1283 #define MINSIZE                (sizeof(struct malloc_chunk))
1284 
1285 /* conversion from malloc headers to user pointers, and back */
1286 
1287 #define chunk2mem(p)   ((Void_t*)((char*)(p) + 2*SIZE_SZ))
1288 #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
1289 
1290 /* pad request bytes into a usable size */
1291 
1292 #define request2size(req) \
1293  (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \
1294   (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \
1295    (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK)))
1296 
1297 /* Check if m has acceptable alignment */
1298 
1299 #define aligned_OK(m)    (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
1300 
1301 
1302 
1303 
1304 /*
1305   Physical chunk operations
1306 */
1307 
1308 
1309 /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
1310 
1311 #define PREV_INUSE 0x1
1312 
1313 /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
1314 
1315 #define IS_MMAPPED 0x2
1316 
1317 /* Bits to mask off when extracting size */
1318 
1319 #define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
1320 
1321 
1322 /* Ptr to next physical malloc_chunk. */
1323 
1324 #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
1325 
1326 /* Ptr to previous physical malloc_chunk */
1327 
1328 #define prev_chunk(p)\
1329    ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
1330 
1331 
1332 /* Treat space at ptr + offset as a chunk */
1333 
1334 #define chunk_at_offset(p, s)  ((mchunkptr)(((char*)(p)) + (s)))
1335 
1336 
1337 
1338 
1339 /*
1340   Dealing with use bits
1341 */
1342 
1343 /* extract p's inuse bit */
1344 
1345 #define inuse(p)\
1346 ((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
1347 
1348 /* extract inuse bit of previous chunk */
1349 
1350 #define prev_inuse(p)  ((p)->size & PREV_INUSE)
1351 
1352 /* check for mmap()'ed chunk */
1353 
1354 #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
1355 
1356 /* set/clear chunk as in use without otherwise disturbing */
1357 
1358 #define set_inuse(p)\
1359 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
1360 
1361 #define clear_inuse(p)\
1362 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
1363 
1364 /* check/set/clear inuse bits in known places */
1365 
1366 #define inuse_bit_at_offset(p, s)\
1367  (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
1368 
1369 #define set_inuse_bit_at_offset(p, s)\
1370  (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
1371 
1372 #define clear_inuse_bit_at_offset(p, s)\
1373  (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
1374 
1375 
1376 
1377 
1378 /*
1379   Dealing with size fields
1380 */
1381 
1382 /* Get size, ignoring use bits */
1383 
1384 #define chunksize(p)          ((p)->size & ~(SIZE_BITS))
1385 
1386 /* Set size at head, without disturbing its use bit */
1387 
1388 #define set_head_size(p, s)   ((p)->size = (((p)->size & PREV_INUSE) | (s)))
1389 
1390 /* Set size/use ignoring previous bits in header */
1391 
1392 #define set_head(p, s)        ((p)->size = (s))
1393 
1394 /* Set size at footer (only when chunk is not in use) */
1395 
1396 #define set_foot(p, s)   (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
1397 
1398 
1399 
1400 
1401 
1402 /*
1403    Bins
1404 
1405     The bins, `av_' are an array of pairs of pointers serving as the
1406     heads of (initially empty) doubly-linked lists of chunks, laid out
1407     in a way so that each pair can be treated as if it were in a
1408     malloc_chunk. (This way, the fd/bk offsets for linking bin heads
1409     and chunks are the same).
1410 
1411     Bins for sizes < 512 bytes contain chunks of all the same size, spaced
1412     8 bytes apart. Larger bins are approximately logarithmically
1413     spaced. (See the table below.) The `av_' array is never mentioned
1414     directly in the code, but instead via bin access macros.
1415 
1416     Bin layout:
1417 
1418     64 bins of size       8
1419     32 bins of size      64
1420     16 bins of size     512
1421      8 bins of size    4096
1422      4 bins of size   32768
1423      2 bins of size  262144
1424      1 bin  of size what's left
1425 
1426     There is actually a little bit of slop in the numbers in bin_index
1427     for the sake of speed. This makes no difference elsewhere.
1428 
1429     The special chunks `top' and `last_remainder' get their own bins,
1430     (this is implemented via yet more trickery with the av_ array),
1431     although `top' is never properly linked to its bin since it is
1432     always handled specially.
1433 
1434 */
1435 
1436 #define NAV             128   /* number of bins */
1437 
1438 typedef struct malloc_chunk* mbinptr;
1439 
1440 /* access macros */
1441 
1442 #define bin_at(i)      ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ))
1443 #define next_bin(b)    ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr)))
1444 #define prev_bin(b)    ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr)))
1445 
1446 /*
1447    The first 2 bins are never indexed. The corresponding av_ cells are instead
1448    used for bookkeeping. This is not to save space, but to simplify
1449    indexing, maintain locality, and avoid some initialization tests.
1450 */
1451 
1452 #define top            (av_[2])          /* The topmost chunk */
1453 #define last_remainder (bin_at(1))       /* remainder from last split */
1454 
1455 
1456 /*
1457    Because top initially points to its own bin with initial
1458    zero size, thus forcing extension on the first malloc request,
1459    we avoid having any special code in malloc to check whether
1460    it even exists yet. But we still need to in malloc_extend_top.
1461 */
1462 
1463 #define initial_top    ((mchunkptr)(bin_at(0)))
1464 
1465 /* Helper macro to initialize bins */
1466 
1467 #define IAV(i)  bin_at(i), bin_at(i)
1468 
1469 static mbinptr av_[NAV * 2 + 2] = {
1470  NULL, NULL,
1471  IAV(0),   IAV(1),   IAV(2),   IAV(3),   IAV(4),   IAV(5),   IAV(6),   IAV(7),
1472  IAV(8),   IAV(9),   IAV(10),  IAV(11),  IAV(12),  IAV(13),  IAV(14),  IAV(15),
1473  IAV(16),  IAV(17),  IAV(18),  IAV(19),  IAV(20),  IAV(21),  IAV(22),  IAV(23),
1474  IAV(24),  IAV(25),  IAV(26),  IAV(27),  IAV(28),  IAV(29),  IAV(30),  IAV(31),
1475  IAV(32),  IAV(33),  IAV(34),  IAV(35),  IAV(36),  IAV(37),  IAV(38),  IAV(39),
1476  IAV(40),  IAV(41),  IAV(42),  IAV(43),  IAV(44),  IAV(45),  IAV(46),  IAV(47),
1477  IAV(48),  IAV(49),  IAV(50),  IAV(51),  IAV(52),  IAV(53),  IAV(54),  IAV(55),
1478  IAV(56),  IAV(57),  IAV(58),  IAV(59),  IAV(60),  IAV(61),  IAV(62),  IAV(63),
1479  IAV(64),  IAV(65),  IAV(66),  IAV(67),  IAV(68),  IAV(69),  IAV(70),  IAV(71),
1480  IAV(72),  IAV(73),  IAV(74),  IAV(75),  IAV(76),  IAV(77),  IAV(78),  IAV(79),
1481  IAV(80),  IAV(81),  IAV(82),  IAV(83),  IAV(84),  IAV(85),  IAV(86),  IAV(87),
1482  IAV(88),  IAV(89),  IAV(90),  IAV(91),  IAV(92),  IAV(93),  IAV(94),  IAV(95),
1483  IAV(96),  IAV(97),  IAV(98),  IAV(99),  IAV(100), IAV(101), IAV(102), IAV(103),
1484  IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111),
1485  IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119),
1486  IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127)
1487 };
1488 
1489 #ifdef CONFIG_NEEDS_MANUAL_RELOC
1490 static void malloc_bin_reloc(void)
1491 {
1492 	mbinptr *p = &av_[2];
1493 	size_t i;
1494 
1495 	for (i = 2; i < ARRAY_SIZE(av_); ++i, ++p)
1496 		*p = (mbinptr)((ulong)*p + gd->reloc_off);
1497 }
1498 #else
1499 static inline void malloc_bin_reloc(void) {}
1500 #endif
1501 
1502 ulong mem_malloc_start = 0;
1503 ulong mem_malloc_end = 0;
1504 ulong mem_malloc_brk = 0;
1505 
1506 void *sbrk(ptrdiff_t increment)
1507 {
1508 	ulong old = mem_malloc_brk;
1509 	ulong new = old + increment;
1510 
1511 	/*
1512 	 * if we are giving memory back make sure we clear it out since
1513 	 * we set MORECORE_CLEARS to 1
1514 	 */
1515 	if (increment < 0)
1516 		memset((void *)new, 0, -increment);
1517 
1518 	if ((new < mem_malloc_start) || (new > mem_malloc_end))
1519 		return (void *)MORECORE_FAILURE;
1520 
1521 	mem_malloc_brk = new;
1522 
1523 	return (void *)old;
1524 }
1525 
1526 void mem_malloc_init(ulong start, ulong size)
1527 {
1528 	mem_malloc_start = start;
1529 	mem_malloc_end = start + size;
1530 	mem_malloc_brk = start;
1531 
1532 	memset((void *)mem_malloc_start, 0, size);
1533 
1534 	malloc_bin_reloc();
1535 }
1536 
1537 /* field-extraction macros */
1538 
1539 #define first(b) ((b)->fd)
1540 #define last(b)  ((b)->bk)
1541 
1542 /*
1543   Indexing into bins
1544 */
1545 
1546 #define bin_index(sz)                                                          \
1547 (((((unsigned long)(sz)) >> 9) ==    0) ?       (((unsigned long)(sz)) >>  3): \
1548  ((((unsigned long)(sz)) >> 9) <=    4) ?  56 + (((unsigned long)(sz)) >>  6): \
1549  ((((unsigned long)(sz)) >> 9) <=   20) ?  91 + (((unsigned long)(sz)) >>  9): \
1550  ((((unsigned long)(sz)) >> 9) <=   84) ? 110 + (((unsigned long)(sz)) >> 12): \
1551  ((((unsigned long)(sz)) >> 9) <=  340) ? 119 + (((unsigned long)(sz)) >> 15): \
1552  ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \
1553 					  126)
1554 /*
1555   bins for chunks < 512 are all spaced 8 bytes apart, and hold
1556   identically sized chunks. This is exploited in malloc.
1557 */
1558 
1559 #define MAX_SMALLBIN         63
1560 #define MAX_SMALLBIN_SIZE   512
1561 #define SMALLBIN_WIDTH        8
1562 
1563 #define smallbin_index(sz)  (((unsigned long)(sz)) >> 3)
1564 
1565 /*
1566    Requests are `small' if both the corresponding and the next bin are small
1567 */
1568 
1569 #define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH)
1570 
1571 
1572 
1573 /*
1574     To help compensate for the large number of bins, a one-level index
1575     structure is used for bin-by-bin searching.  `binblocks' is a
1576     one-word bitvector recording whether groups of BINBLOCKWIDTH bins
1577     have any (possibly) non-empty bins, so they can be skipped over
1578     all at once during during traversals. The bits are NOT always
1579     cleared as soon as all bins in a block are empty, but instead only
1580     when all are noticed to be empty during traversal in malloc.
1581 */
1582 
1583 #define BINBLOCKWIDTH     4   /* bins per block */
1584 
1585 #define binblocks_r     ((INTERNAL_SIZE_T)av_[1]) /* bitvector of nonempty blocks */
1586 #define binblocks_w     (av_[1])
1587 
1588 /* bin<->block macros */
1589 
1590 #define idx2binblock(ix)    ((unsigned)1 << (ix / BINBLOCKWIDTH))
1591 #define mark_binblock(ii)   (binblocks_w = (mbinptr)(binblocks_r | idx2binblock(ii)))
1592 #define clear_binblock(ii)  (binblocks_w = (mbinptr)(binblocks_r & ~(idx2binblock(ii))))
1593 
1594 
1595 
1596 
1597 
1598 /*  Other static bookkeeping data */
1599 
1600 /* variables holding tunable values */
1601 
1602 static unsigned long trim_threshold   = DEFAULT_TRIM_THRESHOLD;
1603 static unsigned long top_pad          = DEFAULT_TOP_PAD;
1604 static unsigned int  n_mmaps_max      = DEFAULT_MMAP_MAX;
1605 static unsigned long mmap_threshold   = DEFAULT_MMAP_THRESHOLD;
1606 
1607 /* The first value returned from sbrk */
1608 static char* sbrk_base = (char*)(-1);
1609 
1610 /* The maximum memory obtained from system via sbrk */
1611 static unsigned long max_sbrked_mem = 0;
1612 
1613 /* The maximum via either sbrk or mmap */
1614 static unsigned long max_total_mem = 0;
1615 
1616 /* internal working copy of mallinfo */
1617 static struct mallinfo current_mallinfo = {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
1618 
1619 /* The total memory obtained from system via sbrk */
1620 #define sbrked_mem  (current_mallinfo.arena)
1621 
1622 /* Tracking mmaps */
1623 
1624 #ifdef DEBUG
1625 static unsigned int n_mmaps = 0;
1626 #endif	/* DEBUG */
1627 static unsigned long mmapped_mem = 0;
1628 #if HAVE_MMAP
1629 static unsigned int max_n_mmaps = 0;
1630 static unsigned long max_mmapped_mem = 0;
1631 #endif
1632 
1633 
1634 
1635 /*
1636   Debugging support
1637 */
1638 
1639 #ifdef DEBUG
1640 
1641 
1642 /*
1643   These routines make a number of assertions about the states
1644   of data structures that should be true at all times. If any
1645   are not true, it's very likely that a user program has somehow
1646   trashed memory. (It's also possible that there is a coding error
1647   in malloc. In which case, please report it!)
1648 */
1649 
1650 #if __STD_C
1651 static void do_check_chunk(mchunkptr p)
1652 #else
1653 static void do_check_chunk(p) mchunkptr p;
1654 #endif
1655 {
1656   INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1657 
1658   /* No checkable chunk is mmapped */
1659   assert(!chunk_is_mmapped(p));
1660 
1661   /* Check for legal address ... */
1662   assert((char*)p >= sbrk_base);
1663   if (p != top)
1664     assert((char*)p + sz <= (char*)top);
1665   else
1666     assert((char*)p + sz <= sbrk_base + sbrked_mem);
1667 
1668 }
1669 
1670 
1671 #if __STD_C
1672 static void do_check_free_chunk(mchunkptr p)
1673 #else
1674 static void do_check_free_chunk(p) mchunkptr p;
1675 #endif
1676 {
1677   INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1678   mchunkptr next = chunk_at_offset(p, sz);
1679 
1680   do_check_chunk(p);
1681 
1682   /* Check whether it claims to be free ... */
1683   assert(!inuse(p));
1684 
1685   /* Unless a special marker, must have OK fields */
1686   if ((long)sz >= (long)MINSIZE)
1687   {
1688     assert((sz & MALLOC_ALIGN_MASK) == 0);
1689     assert(aligned_OK(chunk2mem(p)));
1690     /* ... matching footer field */
1691     assert(next->prev_size == sz);
1692     /* ... and is fully consolidated */
1693     assert(prev_inuse(p));
1694     assert (next == top || inuse(next));
1695 
1696     /* ... and has minimally sane links */
1697     assert(p->fd->bk == p);
1698     assert(p->bk->fd == p);
1699   }
1700   else /* markers are always of size SIZE_SZ */
1701     assert(sz == SIZE_SZ);
1702 }
1703 
1704 #if __STD_C
1705 static void do_check_inuse_chunk(mchunkptr p)
1706 #else
1707 static void do_check_inuse_chunk(p) mchunkptr p;
1708 #endif
1709 {
1710   mchunkptr next = next_chunk(p);
1711   do_check_chunk(p);
1712 
1713   /* Check whether it claims to be in use ... */
1714   assert(inuse(p));
1715 
1716   /* ... and is surrounded by OK chunks.
1717     Since more things can be checked with free chunks than inuse ones,
1718     if an inuse chunk borders them and debug is on, it's worth doing them.
1719   */
1720   if (!prev_inuse(p))
1721   {
1722     mchunkptr prv = prev_chunk(p);
1723     assert(next_chunk(prv) == p);
1724     do_check_free_chunk(prv);
1725   }
1726   if (next == top)
1727   {
1728     assert(prev_inuse(next));
1729     assert(chunksize(next) >= MINSIZE);
1730   }
1731   else if (!inuse(next))
1732     do_check_free_chunk(next);
1733 
1734 }
1735 
1736 #if __STD_C
1737 static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
1738 #else
1739 static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
1740 #endif
1741 {
1742   INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1743   long room = sz - s;
1744 
1745   do_check_inuse_chunk(p);
1746 
1747   /* Legal size ... */
1748   assert((long)sz >= (long)MINSIZE);
1749   assert((sz & MALLOC_ALIGN_MASK) == 0);
1750   assert(room >= 0);
1751   assert(room < (long)MINSIZE);
1752 
1753   /* ... and alignment */
1754   assert(aligned_OK(chunk2mem(p)));
1755 
1756 
1757   /* ... and was allocated at front of an available chunk */
1758   assert(prev_inuse(p));
1759 
1760 }
1761 
1762 
1763 #define check_free_chunk(P)  do_check_free_chunk(P)
1764 #define check_inuse_chunk(P) do_check_inuse_chunk(P)
1765 #define check_chunk(P) do_check_chunk(P)
1766 #define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N)
1767 #else
1768 #define check_free_chunk(P)
1769 #define check_inuse_chunk(P)
1770 #define check_chunk(P)
1771 #define check_malloced_chunk(P,N)
1772 #endif
1773 
1774 
1775 
1776 /*
1777   Macro-based internal utilities
1778 */
1779 
1780 
1781 /*
1782   Linking chunks in bin lists.
1783   Call these only with variables, not arbitrary expressions, as arguments.
1784 */
1785 
1786 /*
1787   Place chunk p of size s in its bin, in size order,
1788   putting it ahead of others of same size.
1789 */
1790 
1791 
1792 #define frontlink(P, S, IDX, BK, FD)                                          \
1793 {                                                                             \
1794   if (S < MAX_SMALLBIN_SIZE)                                                  \
1795   {                                                                           \
1796     IDX = smallbin_index(S);                                                  \
1797     mark_binblock(IDX);                                                       \
1798     BK = bin_at(IDX);                                                         \
1799     FD = BK->fd;                                                              \
1800     P->bk = BK;                                                               \
1801     P->fd = FD;                                                               \
1802     FD->bk = BK->fd = P;                                                      \
1803   }                                                                           \
1804   else                                                                        \
1805   {                                                                           \
1806     IDX = bin_index(S);                                                       \
1807     BK = bin_at(IDX);                                                         \
1808     FD = BK->fd;                                                              \
1809     if (FD == BK) mark_binblock(IDX);                                         \
1810     else                                                                      \
1811     {                                                                         \
1812       while (FD != BK && S < chunksize(FD)) FD = FD->fd;                      \
1813       BK = FD->bk;                                                            \
1814     }                                                                         \
1815     P->bk = BK;                                                               \
1816     P->fd = FD;                                                               \
1817     FD->bk = BK->fd = P;                                                      \
1818   }                                                                           \
1819 }
1820 
1821 
1822 /* take a chunk off a list */
1823 
1824 #define unlink(P, BK, FD)                                                     \
1825 {                                                                             \
1826   BK = P->bk;                                                                 \
1827   FD = P->fd;                                                                 \
1828   FD->bk = BK;                                                                \
1829   BK->fd = FD;                                                                \
1830 }                                                                             \
1831 
1832 /* Place p as the last remainder */
1833 
1834 #define link_last_remainder(P)                                                \
1835 {                                                                             \
1836   last_remainder->fd = last_remainder->bk =  P;                               \
1837   P->fd = P->bk = last_remainder;                                             \
1838 }
1839 
1840 /* Clear the last_remainder bin */
1841 
1842 #define clear_last_remainder \
1843   (last_remainder->fd = last_remainder->bk = last_remainder)
1844 
1845 
1846 
1847 
1848 
1849 /* Routines dealing with mmap(). */
1850 
1851 #if HAVE_MMAP
1852 
1853 #if __STD_C
1854 static mchunkptr mmap_chunk(size_t size)
1855 #else
1856 static mchunkptr mmap_chunk(size) size_t size;
1857 #endif
1858 {
1859   size_t page_mask = malloc_getpagesize - 1;
1860   mchunkptr p;
1861 
1862 #ifndef MAP_ANONYMOUS
1863   static int fd = -1;
1864 #endif
1865 
1866   if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */
1867 
1868   /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because
1869    * there is no following chunk whose prev_size field could be used.
1870    */
1871   size = (size + SIZE_SZ + page_mask) & ~page_mask;
1872 
1873 #ifdef MAP_ANONYMOUS
1874   p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE,
1875 		      MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
1876 #else /* !MAP_ANONYMOUS */
1877   if (fd < 0)
1878   {
1879     fd = open("/dev/zero", O_RDWR);
1880     if(fd < 0) return 0;
1881   }
1882   p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
1883 #endif
1884 
1885   if(p == (mchunkptr)-1) return 0;
1886 
1887   n_mmaps++;
1888   if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps;
1889 
1890   /* We demand that eight bytes into a page must be 8-byte aligned. */
1891   assert(aligned_OK(chunk2mem(p)));
1892 
1893   /* The offset to the start of the mmapped region is stored
1894    * in the prev_size field of the chunk; normally it is zero,
1895    * but that can be changed in memalign().
1896    */
1897   p->prev_size = 0;
1898   set_head(p, size|IS_MMAPPED);
1899 
1900   mmapped_mem += size;
1901   if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1902     max_mmapped_mem = mmapped_mem;
1903   if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1904     max_total_mem = mmapped_mem + sbrked_mem;
1905   return p;
1906 }
1907 
1908 #if __STD_C
1909 static void munmap_chunk(mchunkptr p)
1910 #else
1911 static void munmap_chunk(p) mchunkptr p;
1912 #endif
1913 {
1914   INTERNAL_SIZE_T size = chunksize(p);
1915   int ret;
1916 
1917   assert (chunk_is_mmapped(p));
1918   assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1919   assert((n_mmaps > 0));
1920   assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0);
1921 
1922   n_mmaps--;
1923   mmapped_mem -= (size + p->prev_size);
1924 
1925   ret = munmap((char *)p - p->prev_size, size + p->prev_size);
1926 
1927   /* munmap returns non-zero on failure */
1928   assert(ret == 0);
1929 }
1930 
1931 #if HAVE_MREMAP
1932 
1933 #if __STD_C
1934 static mchunkptr mremap_chunk(mchunkptr p, size_t new_size)
1935 #else
1936 static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
1937 #endif
1938 {
1939   size_t page_mask = malloc_getpagesize - 1;
1940   INTERNAL_SIZE_T offset = p->prev_size;
1941   INTERNAL_SIZE_T size = chunksize(p);
1942   char *cp;
1943 
1944   assert (chunk_is_mmapped(p));
1945   assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1946   assert((n_mmaps > 0));
1947   assert(((size + offset) & (malloc_getpagesize-1)) == 0);
1948 
1949   /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
1950   new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
1951 
1952   cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1);
1953 
1954   if (cp == (char *)-1) return 0;
1955 
1956   p = (mchunkptr)(cp + offset);
1957 
1958   assert(aligned_OK(chunk2mem(p)));
1959 
1960   assert((p->prev_size == offset));
1961   set_head(p, (new_size - offset)|IS_MMAPPED);
1962 
1963   mmapped_mem -= size + offset;
1964   mmapped_mem += new_size;
1965   if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1966     max_mmapped_mem = mmapped_mem;
1967   if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1968     max_total_mem = mmapped_mem + sbrked_mem;
1969   return p;
1970 }
1971 
1972 #endif /* HAVE_MREMAP */
1973 
1974 #endif /* HAVE_MMAP */
1975 
1976 
1977 
1978 
1979 /*
1980   Extend the top-most chunk by obtaining memory from system.
1981   Main interface to sbrk (but see also malloc_trim).
1982 */
1983 
1984 #if __STD_C
1985 static void malloc_extend_top(INTERNAL_SIZE_T nb)
1986 #else
1987 static void malloc_extend_top(nb) INTERNAL_SIZE_T nb;
1988 #endif
1989 {
1990   char*     brk;                  /* return value from sbrk */
1991   INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */
1992   INTERNAL_SIZE_T correction;     /* bytes for 2nd sbrk call */
1993   char*     new_brk;              /* return of 2nd sbrk call */
1994   INTERNAL_SIZE_T top_size;       /* new size of top chunk */
1995 
1996   mchunkptr old_top     = top;  /* Record state of old top */
1997   INTERNAL_SIZE_T old_top_size = chunksize(old_top);
1998   char*     old_end      = (char*)(chunk_at_offset(old_top, old_top_size));
1999 
2000   /* Pad request with top_pad plus minimal overhead */
2001 
2002   INTERNAL_SIZE_T    sbrk_size     = nb + top_pad + MINSIZE;
2003   unsigned long pagesz    = malloc_getpagesize;
2004 
2005   /* If not the first time through, round to preserve page boundary */
2006   /* Otherwise, we need to correct to a page size below anyway. */
2007   /* (We also correct below if an intervening foreign sbrk call.) */
2008 
2009   if (sbrk_base != (char*)(-1))
2010     sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1);
2011 
2012   brk = (char*)(MORECORE (sbrk_size));
2013 
2014   /* Fail if sbrk failed or if a foreign sbrk call killed our space */
2015   if (brk == (char*)(MORECORE_FAILURE) ||
2016       (brk < old_end && old_top != initial_top))
2017     return;
2018 
2019   sbrked_mem += sbrk_size;
2020 
2021   if (brk == old_end) /* can just add bytes to current top */
2022   {
2023     top_size = sbrk_size + old_top_size;
2024     set_head(top, top_size | PREV_INUSE);
2025   }
2026   else
2027   {
2028     if (sbrk_base == (char*)(-1))  /* First time through. Record base */
2029       sbrk_base = brk;
2030     else  /* Someone else called sbrk().  Count those bytes as sbrked_mem. */
2031       sbrked_mem += brk - (char*)old_end;
2032 
2033     /* Guarantee alignment of first new chunk made from this space */
2034     front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK;
2035     if (front_misalign > 0)
2036     {
2037       correction = (MALLOC_ALIGNMENT) - front_misalign;
2038       brk += correction;
2039     }
2040     else
2041       correction = 0;
2042 
2043     /* Guarantee the next brk will be at a page boundary */
2044 
2045     correction += ((((unsigned long)(brk + sbrk_size))+(pagesz-1)) &
2046 		   ~(pagesz - 1)) - ((unsigned long)(brk + sbrk_size));
2047 
2048     /* Allocate correction */
2049     new_brk = (char*)(MORECORE (correction));
2050     if (new_brk == (char*)(MORECORE_FAILURE)) return;
2051 
2052     sbrked_mem += correction;
2053 
2054     top = (mchunkptr)brk;
2055     top_size = new_brk - brk + correction;
2056     set_head(top, top_size | PREV_INUSE);
2057 
2058     if (old_top != initial_top)
2059     {
2060 
2061       /* There must have been an intervening foreign sbrk call. */
2062       /* A double fencepost is necessary to prevent consolidation */
2063 
2064       /* If not enough space to do this, then user did something very wrong */
2065       if (old_top_size < MINSIZE)
2066       {
2067 	set_head(top, PREV_INUSE); /* will force null return from malloc */
2068 	return;
2069       }
2070 
2071       /* Also keep size a multiple of MALLOC_ALIGNMENT */
2072       old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
2073       set_head_size(old_top, old_top_size);
2074       chunk_at_offset(old_top, old_top_size          )->size =
2075 	SIZE_SZ|PREV_INUSE;
2076       chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size =
2077 	SIZE_SZ|PREV_INUSE;
2078       /* If possible, release the rest. */
2079       if (old_top_size >= MINSIZE)
2080 	fREe(chunk2mem(old_top));
2081     }
2082   }
2083 
2084   if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem)
2085     max_sbrked_mem = sbrked_mem;
2086   if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
2087     max_total_mem = mmapped_mem + sbrked_mem;
2088 
2089   /* We always land on a page boundary */
2090   assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0);
2091 }
2092 
2093 
2094 
2095 
2096 /* Main public routines */
2097 
2098 
2099 /*
2100   Malloc Algorthim:
2101 
2102     The requested size is first converted into a usable form, `nb'.
2103     This currently means to add 4 bytes overhead plus possibly more to
2104     obtain 8-byte alignment and/or to obtain a size of at least
2105     MINSIZE (currently 16 bytes), the smallest allocatable size.
2106     (All fits are considered `exact' if they are within MINSIZE bytes.)
2107 
2108     From there, the first successful of the following steps is taken:
2109 
2110       1. The bin corresponding to the request size is scanned, and if
2111 	 a chunk of exactly the right size is found, it is taken.
2112 
2113       2. The most recently remaindered chunk is used if it is big
2114 	 enough.  This is a form of (roving) first fit, used only in
2115 	 the absence of exact fits. Runs of consecutive requests use
2116 	 the remainder of the chunk used for the previous such request
2117 	 whenever possible. This limited use of a first-fit style
2118 	 allocation strategy tends to give contiguous chunks
2119 	 coextensive lifetimes, which improves locality and can reduce
2120 	 fragmentation in the long run.
2121 
2122       3. Other bins are scanned in increasing size order, using a
2123 	 chunk big enough to fulfill the request, and splitting off
2124 	 any remainder.  This search is strictly by best-fit; i.e.,
2125 	 the smallest (with ties going to approximately the least
2126 	 recently used) chunk that fits is selected.
2127 
2128       4. If large enough, the chunk bordering the end of memory
2129 	 (`top') is split off. (This use of `top' is in accord with
2130 	 the best-fit search rule.  In effect, `top' is treated as
2131 	 larger (and thus less well fitting) than any other available
2132 	 chunk since it can be extended to be as large as necessary
2133 	 (up to system limitations).
2134 
2135       5. If the request size meets the mmap threshold and the
2136 	 system supports mmap, and there are few enough currently
2137 	 allocated mmapped regions, and a call to mmap succeeds,
2138 	 the request is allocated via direct memory mapping.
2139 
2140       6. Otherwise, the top of memory is extended by
2141 	 obtaining more space from the system (normally using sbrk,
2142 	 but definable to anything else via the MORECORE macro).
2143 	 Memory is gathered from the system (in system page-sized
2144 	 units) in a way that allows chunks obtained across different
2145 	 sbrk calls to be consolidated, but does not require
2146 	 contiguous memory. Thus, it should be safe to intersperse
2147 	 mallocs with other sbrk calls.
2148 
2149 
2150       All allocations are made from the the `lowest' part of any found
2151       chunk. (The implementation invariant is that prev_inuse is
2152       always true of any allocated chunk; i.e., that each allocated
2153       chunk borders either a previously allocated and still in-use chunk,
2154       or the base of its memory arena.)
2155 
2156 */
2157 
2158 #if __STD_C
2159 Void_t* mALLOc(size_t bytes)
2160 #else
2161 Void_t* mALLOc(bytes) size_t bytes;
2162 #endif
2163 {
2164   mchunkptr victim;                  /* inspected/selected chunk */
2165   INTERNAL_SIZE_T victim_size;       /* its size */
2166   int       idx;                     /* index for bin traversal */
2167   mbinptr   bin;                     /* associated bin */
2168   mchunkptr remainder;               /* remainder from a split */
2169   long      remainder_size;          /* its size */
2170   int       remainder_index;         /* its bin index */
2171   unsigned long block;               /* block traverser bit */
2172   int       startidx;                /* first bin of a traversed block */
2173   mchunkptr fwd;                     /* misc temp for linking */
2174   mchunkptr bck;                     /* misc temp for linking */
2175   mbinptr q;                         /* misc temp */
2176 
2177   INTERNAL_SIZE_T nb;
2178 
2179 #ifdef CONFIG_SYS_MALLOC_F_LEN
2180 	if (!(gd->flags & GD_FLG_RELOC)) {
2181 		ulong new_ptr;
2182 		void *ptr;
2183 
2184 		new_ptr = gd->malloc_ptr + bytes;
2185 		if (new_ptr > gd->malloc_limit)
2186 			panic("Out of pre-reloc memory");
2187 		ptr = map_sysmem(gd->malloc_base + gd->malloc_ptr, bytes);
2188 		gd->malloc_ptr = ALIGN(new_ptr, sizeof(new_ptr));
2189 		return ptr;
2190 	}
2191 #endif
2192 
2193   /* check if mem_malloc_init() was run */
2194   if ((mem_malloc_start == 0) && (mem_malloc_end == 0)) {
2195     /* not initialized yet */
2196     return NULL;
2197   }
2198 
2199   if ((long)bytes < 0) return NULL;
2200 
2201   nb = request2size(bytes);  /* padded request size; */
2202 
2203   /* Check for exact match in a bin */
2204 
2205   if (is_small_request(nb))  /* Faster version for small requests */
2206   {
2207     idx = smallbin_index(nb);
2208 
2209     /* No traversal or size check necessary for small bins.  */
2210 
2211     q = bin_at(idx);
2212     victim = last(q);
2213 
2214     /* Also scan the next one, since it would have a remainder < MINSIZE */
2215     if (victim == q)
2216     {
2217       q = next_bin(q);
2218       victim = last(q);
2219     }
2220     if (victim != q)
2221     {
2222       victim_size = chunksize(victim);
2223       unlink(victim, bck, fwd);
2224       set_inuse_bit_at_offset(victim, victim_size);
2225       check_malloced_chunk(victim, nb);
2226       return chunk2mem(victim);
2227     }
2228 
2229     idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */
2230 
2231   }
2232   else
2233   {
2234     idx = bin_index(nb);
2235     bin = bin_at(idx);
2236 
2237     for (victim = last(bin); victim != bin; victim = victim->bk)
2238     {
2239       victim_size = chunksize(victim);
2240       remainder_size = victim_size - nb;
2241 
2242       if (remainder_size >= (long)MINSIZE) /* too big */
2243       {
2244 	--idx; /* adjust to rescan below after checking last remainder */
2245 	break;
2246       }
2247 
2248       else if (remainder_size >= 0) /* exact fit */
2249       {
2250 	unlink(victim, bck, fwd);
2251 	set_inuse_bit_at_offset(victim, victim_size);
2252 	check_malloced_chunk(victim, nb);
2253 	return chunk2mem(victim);
2254       }
2255     }
2256 
2257     ++idx;
2258 
2259   }
2260 
2261   /* Try to use the last split-off remainder */
2262 
2263   if ( (victim = last_remainder->fd) != last_remainder)
2264   {
2265     victim_size = chunksize(victim);
2266     remainder_size = victim_size - nb;
2267 
2268     if (remainder_size >= (long)MINSIZE) /* re-split */
2269     {
2270       remainder = chunk_at_offset(victim, nb);
2271       set_head(victim, nb | PREV_INUSE);
2272       link_last_remainder(remainder);
2273       set_head(remainder, remainder_size | PREV_INUSE);
2274       set_foot(remainder, remainder_size);
2275       check_malloced_chunk(victim, nb);
2276       return chunk2mem(victim);
2277     }
2278 
2279     clear_last_remainder;
2280 
2281     if (remainder_size >= 0)  /* exhaust */
2282     {
2283       set_inuse_bit_at_offset(victim, victim_size);
2284       check_malloced_chunk(victim, nb);
2285       return chunk2mem(victim);
2286     }
2287 
2288     /* Else place in bin */
2289 
2290     frontlink(victim, victim_size, remainder_index, bck, fwd);
2291   }
2292 
2293   /*
2294      If there are any possibly nonempty big-enough blocks,
2295      search for best fitting chunk by scanning bins in blockwidth units.
2296   */
2297 
2298   if ( (block = idx2binblock(idx)) <= binblocks_r)
2299   {
2300 
2301     /* Get to the first marked block */
2302 
2303     if ( (block & binblocks_r) == 0)
2304     {
2305       /* force to an even block boundary */
2306       idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH;
2307       block <<= 1;
2308       while ((block & binblocks_r) == 0)
2309       {
2310 	idx += BINBLOCKWIDTH;
2311 	block <<= 1;
2312       }
2313     }
2314 
2315     /* For each possibly nonempty block ... */
2316     for (;;)
2317     {
2318       startidx = idx;          /* (track incomplete blocks) */
2319       q = bin = bin_at(idx);
2320 
2321       /* For each bin in this block ... */
2322       do
2323       {
2324 	/* Find and use first big enough chunk ... */
2325 
2326 	for (victim = last(bin); victim != bin; victim = victim->bk)
2327 	{
2328 	  victim_size = chunksize(victim);
2329 	  remainder_size = victim_size - nb;
2330 
2331 	  if (remainder_size >= (long)MINSIZE) /* split */
2332 	  {
2333 	    remainder = chunk_at_offset(victim, nb);
2334 	    set_head(victim, nb | PREV_INUSE);
2335 	    unlink(victim, bck, fwd);
2336 	    link_last_remainder(remainder);
2337 	    set_head(remainder, remainder_size | PREV_INUSE);
2338 	    set_foot(remainder, remainder_size);
2339 	    check_malloced_chunk(victim, nb);
2340 	    return chunk2mem(victim);
2341 	  }
2342 
2343 	  else if (remainder_size >= 0)  /* take */
2344 	  {
2345 	    set_inuse_bit_at_offset(victim, victim_size);
2346 	    unlink(victim, bck, fwd);
2347 	    check_malloced_chunk(victim, nb);
2348 	    return chunk2mem(victim);
2349 	  }
2350 
2351 	}
2352 
2353        bin = next_bin(bin);
2354 
2355       } while ((++idx & (BINBLOCKWIDTH - 1)) != 0);
2356 
2357       /* Clear out the block bit. */
2358 
2359       do   /* Possibly backtrack to try to clear a partial block */
2360       {
2361 	if ((startidx & (BINBLOCKWIDTH - 1)) == 0)
2362 	{
2363 	  av_[1] = (mbinptr)(binblocks_r & ~block);
2364 	  break;
2365 	}
2366 	--startidx;
2367        q = prev_bin(q);
2368       } while (first(q) == q);
2369 
2370       /* Get to the next possibly nonempty block */
2371 
2372       if ( (block <<= 1) <= binblocks_r && (block != 0) )
2373       {
2374 	while ((block & binblocks_r) == 0)
2375 	{
2376 	  idx += BINBLOCKWIDTH;
2377 	  block <<= 1;
2378 	}
2379       }
2380       else
2381 	break;
2382     }
2383   }
2384 
2385 
2386   /* Try to use top chunk */
2387 
2388   /* Require that there be a remainder, ensuring top always exists  */
2389   if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
2390   {
2391 
2392 #if HAVE_MMAP
2393     /* If big and would otherwise need to extend, try to use mmap instead */
2394     if ((unsigned long)nb >= (unsigned long)mmap_threshold &&
2395 	(victim = mmap_chunk(nb)) != 0)
2396       return chunk2mem(victim);
2397 #endif
2398 
2399     /* Try to extend */
2400     malloc_extend_top(nb);
2401     if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
2402       return NULL; /* propagate failure */
2403   }
2404 
2405   victim = top;
2406   set_head(victim, nb | PREV_INUSE);
2407   top = chunk_at_offset(victim, nb);
2408   set_head(top, remainder_size | PREV_INUSE);
2409   check_malloced_chunk(victim, nb);
2410   return chunk2mem(victim);
2411 
2412 }
2413 
2414 
2415 
2416 
2417 /*
2418 
2419   free() algorithm :
2420 
2421     cases:
2422 
2423        1. free(0) has no effect.
2424 
2425        2. If the chunk was allocated via mmap, it is release via munmap().
2426 
2427        3. If a returned chunk borders the current high end of memory,
2428 	  it is consolidated into the top, and if the total unused
2429 	  topmost memory exceeds the trim threshold, malloc_trim is
2430 	  called.
2431 
2432        4. Other chunks are consolidated as they arrive, and
2433 	  placed in corresponding bins. (This includes the case of
2434 	  consolidating with the current `last_remainder').
2435 
2436 */
2437 
2438 
2439 #if __STD_C
2440 void fREe(Void_t* mem)
2441 #else
2442 void fREe(mem) Void_t* mem;
2443 #endif
2444 {
2445   mchunkptr p;         /* chunk corresponding to mem */
2446   INTERNAL_SIZE_T hd;  /* its head field */
2447   INTERNAL_SIZE_T sz;  /* its size */
2448   int       idx;       /* its bin index */
2449   mchunkptr next;      /* next contiguous chunk */
2450   INTERNAL_SIZE_T nextsz; /* its size */
2451   INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */
2452   mchunkptr bck;       /* misc temp for linking */
2453   mchunkptr fwd;       /* misc temp for linking */
2454   int       islr;      /* track whether merging with last_remainder */
2455 
2456 #ifdef CONFIG_SYS_MALLOC_F_LEN
2457 	/* free() is a no-op - all the memory will be freed on relocation */
2458 	if (!(gd->flags & GD_FLG_RELOC))
2459 		return;
2460 #endif
2461 
2462   if (mem == NULL)                              /* free(0) has no effect */
2463     return;
2464 
2465   p = mem2chunk(mem);
2466   hd = p->size;
2467 
2468 #if HAVE_MMAP
2469   if (hd & IS_MMAPPED)                       /* release mmapped memory. */
2470   {
2471     munmap_chunk(p);
2472     return;
2473   }
2474 #endif
2475 
2476   check_inuse_chunk(p);
2477 
2478   sz = hd & ~PREV_INUSE;
2479   next = chunk_at_offset(p, sz);
2480   nextsz = chunksize(next);
2481 
2482   if (next == top)                            /* merge with top */
2483   {
2484     sz += nextsz;
2485 
2486     if (!(hd & PREV_INUSE))                    /* consolidate backward */
2487     {
2488       prevsz = p->prev_size;
2489       p = chunk_at_offset(p, -((long) prevsz));
2490       sz += prevsz;
2491       unlink(p, bck, fwd);
2492     }
2493 
2494     set_head(p, sz | PREV_INUSE);
2495     top = p;
2496     if ((unsigned long)(sz) >= (unsigned long)trim_threshold)
2497       malloc_trim(top_pad);
2498     return;
2499   }
2500 
2501   set_head(next, nextsz);                    /* clear inuse bit */
2502 
2503   islr = 0;
2504 
2505   if (!(hd & PREV_INUSE))                    /* consolidate backward */
2506   {
2507     prevsz = p->prev_size;
2508     p = chunk_at_offset(p, -((long) prevsz));
2509     sz += prevsz;
2510 
2511     if (p->fd == last_remainder)             /* keep as last_remainder */
2512       islr = 1;
2513     else
2514       unlink(p, bck, fwd);
2515   }
2516 
2517   if (!(inuse_bit_at_offset(next, nextsz)))   /* consolidate forward */
2518   {
2519     sz += nextsz;
2520 
2521     if (!islr && next->fd == last_remainder)  /* re-insert last_remainder */
2522     {
2523       islr = 1;
2524       link_last_remainder(p);
2525     }
2526     else
2527       unlink(next, bck, fwd);
2528   }
2529 
2530 
2531   set_head(p, sz | PREV_INUSE);
2532   set_foot(p, sz);
2533   if (!islr)
2534     frontlink(p, sz, idx, bck, fwd);
2535 }
2536 
2537 
2538 
2539 
2540 
2541 /*
2542 
2543   Realloc algorithm:
2544 
2545     Chunks that were obtained via mmap cannot be extended or shrunk
2546     unless HAVE_MREMAP is defined, in which case mremap is used.
2547     Otherwise, if their reallocation is for additional space, they are
2548     copied.  If for less, they are just left alone.
2549 
2550     Otherwise, if the reallocation is for additional space, and the
2551     chunk can be extended, it is, else a malloc-copy-free sequence is
2552     taken.  There are several different ways that a chunk could be
2553     extended. All are tried:
2554 
2555        * Extending forward into following adjacent free chunk.
2556        * Shifting backwards, joining preceding adjacent space
2557        * Both shifting backwards and extending forward.
2558        * Extending into newly sbrked space
2559 
2560     Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a
2561     size argument of zero (re)allocates a minimum-sized chunk.
2562 
2563     If the reallocation is for less space, and the new request is for
2564     a `small' (<512 bytes) size, then the newly unused space is lopped
2565     off and freed.
2566 
2567     The old unix realloc convention of allowing the last-free'd chunk
2568     to be used as an argument to realloc is no longer supported.
2569     I don't know of any programs still relying on this feature,
2570     and allowing it would also allow too many other incorrect
2571     usages of realloc to be sensible.
2572 
2573 
2574 */
2575 
2576 
2577 #if __STD_C
2578 Void_t* rEALLOc(Void_t* oldmem, size_t bytes)
2579 #else
2580 Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes;
2581 #endif
2582 {
2583   INTERNAL_SIZE_T    nb;      /* padded request size */
2584 
2585   mchunkptr oldp;             /* chunk corresponding to oldmem */
2586   INTERNAL_SIZE_T    oldsize; /* its size */
2587 
2588   mchunkptr newp;             /* chunk to return */
2589   INTERNAL_SIZE_T    newsize; /* its size */
2590   Void_t*   newmem;           /* corresponding user mem */
2591 
2592   mchunkptr next;             /* next contiguous chunk after oldp */
2593   INTERNAL_SIZE_T  nextsize;  /* its size */
2594 
2595   mchunkptr prev;             /* previous contiguous chunk before oldp */
2596   INTERNAL_SIZE_T  prevsize;  /* its size */
2597 
2598   mchunkptr remainder;        /* holds split off extra space from newp */
2599   INTERNAL_SIZE_T  remainder_size;   /* its size */
2600 
2601   mchunkptr bck;              /* misc temp for linking */
2602   mchunkptr fwd;              /* misc temp for linking */
2603 
2604 #ifdef REALLOC_ZERO_BYTES_FREES
2605   if (bytes == 0) { fREe(oldmem); return 0; }
2606 #endif
2607 
2608   if ((long)bytes < 0) return NULL;
2609 
2610   /* realloc of null is supposed to be same as malloc */
2611   if (oldmem == NULL) return mALLOc(bytes);
2612 
2613 #ifdef CONFIG_SYS_MALLOC_F_LEN
2614 	if (!(gd->flags & GD_FLG_RELOC)) {
2615 		/* This is harder to support and should not be needed */
2616 		panic("pre-reloc realloc() is not supported");
2617 	}
2618 #endif
2619 
2620   newp    = oldp    = mem2chunk(oldmem);
2621   newsize = oldsize = chunksize(oldp);
2622 
2623 
2624   nb = request2size(bytes);
2625 
2626 #if HAVE_MMAP
2627   if (chunk_is_mmapped(oldp))
2628   {
2629 #if HAVE_MREMAP
2630     newp = mremap_chunk(oldp, nb);
2631     if(newp) return chunk2mem(newp);
2632 #endif
2633     /* Note the extra SIZE_SZ overhead. */
2634     if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
2635     /* Must alloc, copy, free. */
2636     newmem = mALLOc(bytes);
2637     if (newmem == 0) return 0; /* propagate failure */
2638     MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
2639     munmap_chunk(oldp);
2640     return newmem;
2641   }
2642 #endif
2643 
2644   check_inuse_chunk(oldp);
2645 
2646   if ((long)(oldsize) < (long)(nb))
2647   {
2648 
2649     /* Try expanding forward */
2650 
2651     next = chunk_at_offset(oldp, oldsize);
2652     if (next == top || !inuse(next))
2653     {
2654       nextsize = chunksize(next);
2655 
2656       /* Forward into top only if a remainder */
2657       if (next == top)
2658       {
2659 	if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE))
2660 	{
2661 	  newsize += nextsize;
2662 	  top = chunk_at_offset(oldp, nb);
2663 	  set_head(top, (newsize - nb) | PREV_INUSE);
2664 	  set_head_size(oldp, nb);
2665 	  return chunk2mem(oldp);
2666 	}
2667       }
2668 
2669       /* Forward into next chunk */
2670       else if (((long)(nextsize + newsize) >= (long)(nb)))
2671       {
2672 	unlink(next, bck, fwd);
2673 	newsize  += nextsize;
2674 	goto split;
2675       }
2676     }
2677     else
2678     {
2679       next = NULL;
2680       nextsize = 0;
2681     }
2682 
2683     /* Try shifting backwards. */
2684 
2685     if (!prev_inuse(oldp))
2686     {
2687       prev = prev_chunk(oldp);
2688       prevsize = chunksize(prev);
2689 
2690       /* try forward + backward first to save a later consolidation */
2691 
2692       if (next != NULL)
2693       {
2694 	/* into top */
2695 	if (next == top)
2696 	{
2697 	  if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE))
2698 	  {
2699 	    unlink(prev, bck, fwd);
2700 	    newp = prev;
2701 	    newsize += prevsize + nextsize;
2702 	    newmem = chunk2mem(newp);
2703 	    MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2704 	    top = chunk_at_offset(newp, nb);
2705 	    set_head(top, (newsize - nb) | PREV_INUSE);
2706 	    set_head_size(newp, nb);
2707 	    return newmem;
2708 	  }
2709 	}
2710 
2711 	/* into next chunk */
2712 	else if (((long)(nextsize + prevsize + newsize) >= (long)(nb)))
2713 	{
2714 	  unlink(next, bck, fwd);
2715 	  unlink(prev, bck, fwd);
2716 	  newp = prev;
2717 	  newsize += nextsize + prevsize;
2718 	  newmem = chunk2mem(newp);
2719 	  MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2720 	  goto split;
2721 	}
2722       }
2723 
2724       /* backward only */
2725       if (prev != NULL && (long)(prevsize + newsize) >= (long)nb)
2726       {
2727 	unlink(prev, bck, fwd);
2728 	newp = prev;
2729 	newsize += prevsize;
2730 	newmem = chunk2mem(newp);
2731 	MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2732 	goto split;
2733       }
2734     }
2735 
2736     /* Must allocate */
2737 
2738     newmem = mALLOc (bytes);
2739 
2740     if (newmem == NULL)  /* propagate failure */
2741       return NULL;
2742 
2743     /* Avoid copy if newp is next chunk after oldp. */
2744     /* (This can only happen when new chunk is sbrk'ed.) */
2745 
2746     if ( (newp = mem2chunk(newmem)) == next_chunk(oldp))
2747     {
2748       newsize += chunksize(newp);
2749       newp = oldp;
2750       goto split;
2751     }
2752 
2753     /* Otherwise copy, free, and exit */
2754     MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2755     fREe(oldmem);
2756     return newmem;
2757   }
2758 
2759 
2760  split:  /* split off extra room in old or expanded chunk */
2761 
2762   if (newsize - nb >= MINSIZE) /* split off remainder */
2763   {
2764     remainder = chunk_at_offset(newp, nb);
2765     remainder_size = newsize - nb;
2766     set_head_size(newp, nb);
2767     set_head(remainder, remainder_size | PREV_INUSE);
2768     set_inuse_bit_at_offset(remainder, remainder_size);
2769     fREe(chunk2mem(remainder)); /* let free() deal with it */
2770   }
2771   else
2772   {
2773     set_head_size(newp, newsize);
2774     set_inuse_bit_at_offset(newp, newsize);
2775   }
2776 
2777   check_inuse_chunk(newp);
2778   return chunk2mem(newp);
2779 }
2780 
2781 
2782 
2783 
2784 /*
2785 
2786   memalign algorithm:
2787 
2788     memalign requests more than enough space from malloc, finds a spot
2789     within that chunk that meets the alignment request, and then
2790     possibly frees the leading and trailing space.
2791 
2792     The alignment argument must be a power of two. This property is not
2793     checked by memalign, so misuse may result in random runtime errors.
2794 
2795     8-byte alignment is guaranteed by normal malloc calls, so don't
2796     bother calling memalign with an argument of 8 or less.
2797 
2798     Overreliance on memalign is a sure way to fragment space.
2799 
2800 */
2801 
2802 
2803 #if __STD_C
2804 Void_t* mEMALIGn(size_t alignment, size_t bytes)
2805 #else
2806 Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes;
2807 #endif
2808 {
2809   INTERNAL_SIZE_T    nb;      /* padded  request size */
2810   char*     m;                /* memory returned by malloc call */
2811   mchunkptr p;                /* corresponding chunk */
2812   char*     brk;              /* alignment point within p */
2813   mchunkptr newp;             /* chunk to return */
2814   INTERNAL_SIZE_T  newsize;   /* its size */
2815   INTERNAL_SIZE_T  leadsize;  /* leading space befor alignment point */
2816   mchunkptr remainder;        /* spare room at end to split off */
2817   long      remainder_size;   /* its size */
2818 
2819   if ((long)bytes < 0) return NULL;
2820 
2821   /* If need less alignment than we give anyway, just relay to malloc */
2822 
2823   if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes);
2824 
2825   /* Otherwise, ensure that it is at least a minimum chunk size */
2826 
2827   if (alignment <  MINSIZE) alignment = MINSIZE;
2828 
2829   /* Call malloc with worst case padding to hit alignment. */
2830 
2831   nb = request2size(bytes);
2832   m  = (char*)(mALLOc(nb + alignment + MINSIZE));
2833 
2834   if (m == NULL) return NULL; /* propagate failure */
2835 
2836   p = mem2chunk(m);
2837 
2838   if ((((unsigned long)(m)) % alignment) == 0) /* aligned */
2839   {
2840 #if HAVE_MMAP
2841     if(chunk_is_mmapped(p))
2842       return chunk2mem(p); /* nothing more to do */
2843 #endif
2844   }
2845   else /* misaligned */
2846   {
2847     /*
2848       Find an aligned spot inside chunk.
2849       Since we need to give back leading space in a chunk of at
2850       least MINSIZE, if the first calculation places us at
2851       a spot with less than MINSIZE leader, we can move to the
2852       next aligned spot -- we've allocated enough total room so that
2853       this is always possible.
2854     */
2855 
2856     brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment));
2857     if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment;
2858 
2859     newp = (mchunkptr)brk;
2860     leadsize = brk - (char*)(p);
2861     newsize = chunksize(p) - leadsize;
2862 
2863 #if HAVE_MMAP
2864     if(chunk_is_mmapped(p))
2865     {
2866       newp->prev_size = p->prev_size + leadsize;
2867       set_head(newp, newsize|IS_MMAPPED);
2868       return chunk2mem(newp);
2869     }
2870 #endif
2871 
2872     /* give back leader, use the rest */
2873 
2874     set_head(newp, newsize | PREV_INUSE);
2875     set_inuse_bit_at_offset(newp, newsize);
2876     set_head_size(p, leadsize);
2877     fREe(chunk2mem(p));
2878     p = newp;
2879 
2880     assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0);
2881   }
2882 
2883   /* Also give back spare room at the end */
2884 
2885   remainder_size = chunksize(p) - nb;
2886 
2887   if (remainder_size >= (long)MINSIZE)
2888   {
2889     remainder = chunk_at_offset(p, nb);
2890     set_head(remainder, remainder_size | PREV_INUSE);
2891     set_head_size(p, nb);
2892     fREe(chunk2mem(remainder));
2893   }
2894 
2895   check_inuse_chunk(p);
2896   return chunk2mem(p);
2897 
2898 }
2899 
2900 
2901 
2902 
2903 /*
2904     valloc just invokes memalign with alignment argument equal
2905     to the page size of the system (or as near to this as can
2906     be figured out from all the includes/defines above.)
2907 */
2908 
2909 #if __STD_C
2910 Void_t* vALLOc(size_t bytes)
2911 #else
2912 Void_t* vALLOc(bytes) size_t bytes;
2913 #endif
2914 {
2915   return mEMALIGn (malloc_getpagesize, bytes);
2916 }
2917 
2918 /*
2919   pvalloc just invokes valloc for the nearest pagesize
2920   that will accommodate request
2921 */
2922 
2923 
2924 #if __STD_C
2925 Void_t* pvALLOc(size_t bytes)
2926 #else
2927 Void_t* pvALLOc(bytes) size_t bytes;
2928 #endif
2929 {
2930   size_t pagesize = malloc_getpagesize;
2931   return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1));
2932 }
2933 
2934 /*
2935 
2936   calloc calls malloc, then zeroes out the allocated chunk.
2937 
2938 */
2939 
2940 #if __STD_C
2941 Void_t* cALLOc(size_t n, size_t elem_size)
2942 #else
2943 Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size;
2944 #endif
2945 {
2946   mchunkptr p;
2947   INTERNAL_SIZE_T csz;
2948 
2949   INTERNAL_SIZE_T sz = n * elem_size;
2950 
2951 
2952   /* check if expand_top called, in which case don't need to clear */
2953 #if MORECORE_CLEARS
2954   mchunkptr oldtop = top;
2955   INTERNAL_SIZE_T oldtopsize = chunksize(top);
2956 #endif
2957   Void_t* mem = mALLOc (sz);
2958 
2959   if ((long)n < 0) return NULL;
2960 
2961   if (mem == NULL)
2962     return NULL;
2963   else
2964   {
2965 #ifdef CONFIG_SYS_MALLOC_F_LEN
2966 	if (!(gd->flags & GD_FLG_RELOC)) {
2967 		MALLOC_ZERO(mem, sz);
2968 		return mem;
2969 	}
2970 #endif
2971     p = mem2chunk(mem);
2972 
2973     /* Two optional cases in which clearing not necessary */
2974 
2975 
2976 #if HAVE_MMAP
2977     if (chunk_is_mmapped(p)) return mem;
2978 #endif
2979 
2980     csz = chunksize(p);
2981 
2982 #if MORECORE_CLEARS
2983     if (p == oldtop && csz > oldtopsize)
2984     {
2985       /* clear only the bytes from non-freshly-sbrked memory */
2986       csz = oldtopsize;
2987     }
2988 #endif
2989 
2990     MALLOC_ZERO(mem, csz - SIZE_SZ);
2991     return mem;
2992   }
2993 }
2994 
2995 /*
2996 
2997   cfree just calls free. It is needed/defined on some systems
2998   that pair it with calloc, presumably for odd historical reasons.
2999 
3000 */
3001 
3002 #if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__)
3003 #if __STD_C
3004 void cfree(Void_t *mem)
3005 #else
3006 void cfree(mem) Void_t *mem;
3007 #endif
3008 {
3009   fREe(mem);
3010 }
3011 #endif
3012 
3013 
3014 
3015 /*
3016 
3017     Malloc_trim gives memory back to the system (via negative
3018     arguments to sbrk) if there is unused memory at the `high' end of
3019     the malloc pool. You can call this after freeing large blocks of
3020     memory to potentially reduce the system-level memory requirements
3021     of a program. However, it cannot guarantee to reduce memory. Under
3022     some allocation patterns, some large free blocks of memory will be
3023     locked between two used chunks, so they cannot be given back to
3024     the system.
3025 
3026     The `pad' argument to malloc_trim represents the amount of free
3027     trailing space to leave untrimmed. If this argument is zero,
3028     only the minimum amount of memory to maintain internal data
3029     structures will be left (one page or less). Non-zero arguments
3030     can be supplied to maintain enough trailing space to service
3031     future expected allocations without having to re-obtain memory
3032     from the system.
3033 
3034     Malloc_trim returns 1 if it actually released any memory, else 0.
3035 
3036 */
3037 
3038 #if __STD_C
3039 int malloc_trim(size_t pad)
3040 #else
3041 int malloc_trim(pad) size_t pad;
3042 #endif
3043 {
3044   long  top_size;        /* Amount of top-most memory */
3045   long  extra;           /* Amount to release */
3046   char* current_brk;     /* address returned by pre-check sbrk call */
3047   char* new_brk;         /* address returned by negative sbrk call */
3048 
3049   unsigned long pagesz = malloc_getpagesize;
3050 
3051   top_size = chunksize(top);
3052   extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
3053 
3054   if (extra < (long)pagesz)  /* Not enough memory to release */
3055     return 0;
3056 
3057   else
3058   {
3059     /* Test to make sure no one else called sbrk */
3060     current_brk = (char*)(MORECORE (0));
3061     if (current_brk != (char*)(top) + top_size)
3062       return 0;     /* Apparently we don't own memory; must fail */
3063 
3064     else
3065     {
3066       new_brk = (char*)(MORECORE (-extra));
3067 
3068       if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */
3069       {
3070 	/* Try to figure out what we have */
3071 	current_brk = (char*)(MORECORE (0));
3072 	top_size = current_brk - (char*)top;
3073 	if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */
3074 	{
3075 	  sbrked_mem = current_brk - sbrk_base;
3076 	  set_head(top, top_size | PREV_INUSE);
3077 	}
3078 	check_chunk(top);
3079 	return 0;
3080       }
3081 
3082       else
3083       {
3084 	/* Success. Adjust top accordingly. */
3085 	set_head(top, (top_size - extra) | PREV_INUSE);
3086 	sbrked_mem -= extra;
3087 	check_chunk(top);
3088 	return 1;
3089       }
3090     }
3091   }
3092 }
3093 
3094 
3095 
3096 /*
3097   malloc_usable_size:
3098 
3099     This routine tells you how many bytes you can actually use in an
3100     allocated chunk, which may be more than you requested (although
3101     often not). You can use this many bytes without worrying about
3102     overwriting other allocated objects. Not a particularly great
3103     programming practice, but still sometimes useful.
3104 
3105 */
3106 
3107 #if __STD_C
3108 size_t malloc_usable_size(Void_t* mem)
3109 #else
3110 size_t malloc_usable_size(mem) Void_t* mem;
3111 #endif
3112 {
3113   mchunkptr p;
3114   if (mem == NULL)
3115     return 0;
3116   else
3117   {
3118     p = mem2chunk(mem);
3119     if(!chunk_is_mmapped(p))
3120     {
3121       if (!inuse(p)) return 0;
3122       check_inuse_chunk(p);
3123       return chunksize(p) - SIZE_SZ;
3124     }
3125     return chunksize(p) - 2*SIZE_SZ;
3126   }
3127 }
3128 
3129 
3130 
3131 
3132 /* Utility to update current_mallinfo for malloc_stats and mallinfo() */
3133 
3134 #ifdef DEBUG
3135 static void malloc_update_mallinfo()
3136 {
3137   int i;
3138   mbinptr b;
3139   mchunkptr p;
3140 #ifdef DEBUG
3141   mchunkptr q;
3142 #endif
3143 
3144   INTERNAL_SIZE_T avail = chunksize(top);
3145   int   navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0;
3146 
3147   for (i = 1; i < NAV; ++i)
3148   {
3149     b = bin_at(i);
3150     for (p = last(b); p != b; p = p->bk)
3151     {
3152 #ifdef DEBUG
3153       check_free_chunk(p);
3154       for (q = next_chunk(p);
3155 	   q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE;
3156 	   q = next_chunk(q))
3157 	check_inuse_chunk(q);
3158 #endif
3159       avail += chunksize(p);
3160       navail++;
3161     }
3162   }
3163 
3164   current_mallinfo.ordblks = navail;
3165   current_mallinfo.uordblks = sbrked_mem - avail;
3166   current_mallinfo.fordblks = avail;
3167   current_mallinfo.hblks = n_mmaps;
3168   current_mallinfo.hblkhd = mmapped_mem;
3169   current_mallinfo.keepcost = chunksize(top);
3170 
3171 }
3172 #endif	/* DEBUG */
3173 
3174 
3175 
3176 /*
3177 
3178   malloc_stats:
3179 
3180     Prints on the amount of space obtain from the system (both
3181     via sbrk and mmap), the maximum amount (which may be more than
3182     current if malloc_trim and/or munmap got called), the maximum
3183     number of simultaneous mmap regions used, and the current number
3184     of bytes allocated via malloc (or realloc, etc) but not yet
3185     freed. (Note that this is the number of bytes allocated, not the
3186     number requested. It will be larger than the number requested
3187     because of alignment and bookkeeping overhead.)
3188 
3189 */
3190 
3191 #ifdef DEBUG
3192 void malloc_stats()
3193 {
3194   malloc_update_mallinfo();
3195   printf("max system bytes = %10u\n",
3196 	  (unsigned int)(max_total_mem));
3197   printf("system bytes     = %10u\n",
3198 	  (unsigned int)(sbrked_mem + mmapped_mem));
3199   printf("in use bytes     = %10u\n",
3200 	  (unsigned int)(current_mallinfo.uordblks + mmapped_mem));
3201 #if HAVE_MMAP
3202   printf("max mmap regions = %10u\n",
3203 	  (unsigned int)max_n_mmaps);
3204 #endif
3205 }
3206 #endif	/* DEBUG */
3207 
3208 /*
3209   mallinfo returns a copy of updated current mallinfo.
3210 */
3211 
3212 #ifdef DEBUG
3213 struct mallinfo mALLINFo()
3214 {
3215   malloc_update_mallinfo();
3216   return current_mallinfo;
3217 }
3218 #endif	/* DEBUG */
3219 
3220 
3221 
3222 
3223 /*
3224   mallopt:
3225 
3226     mallopt is the general SVID/XPG interface to tunable parameters.
3227     The format is to provide a (parameter-number, parameter-value) pair.
3228     mallopt then sets the corresponding parameter to the argument
3229     value if it can (i.e., so long as the value is meaningful),
3230     and returns 1 if successful else 0.
3231 
3232     See descriptions of tunable parameters above.
3233 
3234 */
3235 
3236 #if __STD_C
3237 int mALLOPt(int param_number, int value)
3238 #else
3239 int mALLOPt(param_number, value) int param_number; int value;
3240 #endif
3241 {
3242   switch(param_number)
3243   {
3244     case M_TRIM_THRESHOLD:
3245       trim_threshold = value; return 1;
3246     case M_TOP_PAD:
3247       top_pad = value; return 1;
3248     case M_MMAP_THRESHOLD:
3249       mmap_threshold = value; return 1;
3250     case M_MMAP_MAX:
3251 #if HAVE_MMAP
3252       n_mmaps_max = value; return 1;
3253 #else
3254       if (value != 0) return 0; else  n_mmaps_max = value; return 1;
3255 #endif
3256 
3257     default:
3258       return 0;
3259   }
3260 }
3261 
3262 /*
3263 
3264 History:
3265 
3266     V2.6.6 Sun Dec  5 07:42:19 1999  Doug Lea  (dl at gee)
3267       * return null for negative arguments
3268       * Added Several WIN32 cleanups from Martin C. Fong <mcfong@yahoo.com>
3269 	 * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
3270 	  (e.g. WIN32 platforms)
3271 	 * Cleanup up header file inclusion for WIN32 platforms
3272 	 * Cleanup code to avoid Microsoft Visual C++ compiler complaints
3273 	 * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
3274 	   memory allocation routines
3275 	 * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
3276 	 * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
3277 	   usage of 'assert' in non-WIN32 code
3278 	 * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
3279 	   avoid infinite loop
3280       * Always call 'fREe()' rather than 'free()'
3281 
3282     V2.6.5 Wed Jun 17 15:57:31 1998  Doug Lea  (dl at gee)
3283       * Fixed ordering problem with boundary-stamping
3284 
3285     V2.6.3 Sun May 19 08:17:58 1996  Doug Lea  (dl at gee)
3286       * Added pvalloc, as recommended by H.J. Liu
3287       * Added 64bit pointer support mainly from Wolfram Gloger
3288       * Added anonymously donated WIN32 sbrk emulation
3289       * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
3290       * malloc_extend_top: fix mask error that caused wastage after
3291 	foreign sbrks
3292       * Add linux mremap support code from HJ Liu
3293 
3294     V2.6.2 Tue Dec  5 06:52:55 1995  Doug Lea  (dl at gee)
3295       * Integrated most documentation with the code.
3296       * Add support for mmap, with help from
3297 	Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
3298       * Use last_remainder in more cases.
3299       * Pack bins using idea from  colin@nyx10.cs.du.edu
3300       * Use ordered bins instead of best-fit threshhold
3301       * Eliminate block-local decls to simplify tracing and debugging.
3302       * Support another case of realloc via move into top
3303       * Fix error occuring when initial sbrk_base not word-aligned.
3304       * Rely on page size for units instead of SBRK_UNIT to
3305 	avoid surprises about sbrk alignment conventions.
3306       * Add mallinfo, mallopt. Thanks to Raymond Nijssen
3307 	(raymond@es.ele.tue.nl) for the suggestion.
3308       * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
3309       * More precautions for cases where other routines call sbrk,
3310 	courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
3311       * Added macros etc., allowing use in linux libc from
3312 	H.J. Lu (hjl@gnu.ai.mit.edu)
3313       * Inverted this history list
3314 
3315     V2.6.1 Sat Dec  2 14:10:57 1995  Doug Lea  (dl at gee)
3316       * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
3317       * Removed all preallocation code since under current scheme
3318 	the work required to undo bad preallocations exceeds
3319 	the work saved in good cases for most test programs.
3320       * No longer use return list or unconsolidated bins since
3321 	no scheme using them consistently outperforms those that don't
3322 	given above changes.
3323       * Use best fit for very large chunks to prevent some worst-cases.
3324       * Added some support for debugging
3325 
3326     V2.6.0 Sat Nov  4 07:05:23 1995  Doug Lea  (dl at gee)
3327       * Removed footers when chunks are in use. Thanks to
3328 	Paul Wilson (wilson@cs.texas.edu) for the suggestion.
3329 
3330     V2.5.4 Wed Nov  1 07:54:51 1995  Doug Lea  (dl at gee)
3331       * Added malloc_trim, with help from Wolfram Gloger
3332 	(wmglo@Dent.MED.Uni-Muenchen.DE).
3333 
3334     V2.5.3 Tue Apr 26 10:16:01 1994  Doug Lea  (dl at g)
3335 
3336     V2.5.2 Tue Apr  5 16:20:40 1994  Doug Lea  (dl at g)
3337       * realloc: try to expand in both directions
3338       * malloc: swap order of clean-bin strategy;
3339       * realloc: only conditionally expand backwards
3340       * Try not to scavenge used bins
3341       * Use bin counts as a guide to preallocation
3342       * Occasionally bin return list chunks in first scan
3343       * Add a few optimizations from colin@nyx10.cs.du.edu
3344 
3345     V2.5.1 Sat Aug 14 15:40:43 1993  Doug Lea  (dl at g)
3346       * faster bin computation & slightly different binning
3347       * merged all consolidations to one part of malloc proper
3348 	 (eliminating old malloc_find_space & malloc_clean_bin)
3349       * Scan 2 returns chunks (not just 1)
3350       * Propagate failure in realloc if malloc returns 0
3351       * Add stuff to allow compilation on non-ANSI compilers
3352 	  from kpv@research.att.com
3353 
3354     V2.5 Sat Aug  7 07:41:59 1993  Doug Lea  (dl at g.oswego.edu)
3355       * removed potential for odd address access in prev_chunk
3356       * removed dependency on getpagesize.h
3357       * misc cosmetics and a bit more internal documentation
3358       * anticosmetics: mangled names in macros to evade debugger strangeness
3359       * tested on sparc, hp-700, dec-mips, rs6000
3360 	  with gcc & native cc (hp, dec only) allowing
3361 	  Detlefs & Zorn comparison study (in SIGPLAN Notices.)
3362 
3363     Trial version Fri Aug 28 13:14:29 1992  Doug Lea  (dl at g.oswego.edu)
3364       * Based loosely on libg++-1.2X malloc. (It retains some of the overall
3365 	 structure of old version,  but most details differ.)
3366 
3367 */
3368