1 #include <common.h> 2 3 #if 0 /* Moved to malloc.h */ 4 /* ---------- To make a malloc.h, start cutting here ------------ */ 5 6 /* 7 A version of malloc/free/realloc written by Doug Lea and released to the 8 public domain. Send questions/comments/complaints/performance data 9 to dl@cs.oswego.edu 10 11 * VERSION 2.6.6 Sun Mar 5 19:10:03 2000 Doug Lea (dl at gee) 12 13 Note: There may be an updated version of this malloc obtainable at 14 ftp://g.oswego.edu/pub/misc/malloc.c 15 Check before installing! 16 17 * Why use this malloc? 18 19 This is not the fastest, most space-conserving, most portable, or 20 most tunable malloc ever written. However it is among the fastest 21 while also being among the most space-conserving, portable and tunable. 22 Consistent balance across these factors results in a good general-purpose 23 allocator. For a high-level description, see 24 http://g.oswego.edu/dl/html/malloc.html 25 26 * Synopsis of public routines 27 28 (Much fuller descriptions are contained in the program documentation below.) 29 30 malloc(size_t n); 31 Return a pointer to a newly allocated chunk of at least n bytes, or null 32 if no space is available. 33 free(Void_t* p); 34 Release the chunk of memory pointed to by p, or no effect if p is null. 35 realloc(Void_t* p, size_t n); 36 Return a pointer to a chunk of size n that contains the same data 37 as does chunk p up to the minimum of (n, p's size) bytes, or null 38 if no space is available. The returned pointer may or may not be 39 the same as p. If p is null, equivalent to malloc. Unless the 40 #define REALLOC_ZERO_BYTES_FREES below is set, realloc with a 41 size argument of zero (re)allocates a minimum-sized chunk. 42 memalign(size_t alignment, size_t n); 43 Return a pointer to a newly allocated chunk of n bytes, aligned 44 in accord with the alignment argument, which must be a power of 45 two. 46 valloc(size_t n); 47 Equivalent to memalign(pagesize, n), where pagesize is the page 48 size of the system (or as near to this as can be figured out from 49 all the includes/defines below.) 50 pvalloc(size_t n); 51 Equivalent to valloc(minimum-page-that-holds(n)), that is, 52 round up n to nearest pagesize. 53 calloc(size_t unit, size_t quantity); 54 Returns a pointer to quantity * unit bytes, with all locations 55 set to zero. 56 cfree(Void_t* p); 57 Equivalent to free(p). 58 malloc_trim(size_t pad); 59 Release all but pad bytes of freed top-most memory back 60 to the system. Return 1 if successful, else 0. 61 malloc_usable_size(Void_t* p); 62 Report the number usable allocated bytes associated with allocated 63 chunk p. This may or may not report more bytes than were requested, 64 due to alignment and minimum size constraints. 65 malloc_stats(); 66 Prints brief summary statistics. 67 mallinfo() 68 Returns (by copy) a struct containing various summary statistics. 69 mallopt(int parameter_number, int parameter_value) 70 Changes one of the tunable parameters described below. Returns 71 1 if successful in changing the parameter, else 0. 72 73 * Vital statistics: 74 75 Alignment: 8-byte 76 8 byte alignment is currently hardwired into the design. This 77 seems to suffice for all current machines and C compilers. 78 79 Assumed pointer representation: 4 or 8 bytes 80 Code for 8-byte pointers is untested by me but has worked 81 reliably by Wolfram Gloger, who contributed most of the 82 changes supporting this. 83 84 Assumed size_t representation: 4 or 8 bytes 85 Note that size_t is allowed to be 4 bytes even if pointers are 8. 86 87 Minimum overhead per allocated chunk: 4 or 8 bytes 88 Each malloced chunk has a hidden overhead of 4 bytes holding size 89 and status information. 90 91 Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead) 92 8-byte ptrs: 24/32 bytes (including, 4/8 overhead) 93 94 When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte 95 ptrs but 4 byte size) or 24 (for 8/8) additional bytes are 96 needed; 4 (8) for a trailing size field 97 and 8 (16) bytes for free list pointers. Thus, the minimum 98 allocatable size is 16/24/32 bytes. 99 100 Even a request for zero bytes (i.e., malloc(0)) returns a 101 pointer to something of the minimum allocatable size. 102 103 Maximum allocated size: 4-byte size_t: 2^31 - 8 bytes 104 8-byte size_t: 2^63 - 16 bytes 105 106 It is assumed that (possibly signed) size_t bit values suffice to 107 represent chunk sizes. `Possibly signed' is due to the fact 108 that `size_t' may be defined on a system as either a signed or 109 an unsigned type. To be conservative, values that would appear 110 as negative numbers are avoided. 111 Requests for sizes with a negative sign bit when the request 112 size is treaded as a long will return null. 113 114 Maximum overhead wastage per allocated chunk: normally 15 bytes 115 116 Alignnment demands, plus the minimum allocatable size restriction 117 make the normal worst-case wastage 15 bytes (i.e., up to 15 118 more bytes will be allocated than were requested in malloc), with 119 two exceptions: 120 1. Because requests for zero bytes allocate non-zero space, 121 the worst case wastage for a request of zero bytes is 24 bytes. 122 2. For requests >= mmap_threshold that are serviced via 123 mmap(), the worst case wastage is 8 bytes plus the remainder 124 from a system page (the minimal mmap unit); typically 4096 bytes. 125 126 * Limitations 127 128 Here are some features that are NOT currently supported 129 130 * No user-definable hooks for callbacks and the like. 131 * No automated mechanism for fully checking that all accesses 132 to malloced memory stay within their bounds. 133 * No support for compaction. 134 135 * Synopsis of compile-time options: 136 137 People have reported using previous versions of this malloc on all 138 versions of Unix, sometimes by tweaking some of the defines 139 below. It has been tested most extensively on Solaris and 140 Linux. It is also reported to work on WIN32 platforms. 141 People have also reported adapting this malloc for use in 142 stand-alone embedded systems. 143 144 The implementation is in straight, hand-tuned ANSI C. Among other 145 consequences, it uses a lot of macros. Because of this, to be at 146 all usable, this code should be compiled using an optimizing compiler 147 (for example gcc -O2) that can simplify expressions and control 148 paths. 149 150 __STD_C (default: derived from C compiler defines) 151 Nonzero if using ANSI-standard C compiler, a C++ compiler, or 152 a C compiler sufficiently close to ANSI to get away with it. 153 DEBUG (default: NOT defined) 154 Define to enable debugging. Adds fairly extensive assertion-based 155 checking to help track down memory errors, but noticeably slows down 156 execution. 157 REALLOC_ZERO_BYTES_FREES (default: NOT defined) 158 Define this if you think that realloc(p, 0) should be equivalent 159 to free(p). Otherwise, since malloc returns a unique pointer for 160 malloc(0), so does realloc(p, 0). 161 HAVE_MEMCPY (default: defined) 162 Define if you are not otherwise using ANSI STD C, but still 163 have memcpy and memset in your C library and want to use them. 164 Otherwise, simple internal versions are supplied. 165 USE_MEMCPY (default: 1 if HAVE_MEMCPY is defined, 0 otherwise) 166 Define as 1 if you want the C library versions of memset and 167 memcpy called in realloc and calloc (otherwise macro versions are used). 168 At least on some platforms, the simple macro versions usually 169 outperform libc versions. 170 HAVE_MMAP (default: defined as 1) 171 Define to non-zero to optionally make malloc() use mmap() to 172 allocate very large blocks. 173 HAVE_MREMAP (default: defined as 0 unless Linux libc set) 174 Define to non-zero to optionally make realloc() use mremap() to 175 reallocate very large blocks. 176 malloc_getpagesize (default: derived from system #includes) 177 Either a constant or routine call returning the system page size. 178 HAVE_USR_INCLUDE_MALLOC_H (default: NOT defined) 179 Optionally define if you are on a system with a /usr/include/malloc.h 180 that declares struct mallinfo. It is not at all necessary to 181 define this even if you do, but will ensure consistency. 182 INTERNAL_SIZE_T (default: size_t) 183 Define to a 32-bit type (probably `unsigned int') if you are on a 184 64-bit machine, yet do not want or need to allow malloc requests of 185 greater than 2^31 to be handled. This saves space, especially for 186 very small chunks. 187 INTERNAL_LINUX_C_LIB (default: NOT defined) 188 Defined only when compiled as part of Linux libc. 189 Also note that there is some odd internal name-mangling via defines 190 (for example, internally, `malloc' is named `mALLOc') needed 191 when compiling in this case. These look funny but don't otherwise 192 affect anything. 193 WIN32 (default: undefined) 194 Define this on MS win (95, nt) platforms to compile in sbrk emulation. 195 LACKS_UNISTD_H (default: undefined if not WIN32) 196 Define this if your system does not have a <unistd.h>. 197 LACKS_SYS_PARAM_H (default: undefined if not WIN32) 198 Define this if your system does not have a <sys/param.h>. 199 MORECORE (default: sbrk) 200 The name of the routine to call to obtain more memory from the system. 201 MORECORE_FAILURE (default: -1) 202 The value returned upon failure of MORECORE. 203 MORECORE_CLEARS (default 1) 204 True (1) if the routine mapped to MORECORE zeroes out memory (which 205 holds for sbrk). 206 DEFAULT_TRIM_THRESHOLD 207 DEFAULT_TOP_PAD 208 DEFAULT_MMAP_THRESHOLD 209 DEFAULT_MMAP_MAX 210 Default values of tunable parameters (described in detail below) 211 controlling interaction with host system routines (sbrk, mmap, etc). 212 These values may also be changed dynamically via mallopt(). The 213 preset defaults are those that give best performance for typical 214 programs/systems. 215 USE_DL_PREFIX (default: undefined) 216 Prefix all public routines with the string 'dl'. Useful to 217 quickly avoid procedure declaration conflicts and linker symbol 218 conflicts with existing memory allocation routines. 219 220 221 */ 222 223 224 225 226 /* Preliminaries */ 227 228 #ifndef __STD_C 229 #ifdef __STDC__ 230 #define __STD_C 1 231 #else 232 #if __cplusplus 233 #define __STD_C 1 234 #else 235 #define __STD_C 0 236 #endif /*__cplusplus*/ 237 #endif /*__STDC__*/ 238 #endif /*__STD_C*/ 239 240 #ifndef Void_t 241 #if (__STD_C || defined(WIN32)) 242 #define Void_t void 243 #else 244 #define Void_t char 245 #endif 246 #endif /*Void_t*/ 247 248 #if __STD_C 249 #include <stddef.h> /* for size_t */ 250 #else 251 #include <sys/types.h> 252 #endif 253 254 #ifdef __cplusplus 255 extern "C" { 256 #endif 257 258 #include <stdio.h> /* needed for malloc_stats */ 259 260 261 /* 262 Compile-time options 263 */ 264 265 266 /* 267 Debugging: 268 269 Because freed chunks may be overwritten with link fields, this 270 malloc will often die when freed memory is overwritten by user 271 programs. This can be very effective (albeit in an annoying way) 272 in helping track down dangling pointers. 273 274 If you compile with -DDEBUG, a number of assertion checks are 275 enabled that will catch more memory errors. You probably won't be 276 able to make much sense of the actual assertion errors, but they 277 should help you locate incorrectly overwritten memory. The 278 checking is fairly extensive, and will slow down execution 279 noticeably. Calling malloc_stats or mallinfo with DEBUG set will 280 attempt to check every non-mmapped allocated and free chunk in the 281 course of computing the summmaries. (By nature, mmapped regions 282 cannot be checked very much automatically.) 283 284 Setting DEBUG may also be helpful if you are trying to modify 285 this code. The assertions in the check routines spell out in more 286 detail the assumptions and invariants underlying the algorithms. 287 288 */ 289 290 #ifdef DEBUG 291 #include <assert.h> 292 #else 293 #define assert(x) ((void)0) 294 #endif 295 296 297 /* 298 INTERNAL_SIZE_T is the word-size used for internal bookkeeping 299 of chunk sizes. On a 64-bit machine, you can reduce malloc 300 overhead by defining INTERNAL_SIZE_T to be a 32 bit `unsigned int' 301 at the expense of not being able to handle requests greater than 302 2^31. This limitation is hardly ever a concern; you are encouraged 303 to set this. However, the default version is the same as size_t. 304 */ 305 306 #ifndef INTERNAL_SIZE_T 307 #define INTERNAL_SIZE_T size_t 308 #endif 309 310 /* 311 REALLOC_ZERO_BYTES_FREES should be set if a call to 312 realloc with zero bytes should be the same as a call to free. 313 Some people think it should. Otherwise, since this malloc 314 returns a unique pointer for malloc(0), so does realloc(p, 0). 315 */ 316 317 318 /* #define REALLOC_ZERO_BYTES_FREES */ 319 320 321 /* 322 WIN32 causes an emulation of sbrk to be compiled in 323 mmap-based options are not currently supported in WIN32. 324 */ 325 326 /* #define WIN32 */ 327 #ifdef WIN32 328 #define MORECORE wsbrk 329 #define HAVE_MMAP 0 330 331 #define LACKS_UNISTD_H 332 #define LACKS_SYS_PARAM_H 333 334 /* 335 Include 'windows.h' to get the necessary declarations for the 336 Microsoft Visual C++ data structures and routines used in the 'sbrk' 337 emulation. 338 339 Define WIN32_LEAN_AND_MEAN so that only the essential Microsoft 340 Visual C++ header files are included. 341 */ 342 #define WIN32_LEAN_AND_MEAN 343 #include <windows.h> 344 #endif 345 346 347 /* 348 HAVE_MEMCPY should be defined if you are not otherwise using 349 ANSI STD C, but still have memcpy and memset in your C library 350 and want to use them in calloc and realloc. Otherwise simple 351 macro versions are defined here. 352 353 USE_MEMCPY should be defined as 1 if you actually want to 354 have memset and memcpy called. People report that the macro 355 versions are often enough faster than libc versions on many 356 systems that it is better to use them. 357 358 */ 359 360 #define HAVE_MEMCPY 361 362 #ifndef USE_MEMCPY 363 #ifdef HAVE_MEMCPY 364 #define USE_MEMCPY 1 365 #else 366 #define USE_MEMCPY 0 367 #endif 368 #endif 369 370 #if (__STD_C || defined(HAVE_MEMCPY)) 371 372 #if __STD_C 373 void* memset(void*, int, size_t); 374 void* memcpy(void*, const void*, size_t); 375 #else 376 #ifdef WIN32 377 /* On Win32 platforms, 'memset()' and 'memcpy()' are already declared in */ 378 /* 'windows.h' */ 379 #else 380 Void_t* memset(); 381 Void_t* memcpy(); 382 #endif 383 #endif 384 #endif 385 386 #if USE_MEMCPY 387 388 /* The following macros are only invoked with (2n+1)-multiples of 389 INTERNAL_SIZE_T units, with a positive integer n. This is exploited 390 for fast inline execution when n is small. */ 391 392 #define MALLOC_ZERO(charp, nbytes) \ 393 do { \ 394 INTERNAL_SIZE_T mzsz = (nbytes); \ 395 if(mzsz <= 9*sizeof(mzsz)) { \ 396 INTERNAL_SIZE_T* mz = (INTERNAL_SIZE_T*) (charp); \ 397 if(mzsz >= 5*sizeof(mzsz)) { *mz++ = 0; \ 398 *mz++ = 0; \ 399 if(mzsz >= 7*sizeof(mzsz)) { *mz++ = 0; \ 400 *mz++ = 0; \ 401 if(mzsz >= 9*sizeof(mzsz)) { *mz++ = 0; \ 402 *mz++ = 0; }}} \ 403 *mz++ = 0; \ 404 *mz++ = 0; \ 405 *mz = 0; \ 406 } else memset((charp), 0, mzsz); \ 407 } while(0) 408 409 #define MALLOC_COPY(dest,src,nbytes) \ 410 do { \ 411 INTERNAL_SIZE_T mcsz = (nbytes); \ 412 if(mcsz <= 9*sizeof(mcsz)) { \ 413 INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) (src); \ 414 INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) (dest); \ 415 if(mcsz >= 5*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \ 416 *mcdst++ = *mcsrc++; \ 417 if(mcsz >= 7*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \ 418 *mcdst++ = *mcsrc++; \ 419 if(mcsz >= 9*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \ 420 *mcdst++ = *mcsrc++; }}} \ 421 *mcdst++ = *mcsrc++; \ 422 *mcdst++ = *mcsrc++; \ 423 *mcdst = *mcsrc ; \ 424 } else memcpy(dest, src, mcsz); \ 425 } while(0) 426 427 #else /* !USE_MEMCPY */ 428 429 /* Use Duff's device for good zeroing/copying performance. */ 430 431 #define MALLOC_ZERO(charp, nbytes) \ 432 do { \ 433 INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp); \ 434 long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn; \ 435 if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \ 436 switch (mctmp) { \ 437 case 0: for(;;) { *mzp++ = 0; \ 438 case 7: *mzp++ = 0; \ 439 case 6: *mzp++ = 0; \ 440 case 5: *mzp++ = 0; \ 441 case 4: *mzp++ = 0; \ 442 case 3: *mzp++ = 0; \ 443 case 2: *mzp++ = 0; \ 444 case 1: *mzp++ = 0; if(mcn <= 0) break; mcn--; } \ 445 } \ 446 } while(0) 447 448 #define MALLOC_COPY(dest,src,nbytes) \ 449 do { \ 450 INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src; \ 451 INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest; \ 452 long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn; \ 453 if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \ 454 switch (mctmp) { \ 455 case 0: for(;;) { *mcdst++ = *mcsrc++; \ 456 case 7: *mcdst++ = *mcsrc++; \ 457 case 6: *mcdst++ = *mcsrc++; \ 458 case 5: *mcdst++ = *mcsrc++; \ 459 case 4: *mcdst++ = *mcsrc++; \ 460 case 3: *mcdst++ = *mcsrc++; \ 461 case 2: *mcdst++ = *mcsrc++; \ 462 case 1: *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; } \ 463 } \ 464 } while(0) 465 466 #endif 467 468 469 /* 470 Define HAVE_MMAP to optionally make malloc() use mmap() to 471 allocate very large blocks. These will be returned to the 472 operating system immediately after a free(). 473 */ 474 475 #ifndef HAVE_MMAP 476 #define HAVE_MMAP 1 477 #endif 478 479 /* 480 Define HAVE_MREMAP to make realloc() use mremap() to re-allocate 481 large blocks. This is currently only possible on Linux with 482 kernel versions newer than 1.3.77. 483 */ 484 485 #ifndef HAVE_MREMAP 486 #ifdef INTERNAL_LINUX_C_LIB 487 #define HAVE_MREMAP 1 488 #else 489 #define HAVE_MREMAP 0 490 #endif 491 #endif 492 493 #if HAVE_MMAP 494 495 #include <unistd.h> 496 #include <fcntl.h> 497 #include <sys/mman.h> 498 499 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON) 500 #define MAP_ANONYMOUS MAP_ANON 501 #endif 502 503 #endif /* HAVE_MMAP */ 504 505 /* 506 Access to system page size. To the extent possible, this malloc 507 manages memory from the system in page-size units. 508 509 The following mechanics for getpagesize were adapted from 510 bsd/gnu getpagesize.h 511 */ 512 513 #ifndef LACKS_UNISTD_H 514 # include <unistd.h> 515 #endif 516 517 #ifndef malloc_getpagesize 518 # ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */ 519 # ifndef _SC_PAGE_SIZE 520 # define _SC_PAGE_SIZE _SC_PAGESIZE 521 # endif 522 # endif 523 # ifdef _SC_PAGE_SIZE 524 # define malloc_getpagesize sysconf(_SC_PAGE_SIZE) 525 # else 526 # if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE) 527 extern size_t getpagesize(); 528 # define malloc_getpagesize getpagesize() 529 # else 530 # ifdef WIN32 531 # define malloc_getpagesize (4096) /* TBD: Use 'GetSystemInfo' instead */ 532 # else 533 # ifndef LACKS_SYS_PARAM_H 534 # include <sys/param.h> 535 # endif 536 # ifdef EXEC_PAGESIZE 537 # define malloc_getpagesize EXEC_PAGESIZE 538 # else 539 # ifdef NBPG 540 # ifndef CLSIZE 541 # define malloc_getpagesize NBPG 542 # else 543 # define malloc_getpagesize (NBPG * CLSIZE) 544 # endif 545 # else 546 # ifdef NBPC 547 # define malloc_getpagesize NBPC 548 # else 549 # ifdef PAGESIZE 550 # define malloc_getpagesize PAGESIZE 551 # else 552 # define malloc_getpagesize (4096) /* just guess */ 553 # endif 554 # endif 555 # endif 556 # endif 557 # endif 558 # endif 559 # endif 560 #endif 561 562 563 /* 564 565 This version of malloc supports the standard SVID/XPG mallinfo 566 routine that returns a struct containing the same kind of 567 information you can get from malloc_stats. It should work on 568 any SVID/XPG compliant system that has a /usr/include/malloc.h 569 defining struct mallinfo. (If you'd like to install such a thing 570 yourself, cut out the preliminary declarations as described above 571 and below and save them in a malloc.h file. But there's no 572 compelling reason to bother to do this.) 573 574 The main declaration needed is the mallinfo struct that is returned 575 (by-copy) by mallinfo(). The SVID/XPG malloinfo struct contains a 576 bunch of fields, most of which are not even meaningful in this 577 version of malloc. Some of these fields are are instead filled by 578 mallinfo() with other numbers that might possibly be of interest. 579 580 HAVE_USR_INCLUDE_MALLOC_H should be set if you have a 581 /usr/include/malloc.h file that includes a declaration of struct 582 mallinfo. If so, it is included; else an SVID2/XPG2 compliant 583 version is declared below. These must be precisely the same for 584 mallinfo() to work. 585 586 */ 587 588 /* #define HAVE_USR_INCLUDE_MALLOC_H */ 589 590 #if HAVE_USR_INCLUDE_MALLOC_H 591 #include "/usr/include/malloc.h" 592 #else 593 594 /* SVID2/XPG mallinfo structure */ 595 596 struct mallinfo { 597 int arena; /* total space allocated from system */ 598 int ordblks; /* number of non-inuse chunks */ 599 int smblks; /* unused -- always zero */ 600 int hblks; /* number of mmapped regions */ 601 int hblkhd; /* total space in mmapped regions */ 602 int usmblks; /* unused -- always zero */ 603 int fsmblks; /* unused -- always zero */ 604 int uordblks; /* total allocated space */ 605 int fordblks; /* total non-inuse space */ 606 int keepcost; /* top-most, releasable (via malloc_trim) space */ 607 }; 608 609 /* SVID2/XPG mallopt options */ 610 611 #define M_MXFAST 1 /* UNUSED in this malloc */ 612 #define M_NLBLKS 2 /* UNUSED in this malloc */ 613 #define M_GRAIN 3 /* UNUSED in this malloc */ 614 #define M_KEEP 4 /* UNUSED in this malloc */ 615 616 #endif 617 618 /* mallopt options that actually do something */ 619 620 #define M_TRIM_THRESHOLD -1 621 #define M_TOP_PAD -2 622 #define M_MMAP_THRESHOLD -3 623 #define M_MMAP_MAX -4 624 625 626 #ifndef DEFAULT_TRIM_THRESHOLD 627 #define DEFAULT_TRIM_THRESHOLD (128 * 1024) 628 #endif 629 630 /* 631 M_TRIM_THRESHOLD is the maximum amount of unused top-most memory 632 to keep before releasing via malloc_trim in free(). 633 634 Automatic trimming is mainly useful in long-lived programs. 635 Because trimming via sbrk can be slow on some systems, and can 636 sometimes be wasteful (in cases where programs immediately 637 afterward allocate more large chunks) the value should be high 638 enough so that your overall system performance would improve by 639 releasing. 640 641 The trim threshold and the mmap control parameters (see below) 642 can be traded off with one another. Trimming and mmapping are 643 two different ways of releasing unused memory back to the 644 system. Between these two, it is often possible to keep 645 system-level demands of a long-lived program down to a bare 646 minimum. For example, in one test suite of sessions measuring 647 the XF86 X server on Linux, using a trim threshold of 128K and a 648 mmap threshold of 192K led to near-minimal long term resource 649 consumption. 650 651 If you are using this malloc in a long-lived program, it should 652 pay to experiment with these values. As a rough guide, you 653 might set to a value close to the average size of a process 654 (program) running on your system. Releasing this much memory 655 would allow such a process to run in memory. Generally, it's 656 worth it to tune for trimming rather tham memory mapping when a 657 program undergoes phases where several large chunks are 658 allocated and released in ways that can reuse each other's 659 storage, perhaps mixed with phases where there are no such 660 chunks at all. And in well-behaved long-lived programs, 661 controlling release of large blocks via trimming versus mapping 662 is usually faster. 663 664 However, in most programs, these parameters serve mainly as 665 protection against the system-level effects of carrying around 666 massive amounts of unneeded memory. Since frequent calls to 667 sbrk, mmap, and munmap otherwise degrade performance, the default 668 parameters are set to relatively high values that serve only as 669 safeguards. 670 671 The default trim value is high enough to cause trimming only in 672 fairly extreme (by current memory consumption standards) cases. 673 It must be greater than page size to have any useful effect. To 674 disable trimming completely, you can set to (unsigned long)(-1); 675 676 677 */ 678 679 680 #ifndef DEFAULT_TOP_PAD 681 #define DEFAULT_TOP_PAD (0) 682 #endif 683 684 /* 685 M_TOP_PAD is the amount of extra `padding' space to allocate or 686 retain whenever sbrk is called. It is used in two ways internally: 687 688 * When sbrk is called to extend the top of the arena to satisfy 689 a new malloc request, this much padding is added to the sbrk 690 request. 691 692 * When malloc_trim is called automatically from free(), 693 it is used as the `pad' argument. 694 695 In both cases, the actual amount of padding is rounded 696 so that the end of the arena is always a system page boundary. 697 698 The main reason for using padding is to avoid calling sbrk so 699 often. Having even a small pad greatly reduces the likelihood 700 that nearly every malloc request during program start-up (or 701 after trimming) will invoke sbrk, which needlessly wastes 702 time. 703 704 Automatic rounding-up to page-size units is normally sufficient 705 to avoid measurable overhead, so the default is 0. However, in 706 systems where sbrk is relatively slow, it can pay to increase 707 this value, at the expense of carrying around more memory than 708 the program needs. 709 710 */ 711 712 713 #ifndef DEFAULT_MMAP_THRESHOLD 714 #define DEFAULT_MMAP_THRESHOLD (128 * 1024) 715 #endif 716 717 /* 718 719 M_MMAP_THRESHOLD is the request size threshold for using mmap() 720 to service a request. Requests of at least this size that cannot 721 be allocated using already-existing space will be serviced via mmap. 722 (If enough normal freed space already exists it is used instead.) 723 724 Using mmap segregates relatively large chunks of memory so that 725 they can be individually obtained and released from the host 726 system. A request serviced through mmap is never reused by any 727 other request (at least not directly; the system may just so 728 happen to remap successive requests to the same locations). 729 730 Segregating space in this way has the benefit that mmapped space 731 can ALWAYS be individually released back to the system, which 732 helps keep the system level memory demands of a long-lived 733 program low. Mapped memory can never become `locked' between 734 other chunks, as can happen with normally allocated chunks, which 735 menas that even trimming via malloc_trim would not release them. 736 737 However, it has the disadvantages that: 738 739 1. The space cannot be reclaimed, consolidated, and then 740 used to service later requests, as happens with normal chunks. 741 2. It can lead to more wastage because of mmap page alignment 742 requirements 743 3. It causes malloc performance to be more dependent on host 744 system memory management support routines which may vary in 745 implementation quality and may impose arbitrary 746 limitations. Generally, servicing a request via normal 747 malloc steps is faster than going through a system's mmap. 748 749 All together, these considerations should lead you to use mmap 750 only for relatively large requests. 751 752 753 */ 754 755 756 #ifndef DEFAULT_MMAP_MAX 757 #if HAVE_MMAP 758 #define DEFAULT_MMAP_MAX (64) 759 #else 760 #define DEFAULT_MMAP_MAX (0) 761 #endif 762 #endif 763 764 /* 765 M_MMAP_MAX is the maximum number of requests to simultaneously 766 service using mmap. This parameter exists because: 767 768 1. Some systems have a limited number of internal tables for 769 use by mmap. 770 2. In most systems, overreliance on mmap can degrade overall 771 performance. 772 3. If a program allocates many large regions, it is probably 773 better off using normal sbrk-based allocation routines that 774 can reclaim and reallocate normal heap memory. Using a 775 small value allows transition into this mode after the 776 first few allocations. 777 778 Setting to 0 disables all use of mmap. If HAVE_MMAP is not set, 779 the default value is 0, and attempts to set it to non-zero values 780 in mallopt will fail. 781 */ 782 783 784 /* 785 USE_DL_PREFIX will prefix all public routines with the string 'dl'. 786 Useful to quickly avoid procedure declaration conflicts and linker 787 symbol conflicts with existing memory allocation routines. 788 789 */ 790 791 /* #define USE_DL_PREFIX */ 792 793 794 /* 795 796 Special defines for linux libc 797 798 Except when compiled using these special defines for Linux libc 799 using weak aliases, this malloc is NOT designed to work in 800 multithreaded applications. No semaphores or other concurrency 801 control are provided to ensure that multiple malloc or free calls 802 don't run at the same time, which could be disasterous. A single 803 semaphore could be used across malloc, realloc, and free (which is 804 essentially the effect of the linux weak alias approach). It would 805 be hard to obtain finer granularity. 806 807 */ 808 809 810 #ifdef INTERNAL_LINUX_C_LIB 811 812 #if __STD_C 813 814 Void_t * __default_morecore_init (ptrdiff_t); 815 Void_t *(*__morecore)(ptrdiff_t) = __default_morecore_init; 816 817 #else 818 819 Void_t * __default_morecore_init (); 820 Void_t *(*__morecore)() = __default_morecore_init; 821 822 #endif 823 824 #define MORECORE (*__morecore) 825 #define MORECORE_FAILURE 0 826 #define MORECORE_CLEARS 1 827 828 #else /* INTERNAL_LINUX_C_LIB */ 829 830 #if __STD_C 831 extern Void_t* sbrk(ptrdiff_t); 832 #else 833 extern Void_t* sbrk(); 834 #endif 835 836 #ifndef MORECORE 837 #define MORECORE sbrk 838 #endif 839 840 #ifndef MORECORE_FAILURE 841 #define MORECORE_FAILURE -1 842 #endif 843 844 #ifndef MORECORE_CLEARS 845 #define MORECORE_CLEARS 1 846 #endif 847 848 #endif /* INTERNAL_LINUX_C_LIB */ 849 850 #if defined(INTERNAL_LINUX_C_LIB) && defined(__ELF__) 851 852 #define cALLOc __libc_calloc 853 #define fREe __libc_free 854 #define mALLOc __libc_malloc 855 #define mEMALIGn __libc_memalign 856 #define rEALLOc __libc_realloc 857 #define vALLOc __libc_valloc 858 #define pvALLOc __libc_pvalloc 859 #define mALLINFo __libc_mallinfo 860 #define mALLOPt __libc_mallopt 861 862 #pragma weak calloc = __libc_calloc 863 #pragma weak free = __libc_free 864 #pragma weak cfree = __libc_free 865 #pragma weak malloc = __libc_malloc 866 #pragma weak memalign = __libc_memalign 867 #pragma weak realloc = __libc_realloc 868 #pragma weak valloc = __libc_valloc 869 #pragma weak pvalloc = __libc_pvalloc 870 #pragma weak mallinfo = __libc_mallinfo 871 #pragma weak mallopt = __libc_mallopt 872 873 #else 874 875 #ifdef USE_DL_PREFIX 876 #define cALLOc dlcalloc 877 #define fREe dlfree 878 #define mALLOc dlmalloc 879 #define mEMALIGn dlmemalign 880 #define rEALLOc dlrealloc 881 #define vALLOc dlvalloc 882 #define pvALLOc dlpvalloc 883 #define mALLINFo dlmallinfo 884 #define mALLOPt dlmallopt 885 #else /* USE_DL_PREFIX */ 886 #define cALLOc calloc 887 #define fREe free 888 #define mALLOc malloc 889 #define mEMALIGn memalign 890 #define rEALLOc realloc 891 #define vALLOc valloc 892 #define pvALLOc pvalloc 893 #define mALLINFo mallinfo 894 #define mALLOPt mallopt 895 #endif /* USE_DL_PREFIX */ 896 897 #endif 898 899 /* Public routines */ 900 901 #if __STD_C 902 903 Void_t* mALLOc(size_t); 904 void fREe(Void_t*); 905 Void_t* rEALLOc(Void_t*, size_t); 906 Void_t* mEMALIGn(size_t, size_t); 907 Void_t* vALLOc(size_t); 908 Void_t* pvALLOc(size_t); 909 Void_t* cALLOc(size_t, size_t); 910 void cfree(Void_t*); 911 int malloc_trim(size_t); 912 size_t malloc_usable_size(Void_t*); 913 void malloc_stats(); 914 int mALLOPt(int, int); 915 struct mallinfo mALLINFo(void); 916 #else 917 Void_t* mALLOc(); 918 void fREe(); 919 Void_t* rEALLOc(); 920 Void_t* mEMALIGn(); 921 Void_t* vALLOc(); 922 Void_t* pvALLOc(); 923 Void_t* cALLOc(); 924 void cfree(); 925 int malloc_trim(); 926 size_t malloc_usable_size(); 927 void malloc_stats(); 928 int mALLOPt(); 929 struct mallinfo mALLINFo(); 930 #endif 931 932 933 #ifdef __cplusplus 934 }; /* end of extern "C" */ 935 #endif 936 937 /* ---------- To make a malloc.h, end cutting here ------------ */ 938 #else /* Moved to malloc.h */ 939 940 #include <malloc.h> 941 #if 0 942 #if __STD_C 943 static void malloc_update_mallinfo (void); 944 void malloc_stats (void); 945 #else 946 static void malloc_update_mallinfo (); 947 void malloc_stats(); 948 #endif 949 #endif /* 0 */ 950 951 #endif /* 0 */ /* Moved to malloc.h */ 952 953 DECLARE_GLOBAL_DATA_PTR; 954 955 /* 956 Emulation of sbrk for WIN32 957 All code within the ifdef WIN32 is untested by me. 958 959 Thanks to Martin Fong and others for supplying this. 960 */ 961 962 963 #ifdef WIN32 964 965 #define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \ 966 ~(malloc_getpagesize-1)) 967 #define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1)) 968 969 /* resrve 64MB to insure large contiguous space */ 970 #define RESERVED_SIZE (1024*1024*64) 971 #define NEXT_SIZE (2048*1024) 972 #define TOP_MEMORY ((unsigned long)2*1024*1024*1024) 973 974 struct GmListElement; 975 typedef struct GmListElement GmListElement; 976 977 struct GmListElement 978 { 979 GmListElement* next; 980 void* base; 981 }; 982 983 static GmListElement* head = 0; 984 static unsigned int gNextAddress = 0; 985 static unsigned int gAddressBase = 0; 986 static unsigned int gAllocatedSize = 0; 987 988 static 989 GmListElement* makeGmListElement (void* bas) 990 { 991 GmListElement* this; 992 this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement)); 993 assert (this); 994 if (this) 995 { 996 this->base = bas; 997 this->next = head; 998 head = this; 999 } 1000 return this; 1001 } 1002 1003 void gcleanup () 1004 { 1005 BOOL rval; 1006 assert ( (head == NULL) || (head->base == (void*)gAddressBase)); 1007 if (gAddressBase && (gNextAddress - gAddressBase)) 1008 { 1009 rval = VirtualFree ((void*)gAddressBase, 1010 gNextAddress - gAddressBase, 1011 MEM_DECOMMIT); 1012 assert (rval); 1013 } 1014 while (head) 1015 { 1016 GmListElement* next = head->next; 1017 rval = VirtualFree (head->base, 0, MEM_RELEASE); 1018 assert (rval); 1019 LocalFree (head); 1020 head = next; 1021 } 1022 } 1023 1024 static 1025 void* findRegion (void* start_address, unsigned long size) 1026 { 1027 MEMORY_BASIC_INFORMATION info; 1028 if (size >= TOP_MEMORY) return NULL; 1029 1030 while ((unsigned long)start_address + size < TOP_MEMORY) 1031 { 1032 VirtualQuery (start_address, &info, sizeof (info)); 1033 if ((info.State == MEM_FREE) && (info.RegionSize >= size)) 1034 return start_address; 1035 else 1036 { 1037 /* Requested region is not available so see if the */ 1038 /* next region is available. Set 'start_address' */ 1039 /* to the next region and call 'VirtualQuery()' */ 1040 /* again. */ 1041 1042 start_address = (char*)info.BaseAddress + info.RegionSize; 1043 1044 /* Make sure we start looking for the next region */ 1045 /* on the *next* 64K boundary. Otherwise, even if */ 1046 /* the new region is free according to */ 1047 /* 'VirtualQuery()', the subsequent call to */ 1048 /* 'VirtualAlloc()' (which follows the call to */ 1049 /* this routine in 'wsbrk()') will round *down* */ 1050 /* the requested address to a 64K boundary which */ 1051 /* we already know is an address in the */ 1052 /* unavailable region. Thus, the subsequent call */ 1053 /* to 'VirtualAlloc()' will fail and bring us back */ 1054 /* here, causing us to go into an infinite loop. */ 1055 1056 start_address = 1057 (void *) AlignPage64K((unsigned long) start_address); 1058 } 1059 } 1060 return NULL; 1061 1062 } 1063 1064 1065 void* wsbrk (long size) 1066 { 1067 void* tmp; 1068 if (size > 0) 1069 { 1070 if (gAddressBase == 0) 1071 { 1072 gAllocatedSize = max (RESERVED_SIZE, AlignPage (size)); 1073 gNextAddress = gAddressBase = 1074 (unsigned int)VirtualAlloc (NULL, gAllocatedSize, 1075 MEM_RESERVE, PAGE_NOACCESS); 1076 } else if (AlignPage (gNextAddress + size) > (gAddressBase + 1077 gAllocatedSize)) 1078 { 1079 long new_size = max (NEXT_SIZE, AlignPage (size)); 1080 void* new_address = (void*)(gAddressBase+gAllocatedSize); 1081 do 1082 { 1083 new_address = findRegion (new_address, new_size); 1084 1085 if (new_address == 0) 1086 return (void*)-1; 1087 1088 gAddressBase = gNextAddress = 1089 (unsigned int)VirtualAlloc (new_address, new_size, 1090 MEM_RESERVE, PAGE_NOACCESS); 1091 /* repeat in case of race condition */ 1092 /* The region that we found has been snagged */ 1093 /* by another thread */ 1094 } 1095 while (gAddressBase == 0); 1096 1097 assert (new_address == (void*)gAddressBase); 1098 1099 gAllocatedSize = new_size; 1100 1101 if (!makeGmListElement ((void*)gAddressBase)) 1102 return (void*)-1; 1103 } 1104 if ((size + gNextAddress) > AlignPage (gNextAddress)) 1105 { 1106 void* res; 1107 res = VirtualAlloc ((void*)AlignPage (gNextAddress), 1108 (size + gNextAddress - 1109 AlignPage (gNextAddress)), 1110 MEM_COMMIT, PAGE_READWRITE); 1111 if (res == 0) 1112 return (void*)-1; 1113 } 1114 tmp = (void*)gNextAddress; 1115 gNextAddress = (unsigned int)tmp + size; 1116 return tmp; 1117 } 1118 else if (size < 0) 1119 { 1120 unsigned int alignedGoal = AlignPage (gNextAddress + size); 1121 /* Trim by releasing the virtual memory */ 1122 if (alignedGoal >= gAddressBase) 1123 { 1124 VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal, 1125 MEM_DECOMMIT); 1126 gNextAddress = gNextAddress + size; 1127 return (void*)gNextAddress; 1128 } 1129 else 1130 { 1131 VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase, 1132 MEM_DECOMMIT); 1133 gNextAddress = gAddressBase; 1134 return (void*)-1; 1135 } 1136 } 1137 else 1138 { 1139 return (void*)gNextAddress; 1140 } 1141 } 1142 1143 #endif 1144 1145 1146 1147 /* 1148 Type declarations 1149 */ 1150 1151 1152 struct malloc_chunk 1153 { 1154 INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */ 1155 INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */ 1156 struct malloc_chunk* fd; /* double links -- used only if free. */ 1157 struct malloc_chunk* bk; 1158 }; 1159 1160 typedef struct malloc_chunk* mchunkptr; 1161 1162 /* 1163 1164 malloc_chunk details: 1165 1166 (The following includes lightly edited explanations by Colin Plumb.) 1167 1168 Chunks of memory are maintained using a `boundary tag' method as 1169 described in e.g., Knuth or Standish. (See the paper by Paul 1170 Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a 1171 survey of such techniques.) Sizes of free chunks are stored both 1172 in the front of each chunk and at the end. This makes 1173 consolidating fragmented chunks into bigger chunks very fast. The 1174 size fields also hold bits representing whether chunks are free or 1175 in use. 1176 1177 An allocated chunk looks like this: 1178 1179 1180 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1181 | Size of previous chunk, if allocated | | 1182 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1183 | Size of chunk, in bytes |P| 1184 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1185 | User data starts here... . 1186 . . 1187 . (malloc_usable_space() bytes) . 1188 . | 1189 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1190 | Size of chunk | 1191 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1192 1193 1194 Where "chunk" is the front of the chunk for the purpose of most of 1195 the malloc code, but "mem" is the pointer that is returned to the 1196 user. "Nextchunk" is the beginning of the next contiguous chunk. 1197 1198 Chunks always begin on even word boundries, so the mem portion 1199 (which is returned to the user) is also on an even word boundary, and 1200 thus double-word aligned. 1201 1202 Free chunks are stored in circular doubly-linked lists, and look like this: 1203 1204 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1205 | Size of previous chunk | 1206 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1207 `head:' | Size of chunk, in bytes |P| 1208 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1209 | Forward pointer to next chunk in list | 1210 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1211 | Back pointer to previous chunk in list | 1212 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1213 | Unused space (may be 0 bytes long) . 1214 . . 1215 . | 1216 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1217 `foot:' | Size of chunk, in bytes | 1218 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1219 1220 The P (PREV_INUSE) bit, stored in the unused low-order bit of the 1221 chunk size (which is always a multiple of two words), is an in-use 1222 bit for the *previous* chunk. If that bit is *clear*, then the 1223 word before the current chunk size contains the previous chunk 1224 size, and can be used to find the front of the previous chunk. 1225 (The very first chunk allocated always has this bit set, 1226 preventing access to non-existent (or non-owned) memory.) 1227 1228 Note that the `foot' of the current chunk is actually represented 1229 as the prev_size of the NEXT chunk. (This makes it easier to 1230 deal with alignments etc). 1231 1232 The two exceptions to all this are 1233 1234 1. The special chunk `top', which doesn't bother using the 1235 trailing size field since there is no 1236 next contiguous chunk that would have to index off it. (After 1237 initialization, `top' is forced to always exist. If it would 1238 become less than MINSIZE bytes long, it is replenished via 1239 malloc_extend_top.) 1240 1241 2. Chunks allocated via mmap, which have the second-lowest-order 1242 bit (IS_MMAPPED) set in their size fields. Because they are 1243 never merged or traversed from any other chunk, they have no 1244 foot size or inuse information. 1245 1246 Available chunks are kept in any of several places (all declared below): 1247 1248 * `av': An array of chunks serving as bin headers for consolidated 1249 chunks. Each bin is doubly linked. The bins are approximately 1250 proportionally (log) spaced. There are a lot of these bins 1251 (128). This may look excessive, but works very well in 1252 practice. All procedures maintain the invariant that no 1253 consolidated chunk physically borders another one. Chunks in 1254 bins are kept in size order, with ties going to the 1255 approximately least recently used chunk. 1256 1257 The chunks in each bin are maintained in decreasing sorted order by 1258 size. This is irrelevant for the small bins, which all contain 1259 the same-sized chunks, but facilitates best-fit allocation for 1260 larger chunks. (These lists are just sequential. Keeping them in 1261 order almost never requires enough traversal to warrant using 1262 fancier ordered data structures.) Chunks of the same size are 1263 linked with the most recently freed at the front, and allocations 1264 are taken from the back. This results in LRU or FIFO allocation 1265 order, which tends to give each chunk an equal opportunity to be 1266 consolidated with adjacent freed chunks, resulting in larger free 1267 chunks and less fragmentation. 1268 1269 * `top': The top-most available chunk (i.e., the one bordering the 1270 end of available memory) is treated specially. It is never 1271 included in any bin, is used only if no other chunk is 1272 available, and is released back to the system if it is very 1273 large (see M_TRIM_THRESHOLD). 1274 1275 * `last_remainder': A bin holding only the remainder of the 1276 most recently split (non-top) chunk. This bin is checked 1277 before other non-fitting chunks, so as to provide better 1278 locality for runs of sequentially allocated chunks. 1279 1280 * Implicitly, through the host system's memory mapping tables. 1281 If supported, requests greater than a threshold are usually 1282 serviced via calls to mmap, and then later released via munmap. 1283 1284 */ 1285 1286 /* sizes, alignments */ 1287 1288 #define SIZE_SZ (sizeof(INTERNAL_SIZE_T)) 1289 #define MALLOC_ALIGNMENT (SIZE_SZ + SIZE_SZ) 1290 #define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1) 1291 #define MINSIZE (sizeof(struct malloc_chunk)) 1292 1293 /* conversion from malloc headers to user pointers, and back */ 1294 1295 #define chunk2mem(p) ((Void_t*)((char*)(p) + 2*SIZE_SZ)) 1296 #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ)) 1297 1298 /* pad request bytes into a usable size */ 1299 1300 #define request2size(req) \ 1301 (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \ 1302 (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \ 1303 (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK))) 1304 1305 /* Check if m has acceptable alignment */ 1306 1307 #define aligned_OK(m) (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0) 1308 1309 1310 1311 1312 /* 1313 Physical chunk operations 1314 */ 1315 1316 1317 /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */ 1318 1319 #define PREV_INUSE 0x1 1320 1321 /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */ 1322 1323 #define IS_MMAPPED 0x2 1324 1325 /* Bits to mask off when extracting size */ 1326 1327 #define SIZE_BITS (PREV_INUSE|IS_MMAPPED) 1328 1329 1330 /* Ptr to next physical malloc_chunk. */ 1331 1332 #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) )) 1333 1334 /* Ptr to previous physical malloc_chunk */ 1335 1336 #define prev_chunk(p)\ 1337 ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) )) 1338 1339 1340 /* Treat space at ptr + offset as a chunk */ 1341 1342 #define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s))) 1343 1344 1345 1346 1347 /* 1348 Dealing with use bits 1349 */ 1350 1351 /* extract p's inuse bit */ 1352 1353 #define inuse(p)\ 1354 ((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE) 1355 1356 /* extract inuse bit of previous chunk */ 1357 1358 #define prev_inuse(p) ((p)->size & PREV_INUSE) 1359 1360 /* check for mmap()'ed chunk */ 1361 1362 #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED) 1363 1364 /* set/clear chunk as in use without otherwise disturbing */ 1365 1366 #define set_inuse(p)\ 1367 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE 1368 1369 #define clear_inuse(p)\ 1370 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE) 1371 1372 /* check/set/clear inuse bits in known places */ 1373 1374 #define inuse_bit_at_offset(p, s)\ 1375 (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE) 1376 1377 #define set_inuse_bit_at_offset(p, s)\ 1378 (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE) 1379 1380 #define clear_inuse_bit_at_offset(p, s)\ 1381 (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE)) 1382 1383 1384 1385 1386 /* 1387 Dealing with size fields 1388 */ 1389 1390 /* Get size, ignoring use bits */ 1391 1392 #define chunksize(p) ((p)->size & ~(SIZE_BITS)) 1393 1394 /* Set size at head, without disturbing its use bit */ 1395 1396 #define set_head_size(p, s) ((p)->size = (((p)->size & PREV_INUSE) | (s))) 1397 1398 /* Set size/use ignoring previous bits in header */ 1399 1400 #define set_head(p, s) ((p)->size = (s)) 1401 1402 /* Set size at footer (only when chunk is not in use) */ 1403 1404 #define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_size = (s)) 1405 1406 1407 1408 1409 1410 /* 1411 Bins 1412 1413 The bins, `av_' are an array of pairs of pointers serving as the 1414 heads of (initially empty) doubly-linked lists of chunks, laid out 1415 in a way so that each pair can be treated as if it were in a 1416 malloc_chunk. (This way, the fd/bk offsets for linking bin heads 1417 and chunks are the same). 1418 1419 Bins for sizes < 512 bytes contain chunks of all the same size, spaced 1420 8 bytes apart. Larger bins are approximately logarithmically 1421 spaced. (See the table below.) The `av_' array is never mentioned 1422 directly in the code, but instead via bin access macros. 1423 1424 Bin layout: 1425 1426 64 bins of size 8 1427 32 bins of size 64 1428 16 bins of size 512 1429 8 bins of size 4096 1430 4 bins of size 32768 1431 2 bins of size 262144 1432 1 bin of size what's left 1433 1434 There is actually a little bit of slop in the numbers in bin_index 1435 for the sake of speed. This makes no difference elsewhere. 1436 1437 The special chunks `top' and `last_remainder' get their own bins, 1438 (this is implemented via yet more trickery with the av_ array), 1439 although `top' is never properly linked to its bin since it is 1440 always handled specially. 1441 1442 */ 1443 1444 #define NAV 128 /* number of bins */ 1445 1446 typedef struct malloc_chunk* mbinptr; 1447 1448 /* access macros */ 1449 1450 #define bin_at(i) ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ)) 1451 #define next_bin(b) ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr))) 1452 #define prev_bin(b) ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr))) 1453 1454 /* 1455 The first 2 bins are never indexed. The corresponding av_ cells are instead 1456 used for bookkeeping. This is not to save space, but to simplify 1457 indexing, maintain locality, and avoid some initialization tests. 1458 */ 1459 1460 #define top (av_[2]) /* The topmost chunk */ 1461 #define last_remainder (bin_at(1)) /* remainder from last split */ 1462 1463 1464 /* 1465 Because top initially points to its own bin with initial 1466 zero size, thus forcing extension on the first malloc request, 1467 we avoid having any special code in malloc to check whether 1468 it even exists yet. But we still need to in malloc_extend_top. 1469 */ 1470 1471 #define initial_top ((mchunkptr)(bin_at(0))) 1472 1473 /* Helper macro to initialize bins */ 1474 1475 #define IAV(i) bin_at(i), bin_at(i) 1476 1477 static mbinptr av_[NAV * 2 + 2] = { 1478 0, 0, 1479 IAV(0), IAV(1), IAV(2), IAV(3), IAV(4), IAV(5), IAV(6), IAV(7), 1480 IAV(8), IAV(9), IAV(10), IAV(11), IAV(12), IAV(13), IAV(14), IAV(15), 1481 IAV(16), IAV(17), IAV(18), IAV(19), IAV(20), IAV(21), IAV(22), IAV(23), 1482 IAV(24), IAV(25), IAV(26), IAV(27), IAV(28), IAV(29), IAV(30), IAV(31), 1483 IAV(32), IAV(33), IAV(34), IAV(35), IAV(36), IAV(37), IAV(38), IAV(39), 1484 IAV(40), IAV(41), IAV(42), IAV(43), IAV(44), IAV(45), IAV(46), IAV(47), 1485 IAV(48), IAV(49), IAV(50), IAV(51), IAV(52), IAV(53), IAV(54), IAV(55), 1486 IAV(56), IAV(57), IAV(58), IAV(59), IAV(60), IAV(61), IAV(62), IAV(63), 1487 IAV(64), IAV(65), IAV(66), IAV(67), IAV(68), IAV(69), IAV(70), IAV(71), 1488 IAV(72), IAV(73), IAV(74), IAV(75), IAV(76), IAV(77), IAV(78), IAV(79), 1489 IAV(80), IAV(81), IAV(82), IAV(83), IAV(84), IAV(85), IAV(86), IAV(87), 1490 IAV(88), IAV(89), IAV(90), IAV(91), IAV(92), IAV(93), IAV(94), IAV(95), 1491 IAV(96), IAV(97), IAV(98), IAV(99), IAV(100), IAV(101), IAV(102), IAV(103), 1492 IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111), 1493 IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119), 1494 IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127) 1495 }; 1496 1497 void malloc_bin_reloc (void) 1498 { 1499 unsigned long *p = (unsigned long *)(&av_[2]); 1500 int i; 1501 for (i=2; i<(sizeof(av_)/sizeof(mbinptr)); ++i) { 1502 *p++ += gd->reloc_off; 1503 } 1504 } 1505 1506 ulong mem_malloc_start = 0; 1507 ulong mem_malloc_end = 0; 1508 ulong mem_malloc_brk = 0; 1509 1510 void *sbrk(ptrdiff_t increment) 1511 { 1512 ulong old = mem_malloc_brk; 1513 ulong new = old + increment; 1514 1515 if ((new < mem_malloc_start) || (new > mem_malloc_end)) 1516 return NULL; 1517 1518 mem_malloc_brk = new; 1519 1520 return (void *)old; 1521 } 1522 1523 #ifndef CONFIG_X86 1524 /* 1525 * x86 boards use a slightly different init sequence thus they implement 1526 * their own version of mem_malloc_init() 1527 */ 1528 void mem_malloc_init(ulong start, ulong size) 1529 { 1530 mem_malloc_start = start; 1531 mem_malloc_end = start + size; 1532 mem_malloc_brk = start; 1533 1534 memset((void *)mem_malloc_start, 0, size); 1535 } 1536 #endif 1537 1538 /* field-extraction macros */ 1539 1540 #define first(b) ((b)->fd) 1541 #define last(b) ((b)->bk) 1542 1543 /* 1544 Indexing into bins 1545 */ 1546 1547 #define bin_index(sz) \ 1548 (((((unsigned long)(sz)) >> 9) == 0) ? (((unsigned long)(sz)) >> 3): \ 1549 ((((unsigned long)(sz)) >> 9) <= 4) ? 56 + (((unsigned long)(sz)) >> 6): \ 1550 ((((unsigned long)(sz)) >> 9) <= 20) ? 91 + (((unsigned long)(sz)) >> 9): \ 1551 ((((unsigned long)(sz)) >> 9) <= 84) ? 110 + (((unsigned long)(sz)) >> 12): \ 1552 ((((unsigned long)(sz)) >> 9) <= 340) ? 119 + (((unsigned long)(sz)) >> 15): \ 1553 ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \ 1554 126) 1555 /* 1556 bins for chunks < 512 are all spaced 8 bytes apart, and hold 1557 identically sized chunks. This is exploited in malloc. 1558 */ 1559 1560 #define MAX_SMALLBIN 63 1561 #define MAX_SMALLBIN_SIZE 512 1562 #define SMALLBIN_WIDTH 8 1563 1564 #define smallbin_index(sz) (((unsigned long)(sz)) >> 3) 1565 1566 /* 1567 Requests are `small' if both the corresponding and the next bin are small 1568 */ 1569 1570 #define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH) 1571 1572 1573 1574 /* 1575 To help compensate for the large number of bins, a one-level index 1576 structure is used for bin-by-bin searching. `binblocks' is a 1577 one-word bitvector recording whether groups of BINBLOCKWIDTH bins 1578 have any (possibly) non-empty bins, so they can be skipped over 1579 all at once during during traversals. The bits are NOT always 1580 cleared as soon as all bins in a block are empty, but instead only 1581 when all are noticed to be empty during traversal in malloc. 1582 */ 1583 1584 #define BINBLOCKWIDTH 4 /* bins per block */ 1585 1586 #define binblocks_r ((INTERNAL_SIZE_T)av_[1]) /* bitvector of nonempty blocks */ 1587 #define binblocks_w (av_[1]) 1588 1589 /* bin<->block macros */ 1590 1591 #define idx2binblock(ix) ((unsigned)1 << (ix / BINBLOCKWIDTH)) 1592 #define mark_binblock(ii) (binblocks_w = (mbinptr)(binblocks_r | idx2binblock(ii))) 1593 #define clear_binblock(ii) (binblocks_w = (mbinptr)(binblocks_r & ~(idx2binblock(ii)))) 1594 1595 1596 1597 1598 1599 /* Other static bookkeeping data */ 1600 1601 /* variables holding tunable values */ 1602 1603 static unsigned long trim_threshold = DEFAULT_TRIM_THRESHOLD; 1604 static unsigned long top_pad = DEFAULT_TOP_PAD; 1605 static unsigned int n_mmaps_max = DEFAULT_MMAP_MAX; 1606 static unsigned long mmap_threshold = DEFAULT_MMAP_THRESHOLD; 1607 1608 /* The first value returned from sbrk */ 1609 static char* sbrk_base = (char*)(-1); 1610 1611 /* The maximum memory obtained from system via sbrk */ 1612 static unsigned long max_sbrked_mem = 0; 1613 1614 /* The maximum via either sbrk or mmap */ 1615 static unsigned long max_total_mem = 0; 1616 1617 /* internal working copy of mallinfo */ 1618 static struct mallinfo current_mallinfo = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; 1619 1620 /* The total memory obtained from system via sbrk */ 1621 #define sbrked_mem (current_mallinfo.arena) 1622 1623 /* Tracking mmaps */ 1624 1625 #if 0 1626 static unsigned int n_mmaps = 0; 1627 #endif /* 0 */ 1628 static unsigned long mmapped_mem = 0; 1629 #if HAVE_MMAP 1630 static unsigned int max_n_mmaps = 0; 1631 static unsigned long max_mmapped_mem = 0; 1632 #endif 1633 1634 1635 1636 /* 1637 Debugging support 1638 */ 1639 1640 #ifdef DEBUG 1641 1642 1643 /* 1644 These routines make a number of assertions about the states 1645 of data structures that should be true at all times. If any 1646 are not true, it's very likely that a user program has somehow 1647 trashed memory. (It's also possible that there is a coding error 1648 in malloc. In which case, please report it!) 1649 */ 1650 1651 #if __STD_C 1652 static void do_check_chunk(mchunkptr p) 1653 #else 1654 static void do_check_chunk(p) mchunkptr p; 1655 #endif 1656 { 1657 #if 0 /* causes warnings because assert() is off */ 1658 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE; 1659 #endif /* 0 */ 1660 1661 /* No checkable chunk is mmapped */ 1662 assert(!chunk_is_mmapped(p)); 1663 1664 /* Check for legal address ... */ 1665 assert((char*)p >= sbrk_base); 1666 if (p != top) 1667 assert((char*)p + sz <= (char*)top); 1668 else 1669 assert((char*)p + sz <= sbrk_base + sbrked_mem); 1670 1671 } 1672 1673 1674 #if __STD_C 1675 static void do_check_free_chunk(mchunkptr p) 1676 #else 1677 static void do_check_free_chunk(p) mchunkptr p; 1678 #endif 1679 { 1680 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE; 1681 #if 0 /* causes warnings because assert() is off */ 1682 mchunkptr next = chunk_at_offset(p, sz); 1683 #endif /* 0 */ 1684 1685 do_check_chunk(p); 1686 1687 /* Check whether it claims to be free ... */ 1688 assert(!inuse(p)); 1689 1690 /* Unless a special marker, must have OK fields */ 1691 if ((long)sz >= (long)MINSIZE) 1692 { 1693 assert((sz & MALLOC_ALIGN_MASK) == 0); 1694 assert(aligned_OK(chunk2mem(p))); 1695 /* ... matching footer field */ 1696 assert(next->prev_size == sz); 1697 /* ... and is fully consolidated */ 1698 assert(prev_inuse(p)); 1699 assert (next == top || inuse(next)); 1700 1701 /* ... and has minimally sane links */ 1702 assert(p->fd->bk == p); 1703 assert(p->bk->fd == p); 1704 } 1705 else /* markers are always of size SIZE_SZ */ 1706 assert(sz == SIZE_SZ); 1707 } 1708 1709 #if __STD_C 1710 static void do_check_inuse_chunk(mchunkptr p) 1711 #else 1712 static void do_check_inuse_chunk(p) mchunkptr p; 1713 #endif 1714 { 1715 mchunkptr next = next_chunk(p); 1716 do_check_chunk(p); 1717 1718 /* Check whether it claims to be in use ... */ 1719 assert(inuse(p)); 1720 1721 /* ... and is surrounded by OK chunks. 1722 Since more things can be checked with free chunks than inuse ones, 1723 if an inuse chunk borders them and debug is on, it's worth doing them. 1724 */ 1725 if (!prev_inuse(p)) 1726 { 1727 mchunkptr prv = prev_chunk(p); 1728 assert(next_chunk(prv) == p); 1729 do_check_free_chunk(prv); 1730 } 1731 if (next == top) 1732 { 1733 assert(prev_inuse(next)); 1734 assert(chunksize(next) >= MINSIZE); 1735 } 1736 else if (!inuse(next)) 1737 do_check_free_chunk(next); 1738 1739 } 1740 1741 #if __STD_C 1742 static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s) 1743 #else 1744 static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s; 1745 #endif 1746 { 1747 #if 0 /* causes warnings because assert() is off */ 1748 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE; 1749 long room = sz - s; 1750 #endif /* 0 */ 1751 1752 do_check_inuse_chunk(p); 1753 1754 /* Legal size ... */ 1755 assert((long)sz >= (long)MINSIZE); 1756 assert((sz & MALLOC_ALIGN_MASK) == 0); 1757 assert(room >= 0); 1758 assert(room < (long)MINSIZE); 1759 1760 /* ... and alignment */ 1761 assert(aligned_OK(chunk2mem(p))); 1762 1763 1764 /* ... and was allocated at front of an available chunk */ 1765 assert(prev_inuse(p)); 1766 1767 } 1768 1769 1770 #define check_free_chunk(P) do_check_free_chunk(P) 1771 #define check_inuse_chunk(P) do_check_inuse_chunk(P) 1772 #define check_chunk(P) do_check_chunk(P) 1773 #define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N) 1774 #else 1775 #define check_free_chunk(P) 1776 #define check_inuse_chunk(P) 1777 #define check_chunk(P) 1778 #define check_malloced_chunk(P,N) 1779 #endif 1780 1781 1782 1783 /* 1784 Macro-based internal utilities 1785 */ 1786 1787 1788 /* 1789 Linking chunks in bin lists. 1790 Call these only with variables, not arbitrary expressions, as arguments. 1791 */ 1792 1793 /* 1794 Place chunk p of size s in its bin, in size order, 1795 putting it ahead of others of same size. 1796 */ 1797 1798 1799 #define frontlink(P, S, IDX, BK, FD) \ 1800 { \ 1801 if (S < MAX_SMALLBIN_SIZE) \ 1802 { \ 1803 IDX = smallbin_index(S); \ 1804 mark_binblock(IDX); \ 1805 BK = bin_at(IDX); \ 1806 FD = BK->fd; \ 1807 P->bk = BK; \ 1808 P->fd = FD; \ 1809 FD->bk = BK->fd = P; \ 1810 } \ 1811 else \ 1812 { \ 1813 IDX = bin_index(S); \ 1814 BK = bin_at(IDX); \ 1815 FD = BK->fd; \ 1816 if (FD == BK) mark_binblock(IDX); \ 1817 else \ 1818 { \ 1819 while (FD != BK && S < chunksize(FD)) FD = FD->fd; \ 1820 BK = FD->bk; \ 1821 } \ 1822 P->bk = BK; \ 1823 P->fd = FD; \ 1824 FD->bk = BK->fd = P; \ 1825 } \ 1826 } 1827 1828 1829 /* take a chunk off a list */ 1830 1831 #define unlink(P, BK, FD) \ 1832 { \ 1833 BK = P->bk; \ 1834 FD = P->fd; \ 1835 FD->bk = BK; \ 1836 BK->fd = FD; \ 1837 } \ 1838 1839 /* Place p as the last remainder */ 1840 1841 #define link_last_remainder(P) \ 1842 { \ 1843 last_remainder->fd = last_remainder->bk = P; \ 1844 P->fd = P->bk = last_remainder; \ 1845 } 1846 1847 /* Clear the last_remainder bin */ 1848 1849 #define clear_last_remainder \ 1850 (last_remainder->fd = last_remainder->bk = last_remainder) 1851 1852 1853 1854 1855 1856 /* Routines dealing with mmap(). */ 1857 1858 #if HAVE_MMAP 1859 1860 #if __STD_C 1861 static mchunkptr mmap_chunk(size_t size) 1862 #else 1863 static mchunkptr mmap_chunk(size) size_t size; 1864 #endif 1865 { 1866 size_t page_mask = malloc_getpagesize - 1; 1867 mchunkptr p; 1868 1869 #ifndef MAP_ANONYMOUS 1870 static int fd = -1; 1871 #endif 1872 1873 if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */ 1874 1875 /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because 1876 * there is no following chunk whose prev_size field could be used. 1877 */ 1878 size = (size + SIZE_SZ + page_mask) & ~page_mask; 1879 1880 #ifdef MAP_ANONYMOUS 1881 p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, 1882 MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); 1883 #else /* !MAP_ANONYMOUS */ 1884 if (fd < 0) 1885 { 1886 fd = open("/dev/zero", O_RDWR); 1887 if(fd < 0) return 0; 1888 } 1889 p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0); 1890 #endif 1891 1892 if(p == (mchunkptr)-1) return 0; 1893 1894 n_mmaps++; 1895 if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps; 1896 1897 /* We demand that eight bytes into a page must be 8-byte aligned. */ 1898 assert(aligned_OK(chunk2mem(p))); 1899 1900 /* The offset to the start of the mmapped region is stored 1901 * in the prev_size field of the chunk; normally it is zero, 1902 * but that can be changed in memalign(). 1903 */ 1904 p->prev_size = 0; 1905 set_head(p, size|IS_MMAPPED); 1906 1907 mmapped_mem += size; 1908 if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem) 1909 max_mmapped_mem = mmapped_mem; 1910 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem) 1911 max_total_mem = mmapped_mem + sbrked_mem; 1912 return p; 1913 } 1914 1915 #if __STD_C 1916 static void munmap_chunk(mchunkptr p) 1917 #else 1918 static void munmap_chunk(p) mchunkptr p; 1919 #endif 1920 { 1921 INTERNAL_SIZE_T size = chunksize(p); 1922 int ret; 1923 1924 assert (chunk_is_mmapped(p)); 1925 assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem)); 1926 assert((n_mmaps > 0)); 1927 assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0); 1928 1929 n_mmaps--; 1930 mmapped_mem -= (size + p->prev_size); 1931 1932 ret = munmap((char *)p - p->prev_size, size + p->prev_size); 1933 1934 /* munmap returns non-zero on failure */ 1935 assert(ret == 0); 1936 } 1937 1938 #if HAVE_MREMAP 1939 1940 #if __STD_C 1941 static mchunkptr mremap_chunk(mchunkptr p, size_t new_size) 1942 #else 1943 static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size; 1944 #endif 1945 { 1946 size_t page_mask = malloc_getpagesize - 1; 1947 INTERNAL_SIZE_T offset = p->prev_size; 1948 INTERNAL_SIZE_T size = chunksize(p); 1949 char *cp; 1950 1951 assert (chunk_is_mmapped(p)); 1952 assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem)); 1953 assert((n_mmaps > 0)); 1954 assert(((size + offset) & (malloc_getpagesize-1)) == 0); 1955 1956 /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */ 1957 new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask; 1958 1959 cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1); 1960 1961 if (cp == (char *)-1) return 0; 1962 1963 p = (mchunkptr)(cp + offset); 1964 1965 assert(aligned_OK(chunk2mem(p))); 1966 1967 assert((p->prev_size == offset)); 1968 set_head(p, (new_size - offset)|IS_MMAPPED); 1969 1970 mmapped_mem -= size + offset; 1971 mmapped_mem += new_size; 1972 if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem) 1973 max_mmapped_mem = mmapped_mem; 1974 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem) 1975 max_total_mem = mmapped_mem + sbrked_mem; 1976 return p; 1977 } 1978 1979 #endif /* HAVE_MREMAP */ 1980 1981 #endif /* HAVE_MMAP */ 1982 1983 1984 1985 1986 /* 1987 Extend the top-most chunk by obtaining memory from system. 1988 Main interface to sbrk (but see also malloc_trim). 1989 */ 1990 1991 #if __STD_C 1992 static void malloc_extend_top(INTERNAL_SIZE_T nb) 1993 #else 1994 static void malloc_extend_top(nb) INTERNAL_SIZE_T nb; 1995 #endif 1996 { 1997 char* brk; /* return value from sbrk */ 1998 INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */ 1999 INTERNAL_SIZE_T correction; /* bytes for 2nd sbrk call */ 2000 char* new_brk; /* return of 2nd sbrk call */ 2001 INTERNAL_SIZE_T top_size; /* new size of top chunk */ 2002 2003 mchunkptr old_top = top; /* Record state of old top */ 2004 INTERNAL_SIZE_T old_top_size = chunksize(old_top); 2005 char* old_end = (char*)(chunk_at_offset(old_top, old_top_size)); 2006 2007 /* Pad request with top_pad plus minimal overhead */ 2008 2009 INTERNAL_SIZE_T sbrk_size = nb + top_pad + MINSIZE; 2010 unsigned long pagesz = malloc_getpagesize; 2011 2012 /* If not the first time through, round to preserve page boundary */ 2013 /* Otherwise, we need to correct to a page size below anyway. */ 2014 /* (We also correct below if an intervening foreign sbrk call.) */ 2015 2016 if (sbrk_base != (char*)(-1)) 2017 sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1); 2018 2019 brk = (char*)(MORECORE (sbrk_size)); 2020 2021 /* Fail if sbrk failed or if a foreign sbrk call killed our space */ 2022 if (brk == (char*)(MORECORE_FAILURE) || 2023 (brk < old_end && old_top != initial_top)) 2024 return; 2025 2026 sbrked_mem += sbrk_size; 2027 2028 if (brk == old_end) /* can just add bytes to current top */ 2029 { 2030 top_size = sbrk_size + old_top_size; 2031 set_head(top, top_size | PREV_INUSE); 2032 } 2033 else 2034 { 2035 if (sbrk_base == (char*)(-1)) /* First time through. Record base */ 2036 sbrk_base = brk; 2037 else /* Someone else called sbrk(). Count those bytes as sbrked_mem. */ 2038 sbrked_mem += brk - (char*)old_end; 2039 2040 /* Guarantee alignment of first new chunk made from this space */ 2041 front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK; 2042 if (front_misalign > 0) 2043 { 2044 correction = (MALLOC_ALIGNMENT) - front_misalign; 2045 brk += correction; 2046 } 2047 else 2048 correction = 0; 2049 2050 /* Guarantee the next brk will be at a page boundary */ 2051 2052 correction += ((((unsigned long)(brk + sbrk_size))+(pagesz-1)) & 2053 ~(pagesz - 1)) - ((unsigned long)(brk + sbrk_size)); 2054 2055 /* Allocate correction */ 2056 new_brk = (char*)(MORECORE (correction)); 2057 if (new_brk == (char*)(MORECORE_FAILURE)) return; 2058 2059 sbrked_mem += correction; 2060 2061 top = (mchunkptr)brk; 2062 top_size = new_brk - brk + correction; 2063 set_head(top, top_size | PREV_INUSE); 2064 2065 if (old_top != initial_top) 2066 { 2067 2068 /* There must have been an intervening foreign sbrk call. */ 2069 /* A double fencepost is necessary to prevent consolidation */ 2070 2071 /* If not enough space to do this, then user did something very wrong */ 2072 if (old_top_size < MINSIZE) 2073 { 2074 set_head(top, PREV_INUSE); /* will force null return from malloc */ 2075 return; 2076 } 2077 2078 /* Also keep size a multiple of MALLOC_ALIGNMENT */ 2079 old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK; 2080 set_head_size(old_top, old_top_size); 2081 chunk_at_offset(old_top, old_top_size )->size = 2082 SIZE_SZ|PREV_INUSE; 2083 chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size = 2084 SIZE_SZ|PREV_INUSE; 2085 /* If possible, release the rest. */ 2086 if (old_top_size >= MINSIZE) 2087 fREe(chunk2mem(old_top)); 2088 } 2089 } 2090 2091 if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem) 2092 max_sbrked_mem = sbrked_mem; 2093 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem) 2094 max_total_mem = mmapped_mem + sbrked_mem; 2095 2096 /* We always land on a page boundary */ 2097 assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0); 2098 } 2099 2100 2101 2102 2103 /* Main public routines */ 2104 2105 2106 /* 2107 Malloc Algorthim: 2108 2109 The requested size is first converted into a usable form, `nb'. 2110 This currently means to add 4 bytes overhead plus possibly more to 2111 obtain 8-byte alignment and/or to obtain a size of at least 2112 MINSIZE (currently 16 bytes), the smallest allocatable size. 2113 (All fits are considered `exact' if they are within MINSIZE bytes.) 2114 2115 From there, the first successful of the following steps is taken: 2116 2117 1. The bin corresponding to the request size is scanned, and if 2118 a chunk of exactly the right size is found, it is taken. 2119 2120 2. The most recently remaindered chunk is used if it is big 2121 enough. This is a form of (roving) first fit, used only in 2122 the absence of exact fits. Runs of consecutive requests use 2123 the remainder of the chunk used for the previous such request 2124 whenever possible. This limited use of a first-fit style 2125 allocation strategy tends to give contiguous chunks 2126 coextensive lifetimes, which improves locality and can reduce 2127 fragmentation in the long run. 2128 2129 3. Other bins are scanned in increasing size order, using a 2130 chunk big enough to fulfill the request, and splitting off 2131 any remainder. This search is strictly by best-fit; i.e., 2132 the smallest (with ties going to approximately the least 2133 recently used) chunk that fits is selected. 2134 2135 4. If large enough, the chunk bordering the end of memory 2136 (`top') is split off. (This use of `top' is in accord with 2137 the best-fit search rule. In effect, `top' is treated as 2138 larger (and thus less well fitting) than any other available 2139 chunk since it can be extended to be as large as necessary 2140 (up to system limitations). 2141 2142 5. If the request size meets the mmap threshold and the 2143 system supports mmap, and there are few enough currently 2144 allocated mmapped regions, and a call to mmap succeeds, 2145 the request is allocated via direct memory mapping. 2146 2147 6. Otherwise, the top of memory is extended by 2148 obtaining more space from the system (normally using sbrk, 2149 but definable to anything else via the MORECORE macro). 2150 Memory is gathered from the system (in system page-sized 2151 units) in a way that allows chunks obtained across different 2152 sbrk calls to be consolidated, but does not require 2153 contiguous memory. Thus, it should be safe to intersperse 2154 mallocs with other sbrk calls. 2155 2156 2157 All allocations are made from the the `lowest' part of any found 2158 chunk. (The implementation invariant is that prev_inuse is 2159 always true of any allocated chunk; i.e., that each allocated 2160 chunk borders either a previously allocated and still in-use chunk, 2161 or the base of its memory arena.) 2162 2163 */ 2164 2165 #if __STD_C 2166 Void_t* mALLOc(size_t bytes) 2167 #else 2168 Void_t* mALLOc(bytes) size_t bytes; 2169 #endif 2170 { 2171 mchunkptr victim; /* inspected/selected chunk */ 2172 INTERNAL_SIZE_T victim_size; /* its size */ 2173 int idx; /* index for bin traversal */ 2174 mbinptr bin; /* associated bin */ 2175 mchunkptr remainder; /* remainder from a split */ 2176 long remainder_size; /* its size */ 2177 int remainder_index; /* its bin index */ 2178 unsigned long block; /* block traverser bit */ 2179 int startidx; /* first bin of a traversed block */ 2180 mchunkptr fwd; /* misc temp for linking */ 2181 mchunkptr bck; /* misc temp for linking */ 2182 mbinptr q; /* misc temp */ 2183 2184 INTERNAL_SIZE_T nb; 2185 2186 if ((long)bytes < 0) return 0; 2187 2188 nb = request2size(bytes); /* padded request size; */ 2189 2190 /* Check for exact match in a bin */ 2191 2192 if (is_small_request(nb)) /* Faster version for small requests */ 2193 { 2194 idx = smallbin_index(nb); 2195 2196 /* No traversal or size check necessary for small bins. */ 2197 2198 q = bin_at(idx); 2199 victim = last(q); 2200 2201 /* Also scan the next one, since it would have a remainder < MINSIZE */ 2202 if (victim == q) 2203 { 2204 q = next_bin(q); 2205 victim = last(q); 2206 } 2207 if (victim != q) 2208 { 2209 victim_size = chunksize(victim); 2210 unlink(victim, bck, fwd); 2211 set_inuse_bit_at_offset(victim, victim_size); 2212 check_malloced_chunk(victim, nb); 2213 return chunk2mem(victim); 2214 } 2215 2216 idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */ 2217 2218 } 2219 else 2220 { 2221 idx = bin_index(nb); 2222 bin = bin_at(idx); 2223 2224 for (victim = last(bin); victim != bin; victim = victim->bk) 2225 { 2226 victim_size = chunksize(victim); 2227 remainder_size = victim_size - nb; 2228 2229 if (remainder_size >= (long)MINSIZE) /* too big */ 2230 { 2231 --idx; /* adjust to rescan below after checking last remainder */ 2232 break; 2233 } 2234 2235 else if (remainder_size >= 0) /* exact fit */ 2236 { 2237 unlink(victim, bck, fwd); 2238 set_inuse_bit_at_offset(victim, victim_size); 2239 check_malloced_chunk(victim, nb); 2240 return chunk2mem(victim); 2241 } 2242 } 2243 2244 ++idx; 2245 2246 } 2247 2248 /* Try to use the last split-off remainder */ 2249 2250 if ( (victim = last_remainder->fd) != last_remainder) 2251 { 2252 victim_size = chunksize(victim); 2253 remainder_size = victim_size - nb; 2254 2255 if (remainder_size >= (long)MINSIZE) /* re-split */ 2256 { 2257 remainder = chunk_at_offset(victim, nb); 2258 set_head(victim, nb | PREV_INUSE); 2259 link_last_remainder(remainder); 2260 set_head(remainder, remainder_size | PREV_INUSE); 2261 set_foot(remainder, remainder_size); 2262 check_malloced_chunk(victim, nb); 2263 return chunk2mem(victim); 2264 } 2265 2266 clear_last_remainder; 2267 2268 if (remainder_size >= 0) /* exhaust */ 2269 { 2270 set_inuse_bit_at_offset(victim, victim_size); 2271 check_malloced_chunk(victim, nb); 2272 return chunk2mem(victim); 2273 } 2274 2275 /* Else place in bin */ 2276 2277 frontlink(victim, victim_size, remainder_index, bck, fwd); 2278 } 2279 2280 /* 2281 If there are any possibly nonempty big-enough blocks, 2282 search for best fitting chunk by scanning bins in blockwidth units. 2283 */ 2284 2285 if ( (block = idx2binblock(idx)) <= binblocks_r) 2286 { 2287 2288 /* Get to the first marked block */ 2289 2290 if ( (block & binblocks_r) == 0) 2291 { 2292 /* force to an even block boundary */ 2293 idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH; 2294 block <<= 1; 2295 while ((block & binblocks_r) == 0) 2296 { 2297 idx += BINBLOCKWIDTH; 2298 block <<= 1; 2299 } 2300 } 2301 2302 /* For each possibly nonempty block ... */ 2303 for (;;) 2304 { 2305 startidx = idx; /* (track incomplete blocks) */ 2306 q = bin = bin_at(idx); 2307 2308 /* For each bin in this block ... */ 2309 do 2310 { 2311 /* Find and use first big enough chunk ... */ 2312 2313 for (victim = last(bin); victim != bin; victim = victim->bk) 2314 { 2315 victim_size = chunksize(victim); 2316 remainder_size = victim_size - nb; 2317 2318 if (remainder_size >= (long)MINSIZE) /* split */ 2319 { 2320 remainder = chunk_at_offset(victim, nb); 2321 set_head(victim, nb | PREV_INUSE); 2322 unlink(victim, bck, fwd); 2323 link_last_remainder(remainder); 2324 set_head(remainder, remainder_size | PREV_INUSE); 2325 set_foot(remainder, remainder_size); 2326 check_malloced_chunk(victim, nb); 2327 return chunk2mem(victim); 2328 } 2329 2330 else if (remainder_size >= 0) /* take */ 2331 { 2332 set_inuse_bit_at_offset(victim, victim_size); 2333 unlink(victim, bck, fwd); 2334 check_malloced_chunk(victim, nb); 2335 return chunk2mem(victim); 2336 } 2337 2338 } 2339 2340 bin = next_bin(bin); 2341 2342 } while ((++idx & (BINBLOCKWIDTH - 1)) != 0); 2343 2344 /* Clear out the block bit. */ 2345 2346 do /* Possibly backtrack to try to clear a partial block */ 2347 { 2348 if ((startidx & (BINBLOCKWIDTH - 1)) == 0) 2349 { 2350 av_[1] = (mbinptr)(binblocks_r & ~block); 2351 break; 2352 } 2353 --startidx; 2354 q = prev_bin(q); 2355 } while (first(q) == q); 2356 2357 /* Get to the next possibly nonempty block */ 2358 2359 if ( (block <<= 1) <= binblocks_r && (block != 0) ) 2360 { 2361 while ((block & binblocks_r) == 0) 2362 { 2363 idx += BINBLOCKWIDTH; 2364 block <<= 1; 2365 } 2366 } 2367 else 2368 break; 2369 } 2370 } 2371 2372 2373 /* Try to use top chunk */ 2374 2375 /* Require that there be a remainder, ensuring top always exists */ 2376 if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE) 2377 { 2378 2379 #if HAVE_MMAP 2380 /* If big and would otherwise need to extend, try to use mmap instead */ 2381 if ((unsigned long)nb >= (unsigned long)mmap_threshold && 2382 (victim = mmap_chunk(nb)) != 0) 2383 return chunk2mem(victim); 2384 #endif 2385 2386 /* Try to extend */ 2387 malloc_extend_top(nb); 2388 if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE) 2389 return 0; /* propagate failure */ 2390 } 2391 2392 victim = top; 2393 set_head(victim, nb | PREV_INUSE); 2394 top = chunk_at_offset(victim, nb); 2395 set_head(top, remainder_size | PREV_INUSE); 2396 check_malloced_chunk(victim, nb); 2397 return chunk2mem(victim); 2398 2399 } 2400 2401 2402 2403 2404 /* 2405 2406 free() algorithm : 2407 2408 cases: 2409 2410 1. free(0) has no effect. 2411 2412 2. If the chunk was allocated via mmap, it is release via munmap(). 2413 2414 3. If a returned chunk borders the current high end of memory, 2415 it is consolidated into the top, and if the total unused 2416 topmost memory exceeds the trim threshold, malloc_trim is 2417 called. 2418 2419 4. Other chunks are consolidated as they arrive, and 2420 placed in corresponding bins. (This includes the case of 2421 consolidating with the current `last_remainder'). 2422 2423 */ 2424 2425 2426 #if __STD_C 2427 void fREe(Void_t* mem) 2428 #else 2429 void fREe(mem) Void_t* mem; 2430 #endif 2431 { 2432 mchunkptr p; /* chunk corresponding to mem */ 2433 INTERNAL_SIZE_T hd; /* its head field */ 2434 INTERNAL_SIZE_T sz; /* its size */ 2435 int idx; /* its bin index */ 2436 mchunkptr next; /* next contiguous chunk */ 2437 INTERNAL_SIZE_T nextsz; /* its size */ 2438 INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */ 2439 mchunkptr bck; /* misc temp for linking */ 2440 mchunkptr fwd; /* misc temp for linking */ 2441 int islr; /* track whether merging with last_remainder */ 2442 2443 if (mem == 0) /* free(0) has no effect */ 2444 return; 2445 2446 p = mem2chunk(mem); 2447 hd = p->size; 2448 2449 #if HAVE_MMAP 2450 if (hd & IS_MMAPPED) /* release mmapped memory. */ 2451 { 2452 munmap_chunk(p); 2453 return; 2454 } 2455 #endif 2456 2457 check_inuse_chunk(p); 2458 2459 sz = hd & ~PREV_INUSE; 2460 next = chunk_at_offset(p, sz); 2461 nextsz = chunksize(next); 2462 2463 if (next == top) /* merge with top */ 2464 { 2465 sz += nextsz; 2466 2467 if (!(hd & PREV_INUSE)) /* consolidate backward */ 2468 { 2469 prevsz = p->prev_size; 2470 p = chunk_at_offset(p, -((long) prevsz)); 2471 sz += prevsz; 2472 unlink(p, bck, fwd); 2473 } 2474 2475 set_head(p, sz | PREV_INUSE); 2476 top = p; 2477 if ((unsigned long)(sz) >= (unsigned long)trim_threshold) 2478 malloc_trim(top_pad); 2479 return; 2480 } 2481 2482 set_head(next, nextsz); /* clear inuse bit */ 2483 2484 islr = 0; 2485 2486 if (!(hd & PREV_INUSE)) /* consolidate backward */ 2487 { 2488 prevsz = p->prev_size; 2489 p = chunk_at_offset(p, -((long) prevsz)); 2490 sz += prevsz; 2491 2492 if (p->fd == last_remainder) /* keep as last_remainder */ 2493 islr = 1; 2494 else 2495 unlink(p, bck, fwd); 2496 } 2497 2498 if (!(inuse_bit_at_offset(next, nextsz))) /* consolidate forward */ 2499 { 2500 sz += nextsz; 2501 2502 if (!islr && next->fd == last_remainder) /* re-insert last_remainder */ 2503 { 2504 islr = 1; 2505 link_last_remainder(p); 2506 } 2507 else 2508 unlink(next, bck, fwd); 2509 } 2510 2511 2512 set_head(p, sz | PREV_INUSE); 2513 set_foot(p, sz); 2514 if (!islr) 2515 frontlink(p, sz, idx, bck, fwd); 2516 } 2517 2518 2519 2520 2521 2522 /* 2523 2524 Realloc algorithm: 2525 2526 Chunks that were obtained via mmap cannot be extended or shrunk 2527 unless HAVE_MREMAP is defined, in which case mremap is used. 2528 Otherwise, if their reallocation is for additional space, they are 2529 copied. If for less, they are just left alone. 2530 2531 Otherwise, if the reallocation is for additional space, and the 2532 chunk can be extended, it is, else a malloc-copy-free sequence is 2533 taken. There are several different ways that a chunk could be 2534 extended. All are tried: 2535 2536 * Extending forward into following adjacent free chunk. 2537 * Shifting backwards, joining preceding adjacent space 2538 * Both shifting backwards and extending forward. 2539 * Extending into newly sbrked space 2540 2541 Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a 2542 size argument of zero (re)allocates a minimum-sized chunk. 2543 2544 If the reallocation is for less space, and the new request is for 2545 a `small' (<512 bytes) size, then the newly unused space is lopped 2546 off and freed. 2547 2548 The old unix realloc convention of allowing the last-free'd chunk 2549 to be used as an argument to realloc is no longer supported. 2550 I don't know of any programs still relying on this feature, 2551 and allowing it would also allow too many other incorrect 2552 usages of realloc to be sensible. 2553 2554 2555 */ 2556 2557 2558 #if __STD_C 2559 Void_t* rEALLOc(Void_t* oldmem, size_t bytes) 2560 #else 2561 Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes; 2562 #endif 2563 { 2564 INTERNAL_SIZE_T nb; /* padded request size */ 2565 2566 mchunkptr oldp; /* chunk corresponding to oldmem */ 2567 INTERNAL_SIZE_T oldsize; /* its size */ 2568 2569 mchunkptr newp; /* chunk to return */ 2570 INTERNAL_SIZE_T newsize; /* its size */ 2571 Void_t* newmem; /* corresponding user mem */ 2572 2573 mchunkptr next; /* next contiguous chunk after oldp */ 2574 INTERNAL_SIZE_T nextsize; /* its size */ 2575 2576 mchunkptr prev; /* previous contiguous chunk before oldp */ 2577 INTERNAL_SIZE_T prevsize; /* its size */ 2578 2579 mchunkptr remainder; /* holds split off extra space from newp */ 2580 INTERNAL_SIZE_T remainder_size; /* its size */ 2581 2582 mchunkptr bck; /* misc temp for linking */ 2583 mchunkptr fwd; /* misc temp for linking */ 2584 2585 #ifdef REALLOC_ZERO_BYTES_FREES 2586 if (bytes == 0) { fREe(oldmem); return 0; } 2587 #endif 2588 2589 if ((long)bytes < 0) return 0; 2590 2591 /* realloc of null is supposed to be same as malloc */ 2592 if (oldmem == 0) return mALLOc(bytes); 2593 2594 newp = oldp = mem2chunk(oldmem); 2595 newsize = oldsize = chunksize(oldp); 2596 2597 2598 nb = request2size(bytes); 2599 2600 #if HAVE_MMAP 2601 if (chunk_is_mmapped(oldp)) 2602 { 2603 #if HAVE_MREMAP 2604 newp = mremap_chunk(oldp, nb); 2605 if(newp) return chunk2mem(newp); 2606 #endif 2607 /* Note the extra SIZE_SZ overhead. */ 2608 if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */ 2609 /* Must alloc, copy, free. */ 2610 newmem = mALLOc(bytes); 2611 if (newmem == 0) return 0; /* propagate failure */ 2612 MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ); 2613 munmap_chunk(oldp); 2614 return newmem; 2615 } 2616 #endif 2617 2618 check_inuse_chunk(oldp); 2619 2620 if ((long)(oldsize) < (long)(nb)) 2621 { 2622 2623 /* Try expanding forward */ 2624 2625 next = chunk_at_offset(oldp, oldsize); 2626 if (next == top || !inuse(next)) 2627 { 2628 nextsize = chunksize(next); 2629 2630 /* Forward into top only if a remainder */ 2631 if (next == top) 2632 { 2633 if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE)) 2634 { 2635 newsize += nextsize; 2636 top = chunk_at_offset(oldp, nb); 2637 set_head(top, (newsize - nb) | PREV_INUSE); 2638 set_head_size(oldp, nb); 2639 return chunk2mem(oldp); 2640 } 2641 } 2642 2643 /* Forward into next chunk */ 2644 else if (((long)(nextsize + newsize) >= (long)(nb))) 2645 { 2646 unlink(next, bck, fwd); 2647 newsize += nextsize; 2648 goto split; 2649 } 2650 } 2651 else 2652 { 2653 next = 0; 2654 nextsize = 0; 2655 } 2656 2657 /* Try shifting backwards. */ 2658 2659 if (!prev_inuse(oldp)) 2660 { 2661 prev = prev_chunk(oldp); 2662 prevsize = chunksize(prev); 2663 2664 /* try forward + backward first to save a later consolidation */ 2665 2666 if (next != 0) 2667 { 2668 /* into top */ 2669 if (next == top) 2670 { 2671 if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE)) 2672 { 2673 unlink(prev, bck, fwd); 2674 newp = prev; 2675 newsize += prevsize + nextsize; 2676 newmem = chunk2mem(newp); 2677 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ); 2678 top = chunk_at_offset(newp, nb); 2679 set_head(top, (newsize - nb) | PREV_INUSE); 2680 set_head_size(newp, nb); 2681 return newmem; 2682 } 2683 } 2684 2685 /* into next chunk */ 2686 else if (((long)(nextsize + prevsize + newsize) >= (long)(nb))) 2687 { 2688 unlink(next, bck, fwd); 2689 unlink(prev, bck, fwd); 2690 newp = prev; 2691 newsize += nextsize + prevsize; 2692 newmem = chunk2mem(newp); 2693 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ); 2694 goto split; 2695 } 2696 } 2697 2698 /* backward only */ 2699 if (prev != 0 && (long)(prevsize + newsize) >= (long)nb) 2700 { 2701 unlink(prev, bck, fwd); 2702 newp = prev; 2703 newsize += prevsize; 2704 newmem = chunk2mem(newp); 2705 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ); 2706 goto split; 2707 } 2708 } 2709 2710 /* Must allocate */ 2711 2712 newmem = mALLOc (bytes); 2713 2714 if (newmem == 0) /* propagate failure */ 2715 return 0; 2716 2717 /* Avoid copy if newp is next chunk after oldp. */ 2718 /* (This can only happen when new chunk is sbrk'ed.) */ 2719 2720 if ( (newp = mem2chunk(newmem)) == next_chunk(oldp)) 2721 { 2722 newsize += chunksize(newp); 2723 newp = oldp; 2724 goto split; 2725 } 2726 2727 /* Otherwise copy, free, and exit */ 2728 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ); 2729 fREe(oldmem); 2730 return newmem; 2731 } 2732 2733 2734 split: /* split off extra room in old or expanded chunk */ 2735 2736 if (newsize - nb >= MINSIZE) /* split off remainder */ 2737 { 2738 remainder = chunk_at_offset(newp, nb); 2739 remainder_size = newsize - nb; 2740 set_head_size(newp, nb); 2741 set_head(remainder, remainder_size | PREV_INUSE); 2742 set_inuse_bit_at_offset(remainder, remainder_size); 2743 fREe(chunk2mem(remainder)); /* let free() deal with it */ 2744 } 2745 else 2746 { 2747 set_head_size(newp, newsize); 2748 set_inuse_bit_at_offset(newp, newsize); 2749 } 2750 2751 check_inuse_chunk(newp); 2752 return chunk2mem(newp); 2753 } 2754 2755 2756 2757 2758 /* 2759 2760 memalign algorithm: 2761 2762 memalign requests more than enough space from malloc, finds a spot 2763 within that chunk that meets the alignment request, and then 2764 possibly frees the leading and trailing space. 2765 2766 The alignment argument must be a power of two. This property is not 2767 checked by memalign, so misuse may result in random runtime errors. 2768 2769 8-byte alignment is guaranteed by normal malloc calls, so don't 2770 bother calling memalign with an argument of 8 or less. 2771 2772 Overreliance on memalign is a sure way to fragment space. 2773 2774 */ 2775 2776 2777 #if __STD_C 2778 Void_t* mEMALIGn(size_t alignment, size_t bytes) 2779 #else 2780 Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes; 2781 #endif 2782 { 2783 INTERNAL_SIZE_T nb; /* padded request size */ 2784 char* m; /* memory returned by malloc call */ 2785 mchunkptr p; /* corresponding chunk */ 2786 char* brk; /* alignment point within p */ 2787 mchunkptr newp; /* chunk to return */ 2788 INTERNAL_SIZE_T newsize; /* its size */ 2789 INTERNAL_SIZE_T leadsize; /* leading space befor alignment point */ 2790 mchunkptr remainder; /* spare room at end to split off */ 2791 long remainder_size; /* its size */ 2792 2793 if ((long)bytes < 0) return 0; 2794 2795 /* If need less alignment than we give anyway, just relay to malloc */ 2796 2797 if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes); 2798 2799 /* Otherwise, ensure that it is at least a minimum chunk size */ 2800 2801 if (alignment < MINSIZE) alignment = MINSIZE; 2802 2803 /* Call malloc with worst case padding to hit alignment. */ 2804 2805 nb = request2size(bytes); 2806 m = (char*)(mALLOc(nb + alignment + MINSIZE)); 2807 2808 if (m == 0) return 0; /* propagate failure */ 2809 2810 p = mem2chunk(m); 2811 2812 if ((((unsigned long)(m)) % alignment) == 0) /* aligned */ 2813 { 2814 #if HAVE_MMAP 2815 if(chunk_is_mmapped(p)) 2816 return chunk2mem(p); /* nothing more to do */ 2817 #endif 2818 } 2819 else /* misaligned */ 2820 { 2821 /* 2822 Find an aligned spot inside chunk. 2823 Since we need to give back leading space in a chunk of at 2824 least MINSIZE, if the first calculation places us at 2825 a spot with less than MINSIZE leader, we can move to the 2826 next aligned spot -- we've allocated enough total room so that 2827 this is always possible. 2828 */ 2829 2830 brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment)); 2831 if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment; 2832 2833 newp = (mchunkptr)brk; 2834 leadsize = brk - (char*)(p); 2835 newsize = chunksize(p) - leadsize; 2836 2837 #if HAVE_MMAP 2838 if(chunk_is_mmapped(p)) 2839 { 2840 newp->prev_size = p->prev_size + leadsize; 2841 set_head(newp, newsize|IS_MMAPPED); 2842 return chunk2mem(newp); 2843 } 2844 #endif 2845 2846 /* give back leader, use the rest */ 2847 2848 set_head(newp, newsize | PREV_INUSE); 2849 set_inuse_bit_at_offset(newp, newsize); 2850 set_head_size(p, leadsize); 2851 fREe(chunk2mem(p)); 2852 p = newp; 2853 2854 assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0); 2855 } 2856 2857 /* Also give back spare room at the end */ 2858 2859 remainder_size = chunksize(p) - nb; 2860 2861 if (remainder_size >= (long)MINSIZE) 2862 { 2863 remainder = chunk_at_offset(p, nb); 2864 set_head(remainder, remainder_size | PREV_INUSE); 2865 set_head_size(p, nb); 2866 fREe(chunk2mem(remainder)); 2867 } 2868 2869 check_inuse_chunk(p); 2870 return chunk2mem(p); 2871 2872 } 2873 2874 2875 2876 2877 /* 2878 valloc just invokes memalign with alignment argument equal 2879 to the page size of the system (or as near to this as can 2880 be figured out from all the includes/defines above.) 2881 */ 2882 2883 #if __STD_C 2884 Void_t* vALLOc(size_t bytes) 2885 #else 2886 Void_t* vALLOc(bytes) size_t bytes; 2887 #endif 2888 { 2889 return mEMALIGn (malloc_getpagesize, bytes); 2890 } 2891 2892 /* 2893 pvalloc just invokes valloc for the nearest pagesize 2894 that will accommodate request 2895 */ 2896 2897 2898 #if __STD_C 2899 Void_t* pvALLOc(size_t bytes) 2900 #else 2901 Void_t* pvALLOc(bytes) size_t bytes; 2902 #endif 2903 { 2904 size_t pagesize = malloc_getpagesize; 2905 return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1)); 2906 } 2907 2908 /* 2909 2910 calloc calls malloc, then zeroes out the allocated chunk. 2911 2912 */ 2913 2914 #if __STD_C 2915 Void_t* cALLOc(size_t n, size_t elem_size) 2916 #else 2917 Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size; 2918 #endif 2919 { 2920 mchunkptr p; 2921 INTERNAL_SIZE_T csz; 2922 2923 INTERNAL_SIZE_T sz = n * elem_size; 2924 2925 2926 /* check if expand_top called, in which case don't need to clear */ 2927 #if MORECORE_CLEARS 2928 mchunkptr oldtop = top; 2929 INTERNAL_SIZE_T oldtopsize = chunksize(top); 2930 #endif 2931 Void_t* mem = mALLOc (sz); 2932 2933 if ((long)n < 0) return 0; 2934 2935 if (mem == 0) 2936 return 0; 2937 else 2938 { 2939 p = mem2chunk(mem); 2940 2941 /* Two optional cases in which clearing not necessary */ 2942 2943 2944 #if HAVE_MMAP 2945 if (chunk_is_mmapped(p)) return mem; 2946 #endif 2947 2948 csz = chunksize(p); 2949 2950 #if MORECORE_CLEARS 2951 if (p == oldtop && csz > oldtopsize) 2952 { 2953 /* clear only the bytes from non-freshly-sbrked memory */ 2954 csz = oldtopsize; 2955 } 2956 #endif 2957 2958 MALLOC_ZERO(mem, csz - SIZE_SZ); 2959 return mem; 2960 } 2961 } 2962 2963 /* 2964 2965 cfree just calls free. It is needed/defined on some systems 2966 that pair it with calloc, presumably for odd historical reasons. 2967 2968 */ 2969 2970 #if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__) 2971 #if __STD_C 2972 void cfree(Void_t *mem) 2973 #else 2974 void cfree(mem) Void_t *mem; 2975 #endif 2976 { 2977 fREe(mem); 2978 } 2979 #endif 2980 2981 2982 2983 /* 2984 2985 Malloc_trim gives memory back to the system (via negative 2986 arguments to sbrk) if there is unused memory at the `high' end of 2987 the malloc pool. You can call this after freeing large blocks of 2988 memory to potentially reduce the system-level memory requirements 2989 of a program. However, it cannot guarantee to reduce memory. Under 2990 some allocation patterns, some large free blocks of memory will be 2991 locked between two used chunks, so they cannot be given back to 2992 the system. 2993 2994 The `pad' argument to malloc_trim represents the amount of free 2995 trailing space to leave untrimmed. If this argument is zero, 2996 only the minimum amount of memory to maintain internal data 2997 structures will be left (one page or less). Non-zero arguments 2998 can be supplied to maintain enough trailing space to service 2999 future expected allocations without having to re-obtain memory 3000 from the system. 3001 3002 Malloc_trim returns 1 if it actually released any memory, else 0. 3003 3004 */ 3005 3006 #if __STD_C 3007 int malloc_trim(size_t pad) 3008 #else 3009 int malloc_trim(pad) size_t pad; 3010 #endif 3011 { 3012 long top_size; /* Amount of top-most memory */ 3013 long extra; /* Amount to release */ 3014 char* current_brk; /* address returned by pre-check sbrk call */ 3015 char* new_brk; /* address returned by negative sbrk call */ 3016 3017 unsigned long pagesz = malloc_getpagesize; 3018 3019 top_size = chunksize(top); 3020 extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz; 3021 3022 if (extra < (long)pagesz) /* Not enough memory to release */ 3023 return 0; 3024 3025 else 3026 { 3027 /* Test to make sure no one else called sbrk */ 3028 current_brk = (char*)(MORECORE (0)); 3029 if (current_brk != (char*)(top) + top_size) 3030 return 0; /* Apparently we don't own memory; must fail */ 3031 3032 else 3033 { 3034 new_brk = (char*)(MORECORE (-extra)); 3035 3036 if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */ 3037 { 3038 /* Try to figure out what we have */ 3039 current_brk = (char*)(MORECORE (0)); 3040 top_size = current_brk - (char*)top; 3041 if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */ 3042 { 3043 sbrked_mem = current_brk - sbrk_base; 3044 set_head(top, top_size | PREV_INUSE); 3045 } 3046 check_chunk(top); 3047 return 0; 3048 } 3049 3050 else 3051 { 3052 /* Success. Adjust top accordingly. */ 3053 set_head(top, (top_size - extra) | PREV_INUSE); 3054 sbrked_mem -= extra; 3055 check_chunk(top); 3056 return 1; 3057 } 3058 } 3059 } 3060 } 3061 3062 3063 3064 /* 3065 malloc_usable_size: 3066 3067 This routine tells you how many bytes you can actually use in an 3068 allocated chunk, which may be more than you requested (although 3069 often not). You can use this many bytes without worrying about 3070 overwriting other allocated objects. Not a particularly great 3071 programming practice, but still sometimes useful. 3072 3073 */ 3074 3075 #if __STD_C 3076 size_t malloc_usable_size(Void_t* mem) 3077 #else 3078 size_t malloc_usable_size(mem) Void_t* mem; 3079 #endif 3080 { 3081 mchunkptr p; 3082 if (mem == 0) 3083 return 0; 3084 else 3085 { 3086 p = mem2chunk(mem); 3087 if(!chunk_is_mmapped(p)) 3088 { 3089 if (!inuse(p)) return 0; 3090 check_inuse_chunk(p); 3091 return chunksize(p) - SIZE_SZ; 3092 } 3093 return chunksize(p) - 2*SIZE_SZ; 3094 } 3095 } 3096 3097 3098 3099 3100 /* Utility to update current_mallinfo for malloc_stats and mallinfo() */ 3101 3102 #if 0 3103 static void malloc_update_mallinfo() 3104 { 3105 int i; 3106 mbinptr b; 3107 mchunkptr p; 3108 #ifdef DEBUG 3109 mchunkptr q; 3110 #endif 3111 3112 INTERNAL_SIZE_T avail = chunksize(top); 3113 int navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0; 3114 3115 for (i = 1; i < NAV; ++i) 3116 { 3117 b = bin_at(i); 3118 for (p = last(b); p != b; p = p->bk) 3119 { 3120 #ifdef DEBUG 3121 check_free_chunk(p); 3122 for (q = next_chunk(p); 3123 q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE; 3124 q = next_chunk(q)) 3125 check_inuse_chunk(q); 3126 #endif 3127 avail += chunksize(p); 3128 navail++; 3129 } 3130 } 3131 3132 current_mallinfo.ordblks = navail; 3133 current_mallinfo.uordblks = sbrked_mem - avail; 3134 current_mallinfo.fordblks = avail; 3135 current_mallinfo.hblks = n_mmaps; 3136 current_mallinfo.hblkhd = mmapped_mem; 3137 current_mallinfo.keepcost = chunksize(top); 3138 3139 } 3140 #endif /* 0 */ 3141 3142 3143 3144 /* 3145 3146 malloc_stats: 3147 3148 Prints on the amount of space obtain from the system (both 3149 via sbrk and mmap), the maximum amount (which may be more than 3150 current if malloc_trim and/or munmap got called), the maximum 3151 number of simultaneous mmap regions used, and the current number 3152 of bytes allocated via malloc (or realloc, etc) but not yet 3153 freed. (Note that this is the number of bytes allocated, not the 3154 number requested. It will be larger than the number requested 3155 because of alignment and bookkeeping overhead.) 3156 3157 */ 3158 3159 #if 0 3160 void malloc_stats() 3161 { 3162 malloc_update_mallinfo(); 3163 printf("max system bytes = %10u\n", 3164 (unsigned int)(max_total_mem)); 3165 printf("system bytes = %10u\n", 3166 (unsigned int)(sbrked_mem + mmapped_mem)); 3167 printf("in use bytes = %10u\n", 3168 (unsigned int)(current_mallinfo.uordblks + mmapped_mem)); 3169 #if HAVE_MMAP 3170 printf("max mmap regions = %10u\n", 3171 (unsigned int)max_n_mmaps); 3172 #endif 3173 } 3174 #endif /* 0 */ 3175 3176 /* 3177 mallinfo returns a copy of updated current mallinfo. 3178 */ 3179 3180 #if 0 3181 struct mallinfo mALLINFo() 3182 { 3183 malloc_update_mallinfo(); 3184 return current_mallinfo; 3185 } 3186 #endif /* 0 */ 3187 3188 3189 3190 3191 /* 3192 mallopt: 3193 3194 mallopt is the general SVID/XPG interface to tunable parameters. 3195 The format is to provide a (parameter-number, parameter-value) pair. 3196 mallopt then sets the corresponding parameter to the argument 3197 value if it can (i.e., so long as the value is meaningful), 3198 and returns 1 if successful else 0. 3199 3200 See descriptions of tunable parameters above. 3201 3202 */ 3203 3204 #if __STD_C 3205 int mALLOPt(int param_number, int value) 3206 #else 3207 int mALLOPt(param_number, value) int param_number; int value; 3208 #endif 3209 { 3210 switch(param_number) 3211 { 3212 case M_TRIM_THRESHOLD: 3213 trim_threshold = value; return 1; 3214 case M_TOP_PAD: 3215 top_pad = value; return 1; 3216 case M_MMAP_THRESHOLD: 3217 mmap_threshold = value; return 1; 3218 case M_MMAP_MAX: 3219 #if HAVE_MMAP 3220 n_mmaps_max = value; return 1; 3221 #else 3222 if (value != 0) return 0; else n_mmaps_max = value; return 1; 3223 #endif 3224 3225 default: 3226 return 0; 3227 } 3228 } 3229 3230 /* 3231 3232 History: 3233 3234 V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee) 3235 * return null for negative arguments 3236 * Added Several WIN32 cleanups from Martin C. Fong <mcfong@yahoo.com> 3237 * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h' 3238 (e.g. WIN32 platforms) 3239 * Cleanup up header file inclusion for WIN32 platforms 3240 * Cleanup code to avoid Microsoft Visual C++ compiler complaints 3241 * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing 3242 memory allocation routines 3243 * Set 'malloc_getpagesize' for WIN32 platforms (needs more work) 3244 * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to 3245 usage of 'assert' in non-WIN32 code 3246 * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to 3247 avoid infinite loop 3248 * Always call 'fREe()' rather than 'free()' 3249 3250 V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee) 3251 * Fixed ordering problem with boundary-stamping 3252 3253 V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee) 3254 * Added pvalloc, as recommended by H.J. Liu 3255 * Added 64bit pointer support mainly from Wolfram Gloger 3256 * Added anonymously donated WIN32 sbrk emulation 3257 * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen 3258 * malloc_extend_top: fix mask error that caused wastage after 3259 foreign sbrks 3260 * Add linux mremap support code from HJ Liu 3261 3262 V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee) 3263 * Integrated most documentation with the code. 3264 * Add support for mmap, with help from 3265 Wolfram Gloger (Gloger@lrz.uni-muenchen.de). 3266 * Use last_remainder in more cases. 3267 * Pack bins using idea from colin@nyx10.cs.du.edu 3268 * Use ordered bins instead of best-fit threshhold 3269 * Eliminate block-local decls to simplify tracing and debugging. 3270 * Support another case of realloc via move into top 3271 * Fix error occuring when initial sbrk_base not word-aligned. 3272 * Rely on page size for units instead of SBRK_UNIT to 3273 avoid surprises about sbrk alignment conventions. 3274 * Add mallinfo, mallopt. Thanks to Raymond Nijssen 3275 (raymond@es.ele.tue.nl) for the suggestion. 3276 * Add `pad' argument to malloc_trim and top_pad mallopt parameter. 3277 * More precautions for cases where other routines call sbrk, 3278 courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de). 3279 * Added macros etc., allowing use in linux libc from 3280 H.J. Lu (hjl@gnu.ai.mit.edu) 3281 * Inverted this history list 3282 3283 V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee) 3284 * Re-tuned and fixed to behave more nicely with V2.6.0 changes. 3285 * Removed all preallocation code since under current scheme 3286 the work required to undo bad preallocations exceeds 3287 the work saved in good cases for most test programs. 3288 * No longer use return list or unconsolidated bins since 3289 no scheme using them consistently outperforms those that don't 3290 given above changes. 3291 * Use best fit for very large chunks to prevent some worst-cases. 3292 * Added some support for debugging 3293 3294 V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee) 3295 * Removed footers when chunks are in use. Thanks to 3296 Paul Wilson (wilson@cs.texas.edu) for the suggestion. 3297 3298 V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee) 3299 * Added malloc_trim, with help from Wolfram Gloger 3300 (wmglo@Dent.MED.Uni-Muenchen.DE). 3301 3302 V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g) 3303 3304 V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g) 3305 * realloc: try to expand in both directions 3306 * malloc: swap order of clean-bin strategy; 3307 * realloc: only conditionally expand backwards 3308 * Try not to scavenge used bins 3309 * Use bin counts as a guide to preallocation 3310 * Occasionally bin return list chunks in first scan 3311 * Add a few optimizations from colin@nyx10.cs.du.edu 3312 3313 V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g) 3314 * faster bin computation & slightly different binning 3315 * merged all consolidations to one part of malloc proper 3316 (eliminating old malloc_find_space & malloc_clean_bin) 3317 * Scan 2 returns chunks (not just 1) 3318 * Propagate failure in realloc if malloc returns 0 3319 * Add stuff to allow compilation on non-ANSI compilers 3320 from kpv@research.att.com 3321 3322 V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu) 3323 * removed potential for odd address access in prev_chunk 3324 * removed dependency on getpagesize.h 3325 * misc cosmetics and a bit more internal documentation 3326 * anticosmetics: mangled names in macros to evade debugger strangeness 3327 * tested on sparc, hp-700, dec-mips, rs6000 3328 with gcc & native cc (hp, dec only) allowing 3329 Detlefs & Zorn comparison study (in SIGPLAN Notices.) 3330 3331 Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu) 3332 * Based loosely on libg++-1.2X malloc. (It retains some of the overall 3333 structure of old version, but most details differ.) 3334 3335 */ 3336