xref: /openbmc/u-boot/common/dlmalloc.c (revision 790f70c725d6a89e6a9ac78f91b025454ae75dde)
1 #include <common.h>
2 
3 #ifdef CONFIG_SANDBOX
4 #define DEBUG
5 #endif
6 
7 #if 0	/* Moved to malloc.h */
8 /* ---------- To make a malloc.h, start cutting here ------------ */
9 
10 /*
11   A version of malloc/free/realloc written by Doug Lea and released to the
12   public domain.  Send questions/comments/complaints/performance data
13   to dl@cs.oswego.edu
14 
15 * VERSION 2.6.6  Sun Mar  5 19:10:03 2000  Doug Lea  (dl at gee)
16 
17    Note: There may be an updated version of this malloc obtainable at
18 	   ftp://g.oswego.edu/pub/misc/malloc.c
19 	 Check before installing!
20 
21 * Why use this malloc?
22 
23   This is not the fastest, most space-conserving, most portable, or
24   most tunable malloc ever written. However it is among the fastest
25   while also being among the most space-conserving, portable and tunable.
26   Consistent balance across these factors results in a good general-purpose
27   allocator. For a high-level description, see
28      http://g.oswego.edu/dl/html/malloc.html
29 
30 * Synopsis of public routines
31 
32   (Much fuller descriptions are contained in the program documentation below.)
33 
34   malloc(size_t n);
35      Return a pointer to a newly allocated chunk of at least n bytes, or null
36      if no space is available.
37   free(Void_t* p);
38      Release the chunk of memory pointed to by p, or no effect if p is null.
39   realloc(Void_t* p, size_t n);
40      Return a pointer to a chunk of size n that contains the same data
41      as does chunk p up to the minimum of (n, p's size) bytes, or null
42      if no space is available. The returned pointer may or may not be
43      the same as p. If p is null, equivalent to malloc.  Unless the
44      #define REALLOC_ZERO_BYTES_FREES below is set, realloc with a
45      size argument of zero (re)allocates a minimum-sized chunk.
46   memalign(size_t alignment, size_t n);
47      Return a pointer to a newly allocated chunk of n bytes, aligned
48      in accord with the alignment argument, which must be a power of
49      two.
50   valloc(size_t n);
51      Equivalent to memalign(pagesize, n), where pagesize is the page
52      size of the system (or as near to this as can be figured out from
53      all the includes/defines below.)
54   pvalloc(size_t n);
55      Equivalent to valloc(minimum-page-that-holds(n)), that is,
56      round up n to nearest pagesize.
57   calloc(size_t unit, size_t quantity);
58      Returns a pointer to quantity * unit bytes, with all locations
59      set to zero.
60   cfree(Void_t* p);
61      Equivalent to free(p).
62   malloc_trim(size_t pad);
63      Release all but pad bytes of freed top-most memory back
64      to the system. Return 1 if successful, else 0.
65   malloc_usable_size(Void_t* p);
66      Report the number usable allocated bytes associated with allocated
67      chunk p. This may or may not report more bytes than were requested,
68      due to alignment and minimum size constraints.
69   malloc_stats();
70      Prints brief summary statistics.
71   mallinfo()
72      Returns (by copy) a struct containing various summary statistics.
73   mallopt(int parameter_number, int parameter_value)
74      Changes one of the tunable parameters described below. Returns
75      1 if successful in changing the parameter, else 0.
76 
77 * Vital statistics:
78 
79   Alignment:                            8-byte
80        8 byte alignment is currently hardwired into the design.  This
81        seems to suffice for all current machines and C compilers.
82 
83   Assumed pointer representation:       4 or 8 bytes
84        Code for 8-byte pointers is untested by me but has worked
85        reliably by Wolfram Gloger, who contributed most of the
86        changes supporting this.
87 
88   Assumed size_t  representation:       4 or 8 bytes
89        Note that size_t is allowed to be 4 bytes even if pointers are 8.
90 
91   Minimum overhead per allocated chunk: 4 or 8 bytes
92        Each malloced chunk has a hidden overhead of 4 bytes holding size
93        and status information.
94 
95   Minimum allocated size: 4-byte ptrs:  16 bytes    (including 4 overhead)
96 			  8-byte ptrs:  24/32 bytes (including, 4/8 overhead)
97 
98        When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
99        ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
100        needed; 4 (8) for a trailing size field
101        and 8 (16) bytes for free list pointers. Thus, the minimum
102        allocatable size is 16/24/32 bytes.
103 
104        Even a request for zero bytes (i.e., malloc(0)) returns a
105        pointer to something of the minimum allocatable size.
106 
107   Maximum allocated size: 4-byte size_t: 2^31 -  8 bytes
108 			  8-byte size_t: 2^63 - 16 bytes
109 
110        It is assumed that (possibly signed) size_t bit values suffice to
111        represent chunk sizes. `Possibly signed' is due to the fact
112        that `size_t' may be defined on a system as either a signed or
113        an unsigned type. To be conservative, values that would appear
114        as negative numbers are avoided.
115        Requests for sizes with a negative sign bit when the request
116        size is treaded as a long will return null.
117 
118   Maximum overhead wastage per allocated chunk: normally 15 bytes
119 
120        Alignnment demands, plus the minimum allocatable size restriction
121        make the normal worst-case wastage 15 bytes (i.e., up to 15
122        more bytes will be allocated than were requested in malloc), with
123        two exceptions:
124 	 1. Because requests for zero bytes allocate non-zero space,
125 	    the worst case wastage for a request of zero bytes is 24 bytes.
126 	 2. For requests >= mmap_threshold that are serviced via
127 	    mmap(), the worst case wastage is 8 bytes plus the remainder
128 	    from a system page (the minimal mmap unit); typically 4096 bytes.
129 
130 * Limitations
131 
132     Here are some features that are NOT currently supported
133 
134     * No user-definable hooks for callbacks and the like.
135     * No automated mechanism for fully checking that all accesses
136       to malloced memory stay within their bounds.
137     * No support for compaction.
138 
139 * Synopsis of compile-time options:
140 
141     People have reported using previous versions of this malloc on all
142     versions of Unix, sometimes by tweaking some of the defines
143     below. It has been tested most extensively on Solaris and
144     Linux. It is also reported to work on WIN32 platforms.
145     People have also reported adapting this malloc for use in
146     stand-alone embedded systems.
147 
148     The implementation is in straight, hand-tuned ANSI C.  Among other
149     consequences, it uses a lot of macros.  Because of this, to be at
150     all usable, this code should be compiled using an optimizing compiler
151     (for example gcc -O2) that can simplify expressions and control
152     paths.
153 
154   __STD_C                  (default: derived from C compiler defines)
155      Nonzero if using ANSI-standard C compiler, a C++ compiler, or
156      a C compiler sufficiently close to ANSI to get away with it.
157   DEBUG                    (default: NOT defined)
158      Define to enable debugging. Adds fairly extensive assertion-based
159      checking to help track down memory errors, but noticeably slows down
160      execution.
161   REALLOC_ZERO_BYTES_FREES (default: NOT defined)
162      Define this if you think that realloc(p, 0) should be equivalent
163      to free(p). Otherwise, since malloc returns a unique pointer for
164      malloc(0), so does realloc(p, 0).
165   HAVE_MEMCPY               (default: defined)
166      Define if you are not otherwise using ANSI STD C, but still
167      have memcpy and memset in your C library and want to use them.
168      Otherwise, simple internal versions are supplied.
169   USE_MEMCPY               (default: 1 if HAVE_MEMCPY is defined, 0 otherwise)
170      Define as 1 if you want the C library versions of memset and
171      memcpy called in realloc and calloc (otherwise macro versions are used).
172      At least on some platforms, the simple macro versions usually
173      outperform libc versions.
174   HAVE_MMAP                 (default: defined as 1)
175      Define to non-zero to optionally make malloc() use mmap() to
176      allocate very large blocks.
177   HAVE_MREMAP                 (default: defined as 0 unless Linux libc set)
178      Define to non-zero to optionally make realloc() use mremap() to
179      reallocate very large blocks.
180   malloc_getpagesize        (default: derived from system #includes)
181      Either a constant or routine call returning the system page size.
182   HAVE_USR_INCLUDE_MALLOC_H (default: NOT defined)
183      Optionally define if you are on a system with a /usr/include/malloc.h
184      that declares struct mallinfo. It is not at all necessary to
185      define this even if you do, but will ensure consistency.
186   INTERNAL_SIZE_T           (default: size_t)
187      Define to a 32-bit type (probably `unsigned int') if you are on a
188      64-bit machine, yet do not want or need to allow malloc requests of
189      greater than 2^31 to be handled. This saves space, especially for
190      very small chunks.
191   INTERNAL_LINUX_C_LIB      (default: NOT defined)
192      Defined only when compiled as part of Linux libc.
193      Also note that there is some odd internal name-mangling via defines
194      (for example, internally, `malloc' is named `mALLOc') needed
195      when compiling in this case. These look funny but don't otherwise
196      affect anything.
197   WIN32                     (default: undefined)
198      Define this on MS win (95, nt) platforms to compile in sbrk emulation.
199   LACKS_UNISTD_H            (default: undefined if not WIN32)
200      Define this if your system does not have a <unistd.h>.
201   LACKS_SYS_PARAM_H         (default: undefined if not WIN32)
202      Define this if your system does not have a <sys/param.h>.
203   MORECORE                  (default: sbrk)
204      The name of the routine to call to obtain more memory from the system.
205   MORECORE_FAILURE          (default: -1)
206      The value returned upon failure of MORECORE.
207   MORECORE_CLEARS           (default 1)
208      true (1) if the routine mapped to MORECORE zeroes out memory (which
209      holds for sbrk).
210   DEFAULT_TRIM_THRESHOLD
211   DEFAULT_TOP_PAD
212   DEFAULT_MMAP_THRESHOLD
213   DEFAULT_MMAP_MAX
214      Default values of tunable parameters (described in detail below)
215      controlling interaction with host system routines (sbrk, mmap, etc).
216      These values may also be changed dynamically via mallopt(). The
217      preset defaults are those that give best performance for typical
218      programs/systems.
219   USE_DL_PREFIX             (default: undefined)
220      Prefix all public routines with the string 'dl'.  Useful to
221      quickly avoid procedure declaration conflicts and linker symbol
222      conflicts with existing memory allocation routines.
223 
224 
225 */
226 
227 
228 
229 /* Preliminaries */
230 
231 #ifndef __STD_C
232 #ifdef __STDC__
233 #define __STD_C     1
234 #else
235 #if __cplusplus
236 #define __STD_C     1
237 #else
238 #define __STD_C     0
239 #endif /*__cplusplus*/
240 #endif /*__STDC__*/
241 #endif /*__STD_C*/
242 
243 #ifndef Void_t
244 #if (__STD_C || defined(WIN32))
245 #define Void_t      void
246 #else
247 #define Void_t      char
248 #endif
249 #endif /*Void_t*/
250 
251 #if __STD_C
252 #include <stddef.h>   /* for size_t */
253 #else
254 #include <sys/types.h>
255 #endif
256 
257 #ifdef __cplusplus
258 extern "C" {
259 #endif
260 
261 #include <stdio.h>    /* needed for malloc_stats */
262 
263 
264 /*
265   Compile-time options
266 */
267 
268 
269 /*
270     Debugging:
271 
272     Because freed chunks may be overwritten with link fields, this
273     malloc will often die when freed memory is overwritten by user
274     programs.  This can be very effective (albeit in an annoying way)
275     in helping track down dangling pointers.
276 
277     If you compile with -DDEBUG, a number of assertion checks are
278     enabled that will catch more memory errors. You probably won't be
279     able to make much sense of the actual assertion errors, but they
280     should help you locate incorrectly overwritten memory.  The
281     checking is fairly extensive, and will slow down execution
282     noticeably. Calling malloc_stats or mallinfo with DEBUG set will
283     attempt to check every non-mmapped allocated and free chunk in the
284     course of computing the summmaries. (By nature, mmapped regions
285     cannot be checked very much automatically.)
286 
287     Setting DEBUG may also be helpful if you are trying to modify
288     this code. The assertions in the check routines spell out in more
289     detail the assumptions and invariants underlying the algorithms.
290 
291 */
292 
293 /*
294   INTERNAL_SIZE_T is the word-size used for internal bookkeeping
295   of chunk sizes. On a 64-bit machine, you can reduce malloc
296   overhead by defining INTERNAL_SIZE_T to be a 32 bit `unsigned int'
297   at the expense of not being able to handle requests greater than
298   2^31. This limitation is hardly ever a concern; you are encouraged
299   to set this. However, the default version is the same as size_t.
300 */
301 
302 #ifndef INTERNAL_SIZE_T
303 #define INTERNAL_SIZE_T size_t
304 #endif
305 
306 /*
307   REALLOC_ZERO_BYTES_FREES should be set if a call to
308   realloc with zero bytes should be the same as a call to free.
309   Some people think it should. Otherwise, since this malloc
310   returns a unique pointer for malloc(0), so does realloc(p, 0).
311 */
312 
313 
314 /*   #define REALLOC_ZERO_BYTES_FREES */
315 
316 
317 /*
318   WIN32 causes an emulation of sbrk to be compiled in
319   mmap-based options are not currently supported in WIN32.
320 */
321 
322 /* #define WIN32 */
323 #ifdef WIN32
324 #define MORECORE wsbrk
325 #define HAVE_MMAP 0
326 
327 #define LACKS_UNISTD_H
328 #define LACKS_SYS_PARAM_H
329 
330 /*
331   Include 'windows.h' to get the necessary declarations for the
332   Microsoft Visual C++ data structures and routines used in the 'sbrk'
333   emulation.
334 
335   Define WIN32_LEAN_AND_MEAN so that only the essential Microsoft
336   Visual C++ header files are included.
337 */
338 #define WIN32_LEAN_AND_MEAN
339 #include <windows.h>
340 #endif
341 
342 
343 /*
344   HAVE_MEMCPY should be defined if you are not otherwise using
345   ANSI STD C, but still have memcpy and memset in your C library
346   and want to use them in calloc and realloc. Otherwise simple
347   macro versions are defined here.
348 
349   USE_MEMCPY should be defined as 1 if you actually want to
350   have memset and memcpy called. People report that the macro
351   versions are often enough faster than libc versions on many
352   systems that it is better to use them.
353 
354 */
355 
356 #define HAVE_MEMCPY
357 
358 #ifndef USE_MEMCPY
359 #ifdef HAVE_MEMCPY
360 #define USE_MEMCPY 1
361 #else
362 #define USE_MEMCPY 0
363 #endif
364 #endif
365 
366 #if (__STD_C || defined(HAVE_MEMCPY))
367 
368 #if __STD_C
369 void* memset(void*, int, size_t);
370 void* memcpy(void*, const void*, size_t);
371 #else
372 #ifdef WIN32
373 /* On Win32 platforms, 'memset()' and 'memcpy()' are already declared in */
374 /* 'windows.h' */
375 #else
376 Void_t* memset();
377 Void_t* memcpy();
378 #endif
379 #endif
380 #endif
381 
382 #if USE_MEMCPY
383 
384 /* The following macros are only invoked with (2n+1)-multiples of
385    INTERNAL_SIZE_T units, with a positive integer n. This is exploited
386    for fast inline execution when n is small. */
387 
388 #define MALLOC_ZERO(charp, nbytes)                                            \
389 do {                                                                          \
390   INTERNAL_SIZE_T mzsz = (nbytes);                                            \
391   if(mzsz <= 9*sizeof(mzsz)) {                                                \
392     INTERNAL_SIZE_T* mz = (INTERNAL_SIZE_T*) (charp);                         \
393     if(mzsz >= 5*sizeof(mzsz)) {     *mz++ = 0;                               \
394 				     *mz++ = 0;                               \
395       if(mzsz >= 7*sizeof(mzsz)) {   *mz++ = 0;                               \
396 				     *mz++ = 0;                               \
397 	if(mzsz >= 9*sizeof(mzsz)) { *mz++ = 0;                               \
398 				     *mz++ = 0; }}}                           \
399 				     *mz++ = 0;                               \
400 				     *mz++ = 0;                               \
401 				     *mz   = 0;                               \
402   } else memset((charp), 0, mzsz);                                            \
403 } while(0)
404 
405 #define MALLOC_COPY(dest,src,nbytes)                                          \
406 do {                                                                          \
407   INTERNAL_SIZE_T mcsz = (nbytes);                                            \
408   if(mcsz <= 9*sizeof(mcsz)) {                                                \
409     INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) (src);                        \
410     INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) (dest);                       \
411     if(mcsz >= 5*sizeof(mcsz)) {     *mcdst++ = *mcsrc++;                     \
412 				     *mcdst++ = *mcsrc++;                     \
413       if(mcsz >= 7*sizeof(mcsz)) {   *mcdst++ = *mcsrc++;                     \
414 				     *mcdst++ = *mcsrc++;                     \
415 	if(mcsz >= 9*sizeof(mcsz)) { *mcdst++ = *mcsrc++;                     \
416 				     *mcdst++ = *mcsrc++; }}}                 \
417 				     *mcdst++ = *mcsrc++;                     \
418 				     *mcdst++ = *mcsrc++;                     \
419 				     *mcdst   = *mcsrc  ;                     \
420   } else memcpy(dest, src, mcsz);                                             \
421 } while(0)
422 
423 #else /* !USE_MEMCPY */
424 
425 /* Use Duff's device for good zeroing/copying performance. */
426 
427 #define MALLOC_ZERO(charp, nbytes)                                            \
428 do {                                                                          \
429   INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp);                           \
430   long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn;                         \
431   if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
432   switch (mctmp) {                                                            \
433     case 0: for(;;) { *mzp++ = 0;                                             \
434     case 7:           *mzp++ = 0;                                             \
435     case 6:           *mzp++ = 0;                                             \
436     case 5:           *mzp++ = 0;                                             \
437     case 4:           *mzp++ = 0;                                             \
438     case 3:           *mzp++ = 0;                                             \
439     case 2:           *mzp++ = 0;                                             \
440     case 1:           *mzp++ = 0; if(mcn <= 0) break; mcn--; }                \
441   }                                                                           \
442 } while(0)
443 
444 #define MALLOC_COPY(dest,src,nbytes)                                          \
445 do {                                                                          \
446   INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src;                            \
447   INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest;                           \
448   long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn;                         \
449   if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
450   switch (mctmp) {                                                            \
451     case 0: for(;;) { *mcdst++ = *mcsrc++;                                    \
452     case 7:           *mcdst++ = *mcsrc++;                                    \
453     case 6:           *mcdst++ = *mcsrc++;                                    \
454     case 5:           *mcdst++ = *mcsrc++;                                    \
455     case 4:           *mcdst++ = *mcsrc++;                                    \
456     case 3:           *mcdst++ = *mcsrc++;                                    \
457     case 2:           *mcdst++ = *mcsrc++;                                    \
458     case 1:           *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; }       \
459   }                                                                           \
460 } while(0)
461 
462 #endif
463 
464 
465 /*
466   Define HAVE_MMAP to optionally make malloc() use mmap() to
467   allocate very large blocks.  These will be returned to the
468   operating system immediately after a free().
469 */
470 
471 #ifndef HAVE_MMAP
472 #define HAVE_MMAP 1
473 #endif
474 
475 /*
476   Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
477   large blocks.  This is currently only possible on Linux with
478   kernel versions newer than 1.3.77.
479 */
480 
481 #ifndef HAVE_MREMAP
482 #ifdef INTERNAL_LINUX_C_LIB
483 #define HAVE_MREMAP 1
484 #else
485 #define HAVE_MREMAP 0
486 #endif
487 #endif
488 
489 #if HAVE_MMAP
490 
491 #include <unistd.h>
492 #include <fcntl.h>
493 #include <sys/mman.h>
494 
495 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
496 #define MAP_ANONYMOUS MAP_ANON
497 #endif
498 
499 #endif /* HAVE_MMAP */
500 
501 /*
502   Access to system page size. To the extent possible, this malloc
503   manages memory from the system in page-size units.
504 
505   The following mechanics for getpagesize were adapted from
506   bsd/gnu getpagesize.h
507 */
508 
509 #ifndef LACKS_UNISTD_H
510 #  include <unistd.h>
511 #endif
512 
513 #ifndef malloc_getpagesize
514 #  ifdef _SC_PAGESIZE         /* some SVR4 systems omit an underscore */
515 #    ifndef _SC_PAGE_SIZE
516 #      define _SC_PAGE_SIZE _SC_PAGESIZE
517 #    endif
518 #  endif
519 #  ifdef _SC_PAGE_SIZE
520 #    define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
521 #  else
522 #    if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
523        extern size_t getpagesize();
524 #      define malloc_getpagesize getpagesize()
525 #    else
526 #      ifdef WIN32
527 #        define malloc_getpagesize (4096) /* TBD: Use 'GetSystemInfo' instead */
528 #      else
529 #        ifndef LACKS_SYS_PARAM_H
530 #          include <sys/param.h>
531 #        endif
532 #        ifdef EXEC_PAGESIZE
533 #          define malloc_getpagesize EXEC_PAGESIZE
534 #        else
535 #          ifdef NBPG
536 #            ifndef CLSIZE
537 #              define malloc_getpagesize NBPG
538 #            else
539 #              define malloc_getpagesize (NBPG * CLSIZE)
540 #            endif
541 #          else
542 #            ifdef NBPC
543 #              define malloc_getpagesize NBPC
544 #            else
545 #              ifdef PAGESIZE
546 #                define malloc_getpagesize PAGESIZE
547 #              else
548 #                define malloc_getpagesize (4096) /* just guess */
549 #              endif
550 #            endif
551 #          endif
552 #        endif
553 #      endif
554 #    endif
555 #  endif
556 #endif
557 
558 
559 /*
560 
561   This version of malloc supports the standard SVID/XPG mallinfo
562   routine that returns a struct containing the same kind of
563   information you can get from malloc_stats. It should work on
564   any SVID/XPG compliant system that has a /usr/include/malloc.h
565   defining struct mallinfo. (If you'd like to install such a thing
566   yourself, cut out the preliminary declarations as described above
567   and below and save them in a malloc.h file. But there's no
568   compelling reason to bother to do this.)
569 
570   The main declaration needed is the mallinfo struct that is returned
571   (by-copy) by mallinfo().  The SVID/XPG malloinfo struct contains a
572   bunch of fields, most of which are not even meaningful in this
573   version of malloc. Some of these fields are are instead filled by
574   mallinfo() with other numbers that might possibly be of interest.
575 
576   HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
577   /usr/include/malloc.h file that includes a declaration of struct
578   mallinfo.  If so, it is included; else an SVID2/XPG2 compliant
579   version is declared below.  These must be precisely the same for
580   mallinfo() to work.
581 
582 */
583 
584 /* #define HAVE_USR_INCLUDE_MALLOC_H */
585 
586 #if HAVE_USR_INCLUDE_MALLOC_H
587 #include "/usr/include/malloc.h"
588 #else
589 
590 /* SVID2/XPG mallinfo structure */
591 
592 struct mallinfo {
593   int arena;    /* total space allocated from system */
594   int ordblks;  /* number of non-inuse chunks */
595   int smblks;   /* unused -- always zero */
596   int hblks;    /* number of mmapped regions */
597   int hblkhd;   /* total space in mmapped regions */
598   int usmblks;  /* unused -- always zero */
599   int fsmblks;  /* unused -- always zero */
600   int uordblks; /* total allocated space */
601   int fordblks; /* total non-inuse space */
602   int keepcost; /* top-most, releasable (via malloc_trim) space */
603 };
604 
605 /* SVID2/XPG mallopt options */
606 
607 #define M_MXFAST  1    /* UNUSED in this malloc */
608 #define M_NLBLKS  2    /* UNUSED in this malloc */
609 #define M_GRAIN   3    /* UNUSED in this malloc */
610 #define M_KEEP    4    /* UNUSED in this malloc */
611 
612 #endif
613 
614 /* mallopt options that actually do something */
615 
616 #define M_TRIM_THRESHOLD    -1
617 #define M_TOP_PAD           -2
618 #define M_MMAP_THRESHOLD    -3
619 #define M_MMAP_MAX          -4
620 
621 
622 #ifndef DEFAULT_TRIM_THRESHOLD
623 #define DEFAULT_TRIM_THRESHOLD (128 * 1024)
624 #endif
625 
626 /*
627     M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
628       to keep before releasing via malloc_trim in free().
629 
630       Automatic trimming is mainly useful in long-lived programs.
631       Because trimming via sbrk can be slow on some systems, and can
632       sometimes be wasteful (in cases where programs immediately
633       afterward allocate more large chunks) the value should be high
634       enough so that your overall system performance would improve by
635       releasing.
636 
637       The trim threshold and the mmap control parameters (see below)
638       can be traded off with one another. Trimming and mmapping are
639       two different ways of releasing unused memory back to the
640       system. Between these two, it is often possible to keep
641       system-level demands of a long-lived program down to a bare
642       minimum. For example, in one test suite of sessions measuring
643       the XF86 X server on Linux, using a trim threshold of 128K and a
644       mmap threshold of 192K led to near-minimal long term resource
645       consumption.
646 
647       If you are using this malloc in a long-lived program, it should
648       pay to experiment with these values.  As a rough guide, you
649       might set to a value close to the average size of a process
650       (program) running on your system.  Releasing this much memory
651       would allow such a process to run in memory.  Generally, it's
652       worth it to tune for trimming rather tham memory mapping when a
653       program undergoes phases where several large chunks are
654       allocated and released in ways that can reuse each other's
655       storage, perhaps mixed with phases where there are no such
656       chunks at all.  And in well-behaved long-lived programs,
657       controlling release of large blocks via trimming versus mapping
658       is usually faster.
659 
660       However, in most programs, these parameters serve mainly as
661       protection against the system-level effects of carrying around
662       massive amounts of unneeded memory. Since frequent calls to
663       sbrk, mmap, and munmap otherwise degrade performance, the default
664       parameters are set to relatively high values that serve only as
665       safeguards.
666 
667       The default trim value is high enough to cause trimming only in
668       fairly extreme (by current memory consumption standards) cases.
669       It must be greater than page size to have any useful effect.  To
670       disable trimming completely, you can set to (unsigned long)(-1);
671 
672 
673 */
674 
675 
676 #ifndef DEFAULT_TOP_PAD
677 #define DEFAULT_TOP_PAD        (0)
678 #endif
679 
680 /*
681     M_TOP_PAD is the amount of extra `padding' space to allocate or
682       retain whenever sbrk is called. It is used in two ways internally:
683 
684       * When sbrk is called to extend the top of the arena to satisfy
685 	a new malloc request, this much padding is added to the sbrk
686 	request.
687 
688       * When malloc_trim is called automatically from free(),
689 	it is used as the `pad' argument.
690 
691       In both cases, the actual amount of padding is rounded
692       so that the end of the arena is always a system page boundary.
693 
694       The main reason for using padding is to avoid calling sbrk so
695       often. Having even a small pad greatly reduces the likelihood
696       that nearly every malloc request during program start-up (or
697       after trimming) will invoke sbrk, which needlessly wastes
698       time.
699 
700       Automatic rounding-up to page-size units is normally sufficient
701       to avoid measurable overhead, so the default is 0.  However, in
702       systems where sbrk is relatively slow, it can pay to increase
703       this value, at the expense of carrying around more memory than
704       the program needs.
705 
706 */
707 
708 
709 #ifndef DEFAULT_MMAP_THRESHOLD
710 #define DEFAULT_MMAP_THRESHOLD (128 * 1024)
711 #endif
712 
713 /*
714 
715     M_MMAP_THRESHOLD is the request size threshold for using mmap()
716       to service a request. Requests of at least this size that cannot
717       be allocated using already-existing space will be serviced via mmap.
718       (If enough normal freed space already exists it is used instead.)
719 
720       Using mmap segregates relatively large chunks of memory so that
721       they can be individually obtained and released from the host
722       system. A request serviced through mmap is never reused by any
723       other request (at least not directly; the system may just so
724       happen to remap successive requests to the same locations).
725 
726       Segregating space in this way has the benefit that mmapped space
727       can ALWAYS be individually released back to the system, which
728       helps keep the system level memory demands of a long-lived
729       program low. Mapped memory can never become `locked' between
730       other chunks, as can happen with normally allocated chunks, which
731       menas that even trimming via malloc_trim would not release them.
732 
733       However, it has the disadvantages that:
734 
735 	 1. The space cannot be reclaimed, consolidated, and then
736 	    used to service later requests, as happens with normal chunks.
737 	 2. It can lead to more wastage because of mmap page alignment
738 	    requirements
739 	 3. It causes malloc performance to be more dependent on host
740 	    system memory management support routines which may vary in
741 	    implementation quality and may impose arbitrary
742 	    limitations. Generally, servicing a request via normal
743 	    malloc steps is faster than going through a system's mmap.
744 
745       All together, these considerations should lead you to use mmap
746       only for relatively large requests.
747 
748 
749 */
750 
751 
752 #ifndef DEFAULT_MMAP_MAX
753 #if HAVE_MMAP
754 #define DEFAULT_MMAP_MAX       (64)
755 #else
756 #define DEFAULT_MMAP_MAX       (0)
757 #endif
758 #endif
759 
760 /*
761     M_MMAP_MAX is the maximum number of requests to simultaneously
762       service using mmap. This parameter exists because:
763 
764 	 1. Some systems have a limited number of internal tables for
765 	    use by mmap.
766 	 2. In most systems, overreliance on mmap can degrade overall
767 	    performance.
768 	 3. If a program allocates many large regions, it is probably
769 	    better off using normal sbrk-based allocation routines that
770 	    can reclaim and reallocate normal heap memory. Using a
771 	    small value allows transition into this mode after the
772 	    first few allocations.
773 
774       Setting to 0 disables all use of mmap.  If HAVE_MMAP is not set,
775       the default value is 0, and attempts to set it to non-zero values
776       in mallopt will fail.
777 */
778 
779 
780 /*
781     USE_DL_PREFIX will prefix all public routines with the string 'dl'.
782       Useful to quickly avoid procedure declaration conflicts and linker
783       symbol conflicts with existing memory allocation routines.
784 
785 */
786 
787 /* #define USE_DL_PREFIX */
788 
789 
790 /*
791 
792   Special defines for linux libc
793 
794   Except when compiled using these special defines for Linux libc
795   using weak aliases, this malloc is NOT designed to work in
796   multithreaded applications.  No semaphores or other concurrency
797   control are provided to ensure that multiple malloc or free calls
798   don't run at the same time, which could be disasterous. A single
799   semaphore could be used across malloc, realloc, and free (which is
800   essentially the effect of the linux weak alias approach). It would
801   be hard to obtain finer granularity.
802 
803 */
804 
805 
806 #ifdef INTERNAL_LINUX_C_LIB
807 
808 #if __STD_C
809 
810 Void_t * __default_morecore_init (ptrdiff_t);
811 Void_t *(*__morecore)(ptrdiff_t) = __default_morecore_init;
812 
813 #else
814 
815 Void_t * __default_morecore_init ();
816 Void_t *(*__morecore)() = __default_morecore_init;
817 
818 #endif
819 
820 #define MORECORE (*__morecore)
821 #define MORECORE_FAILURE 0
822 #define MORECORE_CLEARS 1
823 
824 #else /* INTERNAL_LINUX_C_LIB */
825 
826 #if __STD_C
827 extern Void_t*     sbrk(ptrdiff_t);
828 #else
829 extern Void_t*     sbrk();
830 #endif
831 
832 #ifndef MORECORE
833 #define MORECORE sbrk
834 #endif
835 
836 #ifndef MORECORE_FAILURE
837 #define MORECORE_FAILURE -1
838 #endif
839 
840 #ifndef MORECORE_CLEARS
841 #define MORECORE_CLEARS 1
842 #endif
843 
844 #endif /* INTERNAL_LINUX_C_LIB */
845 
846 #if defined(INTERNAL_LINUX_C_LIB) && defined(__ELF__)
847 
848 #define cALLOc		__libc_calloc
849 #define fREe		__libc_free
850 #define mALLOc		__libc_malloc
851 #define mEMALIGn	__libc_memalign
852 #define rEALLOc		__libc_realloc
853 #define vALLOc		__libc_valloc
854 #define pvALLOc		__libc_pvalloc
855 #define mALLINFo	__libc_mallinfo
856 #define mALLOPt		__libc_mallopt
857 
858 #pragma weak calloc = __libc_calloc
859 #pragma weak free = __libc_free
860 #pragma weak cfree = __libc_free
861 #pragma weak malloc = __libc_malloc
862 #pragma weak memalign = __libc_memalign
863 #pragma weak realloc = __libc_realloc
864 #pragma weak valloc = __libc_valloc
865 #pragma weak pvalloc = __libc_pvalloc
866 #pragma weak mallinfo = __libc_mallinfo
867 #pragma weak mallopt = __libc_mallopt
868 
869 #else
870 
871 #ifdef USE_DL_PREFIX
872 #define cALLOc		dlcalloc
873 #define fREe		dlfree
874 #define mALLOc		dlmalloc
875 #define mEMALIGn	dlmemalign
876 #define rEALLOc		dlrealloc
877 #define vALLOc		dlvalloc
878 #define pvALLOc		dlpvalloc
879 #define mALLINFo	dlmallinfo
880 #define mALLOPt		dlmallopt
881 #else /* USE_DL_PREFIX */
882 #define cALLOc		calloc
883 #define fREe		free
884 #define mALLOc		malloc
885 #define mEMALIGn	memalign
886 #define rEALLOc		realloc
887 #define vALLOc		valloc
888 #define pvALLOc		pvalloc
889 #define mALLINFo	mallinfo
890 #define mALLOPt		mallopt
891 #endif /* USE_DL_PREFIX */
892 
893 #endif
894 
895 /* Public routines */
896 
897 #if __STD_C
898 
899 Void_t* mALLOc(size_t);
900 void    fREe(Void_t*);
901 Void_t* rEALLOc(Void_t*, size_t);
902 Void_t* mEMALIGn(size_t, size_t);
903 Void_t* vALLOc(size_t);
904 Void_t* pvALLOc(size_t);
905 Void_t* cALLOc(size_t, size_t);
906 void    cfree(Void_t*);
907 int     malloc_trim(size_t);
908 size_t  malloc_usable_size(Void_t*);
909 void    malloc_stats();
910 int     mALLOPt(int, int);
911 struct mallinfo mALLINFo(void);
912 #else
913 Void_t* mALLOc();
914 void    fREe();
915 Void_t* rEALLOc();
916 Void_t* mEMALIGn();
917 Void_t* vALLOc();
918 Void_t* pvALLOc();
919 Void_t* cALLOc();
920 void    cfree();
921 int     malloc_trim();
922 size_t  malloc_usable_size();
923 void    malloc_stats();
924 int     mALLOPt();
925 struct mallinfo mALLINFo();
926 #endif
927 
928 
929 #ifdef __cplusplus
930 };  /* end of extern "C" */
931 #endif
932 
933 /* ---------- To make a malloc.h, end cutting here ------------ */
934 #endif	/* 0 */			/* Moved to malloc.h */
935 
936 #include <malloc.h>
937 #include <asm/io.h>
938 
939 #ifdef DEBUG
940 #if __STD_C
941 static void malloc_update_mallinfo (void);
942 void malloc_stats (void);
943 #else
944 static void malloc_update_mallinfo ();
945 void malloc_stats();
946 #endif
947 #endif	/* DEBUG */
948 
949 DECLARE_GLOBAL_DATA_PTR;
950 
951 /*
952   Emulation of sbrk for WIN32
953   All code within the ifdef WIN32 is untested by me.
954 
955   Thanks to Martin Fong and others for supplying this.
956 */
957 
958 
959 #ifdef WIN32
960 
961 #define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \
962 ~(malloc_getpagesize-1))
963 #define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1))
964 
965 /* resrve 64MB to insure large contiguous space */
966 #define RESERVED_SIZE (1024*1024*64)
967 #define NEXT_SIZE (2048*1024)
968 #define TOP_MEMORY ((unsigned long)2*1024*1024*1024)
969 
970 struct GmListElement;
971 typedef struct GmListElement GmListElement;
972 
973 struct GmListElement
974 {
975 	GmListElement* next;
976 	void* base;
977 };
978 
979 static GmListElement* head = 0;
980 static unsigned int gNextAddress = 0;
981 static unsigned int gAddressBase = 0;
982 static unsigned int gAllocatedSize = 0;
983 
984 static
985 GmListElement* makeGmListElement (void* bas)
986 {
987 	GmListElement* this;
988 	this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement));
989 	assert (this);
990 	if (this)
991 	{
992 		this->base = bas;
993 		this->next = head;
994 		head = this;
995 	}
996 	return this;
997 }
998 
999 void gcleanup ()
1000 {
1001 	BOOL rval;
1002 	assert ( (head == NULL) || (head->base == (void*)gAddressBase));
1003 	if (gAddressBase && (gNextAddress - gAddressBase))
1004 	{
1005 		rval = VirtualFree ((void*)gAddressBase,
1006 							gNextAddress - gAddressBase,
1007 							MEM_DECOMMIT);
1008 	assert (rval);
1009 	}
1010 	while (head)
1011 	{
1012 		GmListElement* next = head->next;
1013 		rval = VirtualFree (head->base, 0, MEM_RELEASE);
1014 		assert (rval);
1015 		LocalFree (head);
1016 		head = next;
1017 	}
1018 }
1019 
1020 static
1021 void* findRegion (void* start_address, unsigned long size)
1022 {
1023 	MEMORY_BASIC_INFORMATION info;
1024 	if (size >= TOP_MEMORY) return NULL;
1025 
1026 	while ((unsigned long)start_address + size < TOP_MEMORY)
1027 	{
1028 		VirtualQuery (start_address, &info, sizeof (info));
1029 		if ((info.State == MEM_FREE) && (info.RegionSize >= size))
1030 			return start_address;
1031 		else
1032 		{
1033 			/* Requested region is not available so see if the */
1034 			/* next region is available.  Set 'start_address' */
1035 			/* to the next region and call 'VirtualQuery()' */
1036 			/* again. */
1037 
1038 			start_address = (char*)info.BaseAddress + info.RegionSize;
1039 
1040 			/* Make sure we start looking for the next region */
1041 			/* on the *next* 64K boundary.  Otherwise, even if */
1042 			/* the new region is free according to */
1043 			/* 'VirtualQuery()', the subsequent call to */
1044 			/* 'VirtualAlloc()' (which follows the call to */
1045 			/* this routine in 'wsbrk()') will round *down* */
1046 			/* the requested address to a 64K boundary which */
1047 			/* we already know is an address in the */
1048 			/* unavailable region.  Thus, the subsequent call */
1049 			/* to 'VirtualAlloc()' will fail and bring us back */
1050 			/* here, causing us to go into an infinite loop. */
1051 
1052 			start_address =
1053 				(void *) AlignPage64K((unsigned long) start_address);
1054 		}
1055 	}
1056 	return NULL;
1057 
1058 }
1059 
1060 
1061 void* wsbrk (long size)
1062 {
1063 	void* tmp;
1064 	if (size > 0)
1065 	{
1066 		if (gAddressBase == 0)
1067 		{
1068 			gAllocatedSize = max (RESERVED_SIZE, AlignPage (size));
1069 			gNextAddress = gAddressBase =
1070 				(unsigned int)VirtualAlloc (NULL, gAllocatedSize,
1071 											MEM_RESERVE, PAGE_NOACCESS);
1072 		} else if (AlignPage (gNextAddress + size) > (gAddressBase +
1073 gAllocatedSize))
1074 		{
1075 			long new_size = max (NEXT_SIZE, AlignPage (size));
1076 			void* new_address = (void*)(gAddressBase+gAllocatedSize);
1077 			do
1078 			{
1079 				new_address = findRegion (new_address, new_size);
1080 
1081 				if (new_address == 0)
1082 					return (void*)-1;
1083 
1084 				gAddressBase = gNextAddress =
1085 					(unsigned int)VirtualAlloc (new_address, new_size,
1086 												MEM_RESERVE, PAGE_NOACCESS);
1087 				/* repeat in case of race condition */
1088 				/* The region that we found has been snagged */
1089 				/* by another thread */
1090 			}
1091 			while (gAddressBase == 0);
1092 
1093 			assert (new_address == (void*)gAddressBase);
1094 
1095 			gAllocatedSize = new_size;
1096 
1097 			if (!makeGmListElement ((void*)gAddressBase))
1098 				return (void*)-1;
1099 		}
1100 		if ((size + gNextAddress) > AlignPage (gNextAddress))
1101 		{
1102 			void* res;
1103 			res = VirtualAlloc ((void*)AlignPage (gNextAddress),
1104 								(size + gNextAddress -
1105 								 AlignPage (gNextAddress)),
1106 								MEM_COMMIT, PAGE_READWRITE);
1107 			if (res == 0)
1108 				return (void*)-1;
1109 		}
1110 		tmp = (void*)gNextAddress;
1111 		gNextAddress = (unsigned int)tmp + size;
1112 		return tmp;
1113 	}
1114 	else if (size < 0)
1115 	{
1116 		unsigned int alignedGoal = AlignPage (gNextAddress + size);
1117 		/* Trim by releasing the virtual memory */
1118 		if (alignedGoal >= gAddressBase)
1119 		{
1120 			VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal,
1121 						 MEM_DECOMMIT);
1122 			gNextAddress = gNextAddress + size;
1123 			return (void*)gNextAddress;
1124 		}
1125 		else
1126 		{
1127 			VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase,
1128 						 MEM_DECOMMIT);
1129 			gNextAddress = gAddressBase;
1130 			return (void*)-1;
1131 		}
1132 	}
1133 	else
1134 	{
1135 		return (void*)gNextAddress;
1136 	}
1137 }
1138 
1139 #endif
1140 
1141 
1142 
1143 /*
1144   Type declarations
1145 */
1146 
1147 
1148 struct malloc_chunk
1149 {
1150   INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
1151   INTERNAL_SIZE_T size;      /* Size in bytes, including overhead. */
1152   struct malloc_chunk* fd;   /* double links -- used only if free. */
1153   struct malloc_chunk* bk;
1154 } __attribute__((__may_alias__)) ;
1155 
1156 typedef struct malloc_chunk* mchunkptr;
1157 
1158 /*
1159 
1160    malloc_chunk details:
1161 
1162     (The following includes lightly edited explanations by Colin Plumb.)
1163 
1164     Chunks of memory are maintained using a `boundary tag' method as
1165     described in e.g., Knuth or Standish.  (See the paper by Paul
1166     Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
1167     survey of such techniques.)  Sizes of free chunks are stored both
1168     in the front of each chunk and at the end.  This makes
1169     consolidating fragmented chunks into bigger chunks very fast.  The
1170     size fields also hold bits representing whether chunks are free or
1171     in use.
1172 
1173     An allocated chunk looks like this:
1174 
1175 
1176     chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1177 	    |             Size of previous chunk, if allocated            | |
1178 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1179 	    |             Size of chunk, in bytes                         |P|
1180       mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1181 	    |             User data starts here...                          .
1182 	    .                                                               .
1183 	    .             (malloc_usable_space() bytes)                     .
1184 	    .                                                               |
1185 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1186 	    |             Size of chunk                                     |
1187 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1188 
1189 
1190     Where "chunk" is the front of the chunk for the purpose of most of
1191     the malloc code, but "mem" is the pointer that is returned to the
1192     user.  "Nextchunk" is the beginning of the next contiguous chunk.
1193 
1194     Chunks always begin on even word boundries, so the mem portion
1195     (which is returned to the user) is also on an even word boundary, and
1196     thus double-word aligned.
1197 
1198     Free chunks are stored in circular doubly-linked lists, and look like this:
1199 
1200     chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1201 	    |             Size of previous chunk                            |
1202 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1203     `head:' |             Size of chunk, in bytes                         |P|
1204       mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1205 	    |             Forward pointer to next chunk in list             |
1206 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1207 	    |             Back pointer to previous chunk in list            |
1208 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1209 	    |             Unused space (may be 0 bytes long)                .
1210 	    .                                                               .
1211 	    .                                                               |
1212 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1213     `foot:' |             Size of chunk, in bytes                           |
1214 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1215 
1216     The P (PREV_INUSE) bit, stored in the unused low-order bit of the
1217     chunk size (which is always a multiple of two words), is an in-use
1218     bit for the *previous* chunk.  If that bit is *clear*, then the
1219     word before the current chunk size contains the previous chunk
1220     size, and can be used to find the front of the previous chunk.
1221     (The very first chunk allocated always has this bit set,
1222     preventing access to non-existent (or non-owned) memory.)
1223 
1224     Note that the `foot' of the current chunk is actually represented
1225     as the prev_size of the NEXT chunk. (This makes it easier to
1226     deal with alignments etc).
1227 
1228     The two exceptions to all this are
1229 
1230      1. The special chunk `top', which doesn't bother using the
1231 	trailing size field since there is no
1232 	next contiguous chunk that would have to index off it. (After
1233 	initialization, `top' is forced to always exist.  If it would
1234 	become less than MINSIZE bytes long, it is replenished via
1235 	malloc_extend_top.)
1236 
1237      2. Chunks allocated via mmap, which have the second-lowest-order
1238 	bit (IS_MMAPPED) set in their size fields.  Because they are
1239 	never merged or traversed from any other chunk, they have no
1240 	foot size or inuse information.
1241 
1242     Available chunks are kept in any of several places (all declared below):
1243 
1244     * `av': An array of chunks serving as bin headers for consolidated
1245        chunks. Each bin is doubly linked.  The bins are approximately
1246        proportionally (log) spaced.  There are a lot of these bins
1247        (128). This may look excessive, but works very well in
1248        practice.  All procedures maintain the invariant that no
1249        consolidated chunk physically borders another one. Chunks in
1250        bins are kept in size order, with ties going to the
1251        approximately least recently used chunk.
1252 
1253        The chunks in each bin are maintained in decreasing sorted order by
1254        size.  This is irrelevant for the small bins, which all contain
1255        the same-sized chunks, but facilitates best-fit allocation for
1256        larger chunks. (These lists are just sequential. Keeping them in
1257        order almost never requires enough traversal to warrant using
1258        fancier ordered data structures.)  Chunks of the same size are
1259        linked with the most recently freed at the front, and allocations
1260        are taken from the back.  This results in LRU or FIFO allocation
1261        order, which tends to give each chunk an equal opportunity to be
1262        consolidated with adjacent freed chunks, resulting in larger free
1263        chunks and less fragmentation.
1264 
1265     * `top': The top-most available chunk (i.e., the one bordering the
1266        end of available memory) is treated specially. It is never
1267        included in any bin, is used only if no other chunk is
1268        available, and is released back to the system if it is very
1269        large (see M_TRIM_THRESHOLD).
1270 
1271     * `last_remainder': A bin holding only the remainder of the
1272        most recently split (non-top) chunk. This bin is checked
1273        before other non-fitting chunks, so as to provide better
1274        locality for runs of sequentially allocated chunks.
1275 
1276     *  Implicitly, through the host system's memory mapping tables.
1277        If supported, requests greater than a threshold are usually
1278        serviced via calls to mmap, and then later released via munmap.
1279 
1280 */
1281 
1282 /*  sizes, alignments */
1283 
1284 #define SIZE_SZ                (sizeof(INTERNAL_SIZE_T))
1285 #define MALLOC_ALIGNMENT       (SIZE_SZ + SIZE_SZ)
1286 #define MALLOC_ALIGN_MASK      (MALLOC_ALIGNMENT - 1)
1287 #define MINSIZE                (sizeof(struct malloc_chunk))
1288 
1289 /* conversion from malloc headers to user pointers, and back */
1290 
1291 #define chunk2mem(p)   ((Void_t*)((char*)(p) + 2*SIZE_SZ))
1292 #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
1293 
1294 /* pad request bytes into a usable size */
1295 
1296 #define request2size(req) \
1297  (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \
1298   (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \
1299    (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK)))
1300 
1301 /* Check if m has acceptable alignment */
1302 
1303 #define aligned_OK(m)    (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
1304 
1305 
1306 
1307 
1308 /*
1309   Physical chunk operations
1310 */
1311 
1312 
1313 /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
1314 
1315 #define PREV_INUSE 0x1
1316 
1317 /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
1318 
1319 #define IS_MMAPPED 0x2
1320 
1321 /* Bits to mask off when extracting size */
1322 
1323 #define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
1324 
1325 
1326 /* Ptr to next physical malloc_chunk. */
1327 
1328 #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
1329 
1330 /* Ptr to previous physical malloc_chunk */
1331 
1332 #define prev_chunk(p)\
1333    ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
1334 
1335 
1336 /* Treat space at ptr + offset as a chunk */
1337 
1338 #define chunk_at_offset(p, s)  ((mchunkptr)(((char*)(p)) + (s)))
1339 
1340 
1341 
1342 
1343 /*
1344   Dealing with use bits
1345 */
1346 
1347 /* extract p's inuse bit */
1348 
1349 #define inuse(p)\
1350 ((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
1351 
1352 /* extract inuse bit of previous chunk */
1353 
1354 #define prev_inuse(p)  ((p)->size & PREV_INUSE)
1355 
1356 /* check for mmap()'ed chunk */
1357 
1358 #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
1359 
1360 /* set/clear chunk as in use without otherwise disturbing */
1361 
1362 #define set_inuse(p)\
1363 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
1364 
1365 #define clear_inuse(p)\
1366 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
1367 
1368 /* check/set/clear inuse bits in known places */
1369 
1370 #define inuse_bit_at_offset(p, s)\
1371  (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
1372 
1373 #define set_inuse_bit_at_offset(p, s)\
1374  (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
1375 
1376 #define clear_inuse_bit_at_offset(p, s)\
1377  (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
1378 
1379 
1380 
1381 
1382 /*
1383   Dealing with size fields
1384 */
1385 
1386 /* Get size, ignoring use bits */
1387 
1388 #define chunksize(p)          ((p)->size & ~(SIZE_BITS))
1389 
1390 /* Set size at head, without disturbing its use bit */
1391 
1392 #define set_head_size(p, s)   ((p)->size = (((p)->size & PREV_INUSE) | (s)))
1393 
1394 /* Set size/use ignoring previous bits in header */
1395 
1396 #define set_head(p, s)        ((p)->size = (s))
1397 
1398 /* Set size at footer (only when chunk is not in use) */
1399 
1400 #define set_foot(p, s)   (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
1401 
1402 
1403 
1404 
1405 
1406 /*
1407    Bins
1408 
1409     The bins, `av_' are an array of pairs of pointers serving as the
1410     heads of (initially empty) doubly-linked lists of chunks, laid out
1411     in a way so that each pair can be treated as if it were in a
1412     malloc_chunk. (This way, the fd/bk offsets for linking bin heads
1413     and chunks are the same).
1414 
1415     Bins for sizes < 512 bytes contain chunks of all the same size, spaced
1416     8 bytes apart. Larger bins are approximately logarithmically
1417     spaced. (See the table below.) The `av_' array is never mentioned
1418     directly in the code, but instead via bin access macros.
1419 
1420     Bin layout:
1421 
1422     64 bins of size       8
1423     32 bins of size      64
1424     16 bins of size     512
1425      8 bins of size    4096
1426      4 bins of size   32768
1427      2 bins of size  262144
1428      1 bin  of size what's left
1429 
1430     There is actually a little bit of slop in the numbers in bin_index
1431     for the sake of speed. This makes no difference elsewhere.
1432 
1433     The special chunks `top' and `last_remainder' get their own bins,
1434     (this is implemented via yet more trickery with the av_ array),
1435     although `top' is never properly linked to its bin since it is
1436     always handled specially.
1437 
1438 */
1439 
1440 #define NAV             128   /* number of bins */
1441 
1442 typedef struct malloc_chunk* mbinptr;
1443 
1444 /* access macros */
1445 
1446 #define bin_at(i)      ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ))
1447 #define next_bin(b)    ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr)))
1448 #define prev_bin(b)    ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr)))
1449 
1450 /*
1451    The first 2 bins are never indexed. The corresponding av_ cells are instead
1452    used for bookkeeping. This is not to save space, but to simplify
1453    indexing, maintain locality, and avoid some initialization tests.
1454 */
1455 
1456 #define top            (av_[2])          /* The topmost chunk */
1457 #define last_remainder (bin_at(1))       /* remainder from last split */
1458 
1459 
1460 /*
1461    Because top initially points to its own bin with initial
1462    zero size, thus forcing extension on the first malloc request,
1463    we avoid having any special code in malloc to check whether
1464    it even exists yet. But we still need to in malloc_extend_top.
1465 */
1466 
1467 #define initial_top    ((mchunkptr)(bin_at(0)))
1468 
1469 /* Helper macro to initialize bins */
1470 
1471 #define IAV(i)  bin_at(i), bin_at(i)
1472 
1473 static mbinptr av_[NAV * 2 + 2] = {
1474  NULL, NULL,
1475  IAV(0),   IAV(1),   IAV(2),   IAV(3),   IAV(4),   IAV(5),   IAV(6),   IAV(7),
1476  IAV(8),   IAV(9),   IAV(10),  IAV(11),  IAV(12),  IAV(13),  IAV(14),  IAV(15),
1477  IAV(16),  IAV(17),  IAV(18),  IAV(19),  IAV(20),  IAV(21),  IAV(22),  IAV(23),
1478  IAV(24),  IAV(25),  IAV(26),  IAV(27),  IAV(28),  IAV(29),  IAV(30),  IAV(31),
1479  IAV(32),  IAV(33),  IAV(34),  IAV(35),  IAV(36),  IAV(37),  IAV(38),  IAV(39),
1480  IAV(40),  IAV(41),  IAV(42),  IAV(43),  IAV(44),  IAV(45),  IAV(46),  IAV(47),
1481  IAV(48),  IAV(49),  IAV(50),  IAV(51),  IAV(52),  IAV(53),  IAV(54),  IAV(55),
1482  IAV(56),  IAV(57),  IAV(58),  IAV(59),  IAV(60),  IAV(61),  IAV(62),  IAV(63),
1483  IAV(64),  IAV(65),  IAV(66),  IAV(67),  IAV(68),  IAV(69),  IAV(70),  IAV(71),
1484  IAV(72),  IAV(73),  IAV(74),  IAV(75),  IAV(76),  IAV(77),  IAV(78),  IAV(79),
1485  IAV(80),  IAV(81),  IAV(82),  IAV(83),  IAV(84),  IAV(85),  IAV(86),  IAV(87),
1486  IAV(88),  IAV(89),  IAV(90),  IAV(91),  IAV(92),  IAV(93),  IAV(94),  IAV(95),
1487  IAV(96),  IAV(97),  IAV(98),  IAV(99),  IAV(100), IAV(101), IAV(102), IAV(103),
1488  IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111),
1489  IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119),
1490  IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127)
1491 };
1492 
1493 #ifdef CONFIG_NEEDS_MANUAL_RELOC
1494 static void malloc_bin_reloc(void)
1495 {
1496 	mbinptr *p = &av_[2];
1497 	size_t i;
1498 
1499 	for (i = 2; i < ARRAY_SIZE(av_); ++i, ++p)
1500 		*p = (mbinptr)((ulong)*p + gd->reloc_off);
1501 }
1502 #else
1503 static inline void malloc_bin_reloc(void) {}
1504 #endif
1505 
1506 ulong mem_malloc_start = 0;
1507 ulong mem_malloc_end = 0;
1508 ulong mem_malloc_brk = 0;
1509 
1510 void *sbrk(ptrdiff_t increment)
1511 {
1512 	ulong old = mem_malloc_brk;
1513 	ulong new = old + increment;
1514 
1515 	/*
1516 	 * if we are giving memory back make sure we clear it out since
1517 	 * we set MORECORE_CLEARS to 1
1518 	 */
1519 	if (increment < 0)
1520 		memset((void *)new, 0, -increment);
1521 
1522 	if ((new < mem_malloc_start) || (new > mem_malloc_end))
1523 		return (void *)MORECORE_FAILURE;
1524 
1525 	mem_malloc_brk = new;
1526 
1527 	return (void *)old;
1528 }
1529 
1530 void mem_malloc_init(ulong start, ulong size)
1531 {
1532 	mem_malloc_start = start;
1533 	mem_malloc_end = start + size;
1534 	mem_malloc_brk = start;
1535 
1536 	memset((void *)mem_malloc_start, 0, size);
1537 
1538 	malloc_bin_reloc();
1539 }
1540 
1541 /* field-extraction macros */
1542 
1543 #define first(b) ((b)->fd)
1544 #define last(b)  ((b)->bk)
1545 
1546 /*
1547   Indexing into bins
1548 */
1549 
1550 #define bin_index(sz)                                                          \
1551 (((((unsigned long)(sz)) >> 9) ==    0) ?       (((unsigned long)(sz)) >>  3): \
1552  ((((unsigned long)(sz)) >> 9) <=    4) ?  56 + (((unsigned long)(sz)) >>  6): \
1553  ((((unsigned long)(sz)) >> 9) <=   20) ?  91 + (((unsigned long)(sz)) >>  9): \
1554  ((((unsigned long)(sz)) >> 9) <=   84) ? 110 + (((unsigned long)(sz)) >> 12): \
1555  ((((unsigned long)(sz)) >> 9) <=  340) ? 119 + (((unsigned long)(sz)) >> 15): \
1556  ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \
1557 					  126)
1558 /*
1559   bins for chunks < 512 are all spaced 8 bytes apart, and hold
1560   identically sized chunks. This is exploited in malloc.
1561 */
1562 
1563 #define MAX_SMALLBIN         63
1564 #define MAX_SMALLBIN_SIZE   512
1565 #define SMALLBIN_WIDTH        8
1566 
1567 #define smallbin_index(sz)  (((unsigned long)(sz)) >> 3)
1568 
1569 /*
1570    Requests are `small' if both the corresponding and the next bin are small
1571 */
1572 
1573 #define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH)
1574 
1575 
1576 
1577 /*
1578     To help compensate for the large number of bins, a one-level index
1579     structure is used for bin-by-bin searching.  `binblocks' is a
1580     one-word bitvector recording whether groups of BINBLOCKWIDTH bins
1581     have any (possibly) non-empty bins, so they can be skipped over
1582     all at once during during traversals. The bits are NOT always
1583     cleared as soon as all bins in a block are empty, but instead only
1584     when all are noticed to be empty during traversal in malloc.
1585 */
1586 
1587 #define BINBLOCKWIDTH     4   /* bins per block */
1588 
1589 #define binblocks_r     ((INTERNAL_SIZE_T)av_[1]) /* bitvector of nonempty blocks */
1590 #define binblocks_w     (av_[1])
1591 
1592 /* bin<->block macros */
1593 
1594 #define idx2binblock(ix)    ((unsigned)1 << (ix / BINBLOCKWIDTH))
1595 #define mark_binblock(ii)   (binblocks_w = (mbinptr)(binblocks_r | idx2binblock(ii)))
1596 #define clear_binblock(ii)  (binblocks_w = (mbinptr)(binblocks_r & ~(idx2binblock(ii))))
1597 
1598 
1599 
1600 
1601 
1602 /*  Other static bookkeeping data */
1603 
1604 /* variables holding tunable values */
1605 
1606 static unsigned long trim_threshold   = DEFAULT_TRIM_THRESHOLD;
1607 static unsigned long top_pad          = DEFAULT_TOP_PAD;
1608 static unsigned int  n_mmaps_max      = DEFAULT_MMAP_MAX;
1609 static unsigned long mmap_threshold   = DEFAULT_MMAP_THRESHOLD;
1610 
1611 /* The first value returned from sbrk */
1612 static char* sbrk_base = (char*)(-1);
1613 
1614 /* The maximum memory obtained from system via sbrk */
1615 static unsigned long max_sbrked_mem = 0;
1616 
1617 /* The maximum via either sbrk or mmap */
1618 static unsigned long max_total_mem = 0;
1619 
1620 /* internal working copy of mallinfo */
1621 static struct mallinfo current_mallinfo = {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
1622 
1623 /* The total memory obtained from system via sbrk */
1624 #define sbrked_mem  (current_mallinfo.arena)
1625 
1626 /* Tracking mmaps */
1627 
1628 #ifdef DEBUG
1629 static unsigned int n_mmaps = 0;
1630 #endif	/* DEBUG */
1631 static unsigned long mmapped_mem = 0;
1632 #if HAVE_MMAP
1633 static unsigned int max_n_mmaps = 0;
1634 static unsigned long max_mmapped_mem = 0;
1635 #endif
1636 
1637 
1638 
1639 /*
1640   Debugging support
1641 */
1642 
1643 #ifdef DEBUG
1644 
1645 
1646 /*
1647   These routines make a number of assertions about the states
1648   of data structures that should be true at all times. If any
1649   are not true, it's very likely that a user program has somehow
1650   trashed memory. (It's also possible that there is a coding error
1651   in malloc. In which case, please report it!)
1652 */
1653 
1654 #if __STD_C
1655 static void do_check_chunk(mchunkptr p)
1656 #else
1657 static void do_check_chunk(p) mchunkptr p;
1658 #endif
1659 {
1660   INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1661 
1662   /* No checkable chunk is mmapped */
1663   assert(!chunk_is_mmapped(p));
1664 
1665   /* Check for legal address ... */
1666   assert((char*)p >= sbrk_base);
1667   if (p != top)
1668     assert((char*)p + sz <= (char*)top);
1669   else
1670     assert((char*)p + sz <= sbrk_base + sbrked_mem);
1671 
1672 }
1673 
1674 
1675 #if __STD_C
1676 static void do_check_free_chunk(mchunkptr p)
1677 #else
1678 static void do_check_free_chunk(p) mchunkptr p;
1679 #endif
1680 {
1681   INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1682   mchunkptr next = chunk_at_offset(p, sz);
1683 
1684   do_check_chunk(p);
1685 
1686   /* Check whether it claims to be free ... */
1687   assert(!inuse(p));
1688 
1689   /* Unless a special marker, must have OK fields */
1690   if ((long)sz >= (long)MINSIZE)
1691   {
1692     assert((sz & MALLOC_ALIGN_MASK) == 0);
1693     assert(aligned_OK(chunk2mem(p)));
1694     /* ... matching footer field */
1695     assert(next->prev_size == sz);
1696     /* ... and is fully consolidated */
1697     assert(prev_inuse(p));
1698     assert (next == top || inuse(next));
1699 
1700     /* ... and has minimally sane links */
1701     assert(p->fd->bk == p);
1702     assert(p->bk->fd == p);
1703   }
1704   else /* markers are always of size SIZE_SZ */
1705     assert(sz == SIZE_SZ);
1706 }
1707 
1708 #if __STD_C
1709 static void do_check_inuse_chunk(mchunkptr p)
1710 #else
1711 static void do_check_inuse_chunk(p) mchunkptr p;
1712 #endif
1713 {
1714   mchunkptr next = next_chunk(p);
1715   do_check_chunk(p);
1716 
1717   /* Check whether it claims to be in use ... */
1718   assert(inuse(p));
1719 
1720   /* ... and is surrounded by OK chunks.
1721     Since more things can be checked with free chunks than inuse ones,
1722     if an inuse chunk borders them and debug is on, it's worth doing them.
1723   */
1724   if (!prev_inuse(p))
1725   {
1726     mchunkptr prv = prev_chunk(p);
1727     assert(next_chunk(prv) == p);
1728     do_check_free_chunk(prv);
1729   }
1730   if (next == top)
1731   {
1732     assert(prev_inuse(next));
1733     assert(chunksize(next) >= MINSIZE);
1734   }
1735   else if (!inuse(next))
1736     do_check_free_chunk(next);
1737 
1738 }
1739 
1740 #if __STD_C
1741 static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
1742 #else
1743 static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
1744 #endif
1745 {
1746   INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1747   long room = sz - s;
1748 
1749   do_check_inuse_chunk(p);
1750 
1751   /* Legal size ... */
1752   assert((long)sz >= (long)MINSIZE);
1753   assert((sz & MALLOC_ALIGN_MASK) == 0);
1754   assert(room >= 0);
1755   assert(room < (long)MINSIZE);
1756 
1757   /* ... and alignment */
1758   assert(aligned_OK(chunk2mem(p)));
1759 
1760 
1761   /* ... and was allocated at front of an available chunk */
1762   assert(prev_inuse(p));
1763 
1764 }
1765 
1766 
1767 #define check_free_chunk(P)  do_check_free_chunk(P)
1768 #define check_inuse_chunk(P) do_check_inuse_chunk(P)
1769 #define check_chunk(P) do_check_chunk(P)
1770 #define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N)
1771 #else
1772 #define check_free_chunk(P)
1773 #define check_inuse_chunk(P)
1774 #define check_chunk(P)
1775 #define check_malloced_chunk(P,N)
1776 #endif
1777 
1778 
1779 
1780 /*
1781   Macro-based internal utilities
1782 */
1783 
1784 
1785 /*
1786   Linking chunks in bin lists.
1787   Call these only with variables, not arbitrary expressions, as arguments.
1788 */
1789 
1790 /*
1791   Place chunk p of size s in its bin, in size order,
1792   putting it ahead of others of same size.
1793 */
1794 
1795 
1796 #define frontlink(P, S, IDX, BK, FD)                                          \
1797 {                                                                             \
1798   if (S < MAX_SMALLBIN_SIZE)                                                  \
1799   {                                                                           \
1800     IDX = smallbin_index(S);                                                  \
1801     mark_binblock(IDX);                                                       \
1802     BK = bin_at(IDX);                                                         \
1803     FD = BK->fd;                                                              \
1804     P->bk = BK;                                                               \
1805     P->fd = FD;                                                               \
1806     FD->bk = BK->fd = P;                                                      \
1807   }                                                                           \
1808   else                                                                        \
1809   {                                                                           \
1810     IDX = bin_index(S);                                                       \
1811     BK = bin_at(IDX);                                                         \
1812     FD = BK->fd;                                                              \
1813     if (FD == BK) mark_binblock(IDX);                                         \
1814     else                                                                      \
1815     {                                                                         \
1816       while (FD != BK && S < chunksize(FD)) FD = FD->fd;                      \
1817       BK = FD->bk;                                                            \
1818     }                                                                         \
1819     P->bk = BK;                                                               \
1820     P->fd = FD;                                                               \
1821     FD->bk = BK->fd = P;                                                      \
1822   }                                                                           \
1823 }
1824 
1825 
1826 /* take a chunk off a list */
1827 
1828 #define unlink(P, BK, FD)                                                     \
1829 {                                                                             \
1830   BK = P->bk;                                                                 \
1831   FD = P->fd;                                                                 \
1832   FD->bk = BK;                                                                \
1833   BK->fd = FD;                                                                \
1834 }                                                                             \
1835 
1836 /* Place p as the last remainder */
1837 
1838 #define link_last_remainder(P)                                                \
1839 {                                                                             \
1840   last_remainder->fd = last_remainder->bk =  P;                               \
1841   P->fd = P->bk = last_remainder;                                             \
1842 }
1843 
1844 /* Clear the last_remainder bin */
1845 
1846 #define clear_last_remainder \
1847   (last_remainder->fd = last_remainder->bk = last_remainder)
1848 
1849 
1850 
1851 
1852 
1853 /* Routines dealing with mmap(). */
1854 
1855 #if HAVE_MMAP
1856 
1857 #if __STD_C
1858 static mchunkptr mmap_chunk(size_t size)
1859 #else
1860 static mchunkptr mmap_chunk(size) size_t size;
1861 #endif
1862 {
1863   size_t page_mask = malloc_getpagesize - 1;
1864   mchunkptr p;
1865 
1866 #ifndef MAP_ANONYMOUS
1867   static int fd = -1;
1868 #endif
1869 
1870   if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */
1871 
1872   /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because
1873    * there is no following chunk whose prev_size field could be used.
1874    */
1875   size = (size + SIZE_SZ + page_mask) & ~page_mask;
1876 
1877 #ifdef MAP_ANONYMOUS
1878   p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE,
1879 		      MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
1880 #else /* !MAP_ANONYMOUS */
1881   if (fd < 0)
1882   {
1883     fd = open("/dev/zero", O_RDWR);
1884     if(fd < 0) return 0;
1885   }
1886   p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
1887 #endif
1888 
1889   if(p == (mchunkptr)-1) return 0;
1890 
1891   n_mmaps++;
1892   if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps;
1893 
1894   /* We demand that eight bytes into a page must be 8-byte aligned. */
1895   assert(aligned_OK(chunk2mem(p)));
1896 
1897   /* The offset to the start of the mmapped region is stored
1898    * in the prev_size field of the chunk; normally it is zero,
1899    * but that can be changed in memalign().
1900    */
1901   p->prev_size = 0;
1902   set_head(p, size|IS_MMAPPED);
1903 
1904   mmapped_mem += size;
1905   if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1906     max_mmapped_mem = mmapped_mem;
1907   if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1908     max_total_mem = mmapped_mem + sbrked_mem;
1909   return p;
1910 }
1911 
1912 #if __STD_C
1913 static void munmap_chunk(mchunkptr p)
1914 #else
1915 static void munmap_chunk(p) mchunkptr p;
1916 #endif
1917 {
1918   INTERNAL_SIZE_T size = chunksize(p);
1919   int ret;
1920 
1921   assert (chunk_is_mmapped(p));
1922   assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1923   assert((n_mmaps > 0));
1924   assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0);
1925 
1926   n_mmaps--;
1927   mmapped_mem -= (size + p->prev_size);
1928 
1929   ret = munmap((char *)p - p->prev_size, size + p->prev_size);
1930 
1931   /* munmap returns non-zero on failure */
1932   assert(ret == 0);
1933 }
1934 
1935 #if HAVE_MREMAP
1936 
1937 #if __STD_C
1938 static mchunkptr mremap_chunk(mchunkptr p, size_t new_size)
1939 #else
1940 static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
1941 #endif
1942 {
1943   size_t page_mask = malloc_getpagesize - 1;
1944   INTERNAL_SIZE_T offset = p->prev_size;
1945   INTERNAL_SIZE_T size = chunksize(p);
1946   char *cp;
1947 
1948   assert (chunk_is_mmapped(p));
1949   assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1950   assert((n_mmaps > 0));
1951   assert(((size + offset) & (malloc_getpagesize-1)) == 0);
1952 
1953   /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
1954   new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
1955 
1956   cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1);
1957 
1958   if (cp == (char *)-1) return 0;
1959 
1960   p = (mchunkptr)(cp + offset);
1961 
1962   assert(aligned_OK(chunk2mem(p)));
1963 
1964   assert((p->prev_size == offset));
1965   set_head(p, (new_size - offset)|IS_MMAPPED);
1966 
1967   mmapped_mem -= size + offset;
1968   mmapped_mem += new_size;
1969   if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1970     max_mmapped_mem = mmapped_mem;
1971   if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1972     max_total_mem = mmapped_mem + sbrked_mem;
1973   return p;
1974 }
1975 
1976 #endif /* HAVE_MREMAP */
1977 
1978 #endif /* HAVE_MMAP */
1979 
1980 
1981 
1982 
1983 /*
1984   Extend the top-most chunk by obtaining memory from system.
1985   Main interface to sbrk (but see also malloc_trim).
1986 */
1987 
1988 #if __STD_C
1989 static void malloc_extend_top(INTERNAL_SIZE_T nb)
1990 #else
1991 static void malloc_extend_top(nb) INTERNAL_SIZE_T nb;
1992 #endif
1993 {
1994   char*     brk;                  /* return value from sbrk */
1995   INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */
1996   INTERNAL_SIZE_T correction;     /* bytes for 2nd sbrk call */
1997   char*     new_brk;              /* return of 2nd sbrk call */
1998   INTERNAL_SIZE_T top_size;       /* new size of top chunk */
1999 
2000   mchunkptr old_top     = top;  /* Record state of old top */
2001   INTERNAL_SIZE_T old_top_size = chunksize(old_top);
2002   char*     old_end      = (char*)(chunk_at_offset(old_top, old_top_size));
2003 
2004   /* Pad request with top_pad plus minimal overhead */
2005 
2006   INTERNAL_SIZE_T    sbrk_size     = nb + top_pad + MINSIZE;
2007   unsigned long pagesz    = malloc_getpagesize;
2008 
2009   /* If not the first time through, round to preserve page boundary */
2010   /* Otherwise, we need to correct to a page size below anyway. */
2011   /* (We also correct below if an intervening foreign sbrk call.) */
2012 
2013   if (sbrk_base != (char*)(-1))
2014     sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1);
2015 
2016   brk = (char*)(MORECORE (sbrk_size));
2017 
2018   /* Fail if sbrk failed or if a foreign sbrk call killed our space */
2019   if (brk == (char*)(MORECORE_FAILURE) ||
2020       (brk < old_end && old_top != initial_top))
2021     return;
2022 
2023   sbrked_mem += sbrk_size;
2024 
2025   if (brk == old_end) /* can just add bytes to current top */
2026   {
2027     top_size = sbrk_size + old_top_size;
2028     set_head(top, top_size | PREV_INUSE);
2029   }
2030   else
2031   {
2032     if (sbrk_base == (char*)(-1))  /* First time through. Record base */
2033       sbrk_base = brk;
2034     else  /* Someone else called sbrk().  Count those bytes as sbrked_mem. */
2035       sbrked_mem += brk - (char*)old_end;
2036 
2037     /* Guarantee alignment of first new chunk made from this space */
2038     front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK;
2039     if (front_misalign > 0)
2040     {
2041       correction = (MALLOC_ALIGNMENT) - front_misalign;
2042       brk += correction;
2043     }
2044     else
2045       correction = 0;
2046 
2047     /* Guarantee the next brk will be at a page boundary */
2048 
2049     correction += ((((unsigned long)(brk + sbrk_size))+(pagesz-1)) &
2050 		   ~(pagesz - 1)) - ((unsigned long)(brk + sbrk_size));
2051 
2052     /* Allocate correction */
2053     new_brk = (char*)(MORECORE (correction));
2054     if (new_brk == (char*)(MORECORE_FAILURE)) return;
2055 
2056     sbrked_mem += correction;
2057 
2058     top = (mchunkptr)brk;
2059     top_size = new_brk - brk + correction;
2060     set_head(top, top_size | PREV_INUSE);
2061 
2062     if (old_top != initial_top)
2063     {
2064 
2065       /* There must have been an intervening foreign sbrk call. */
2066       /* A double fencepost is necessary to prevent consolidation */
2067 
2068       /* If not enough space to do this, then user did something very wrong */
2069       if (old_top_size < MINSIZE)
2070       {
2071 	set_head(top, PREV_INUSE); /* will force null return from malloc */
2072 	return;
2073       }
2074 
2075       /* Also keep size a multiple of MALLOC_ALIGNMENT */
2076       old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
2077       set_head_size(old_top, old_top_size);
2078       chunk_at_offset(old_top, old_top_size          )->size =
2079 	SIZE_SZ|PREV_INUSE;
2080       chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size =
2081 	SIZE_SZ|PREV_INUSE;
2082       /* If possible, release the rest. */
2083       if (old_top_size >= MINSIZE)
2084 	fREe(chunk2mem(old_top));
2085     }
2086   }
2087 
2088   if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem)
2089     max_sbrked_mem = sbrked_mem;
2090   if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
2091     max_total_mem = mmapped_mem + sbrked_mem;
2092 
2093   /* We always land on a page boundary */
2094   assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0);
2095 }
2096 
2097 
2098 
2099 
2100 /* Main public routines */
2101 
2102 
2103 /*
2104   Malloc Algorthim:
2105 
2106     The requested size is first converted into a usable form, `nb'.
2107     This currently means to add 4 bytes overhead plus possibly more to
2108     obtain 8-byte alignment and/or to obtain a size of at least
2109     MINSIZE (currently 16 bytes), the smallest allocatable size.
2110     (All fits are considered `exact' if they are within MINSIZE bytes.)
2111 
2112     From there, the first successful of the following steps is taken:
2113 
2114       1. The bin corresponding to the request size is scanned, and if
2115 	 a chunk of exactly the right size is found, it is taken.
2116 
2117       2. The most recently remaindered chunk is used if it is big
2118 	 enough.  This is a form of (roving) first fit, used only in
2119 	 the absence of exact fits. Runs of consecutive requests use
2120 	 the remainder of the chunk used for the previous such request
2121 	 whenever possible. This limited use of a first-fit style
2122 	 allocation strategy tends to give contiguous chunks
2123 	 coextensive lifetimes, which improves locality and can reduce
2124 	 fragmentation in the long run.
2125 
2126       3. Other bins are scanned in increasing size order, using a
2127 	 chunk big enough to fulfill the request, and splitting off
2128 	 any remainder.  This search is strictly by best-fit; i.e.,
2129 	 the smallest (with ties going to approximately the least
2130 	 recently used) chunk that fits is selected.
2131 
2132       4. If large enough, the chunk bordering the end of memory
2133 	 (`top') is split off. (This use of `top' is in accord with
2134 	 the best-fit search rule.  In effect, `top' is treated as
2135 	 larger (and thus less well fitting) than any other available
2136 	 chunk since it can be extended to be as large as necessary
2137 	 (up to system limitations).
2138 
2139       5. If the request size meets the mmap threshold and the
2140 	 system supports mmap, and there are few enough currently
2141 	 allocated mmapped regions, and a call to mmap succeeds,
2142 	 the request is allocated via direct memory mapping.
2143 
2144       6. Otherwise, the top of memory is extended by
2145 	 obtaining more space from the system (normally using sbrk,
2146 	 but definable to anything else via the MORECORE macro).
2147 	 Memory is gathered from the system (in system page-sized
2148 	 units) in a way that allows chunks obtained across different
2149 	 sbrk calls to be consolidated, but does not require
2150 	 contiguous memory. Thus, it should be safe to intersperse
2151 	 mallocs with other sbrk calls.
2152 
2153 
2154       All allocations are made from the the `lowest' part of any found
2155       chunk. (The implementation invariant is that prev_inuse is
2156       always true of any allocated chunk; i.e., that each allocated
2157       chunk borders either a previously allocated and still in-use chunk,
2158       or the base of its memory arena.)
2159 
2160 */
2161 
2162 #if __STD_C
2163 Void_t* mALLOc(size_t bytes)
2164 #else
2165 Void_t* mALLOc(bytes) size_t bytes;
2166 #endif
2167 {
2168   mchunkptr victim;                  /* inspected/selected chunk */
2169   INTERNAL_SIZE_T victim_size;       /* its size */
2170   int       idx;                     /* index for bin traversal */
2171   mbinptr   bin;                     /* associated bin */
2172   mchunkptr remainder;               /* remainder from a split */
2173   long      remainder_size;          /* its size */
2174   int       remainder_index;         /* its bin index */
2175   unsigned long block;               /* block traverser bit */
2176   int       startidx;                /* first bin of a traversed block */
2177   mchunkptr fwd;                     /* misc temp for linking */
2178   mchunkptr bck;                     /* misc temp for linking */
2179   mbinptr q;                         /* misc temp */
2180 
2181   INTERNAL_SIZE_T nb;
2182 
2183 #ifdef CONFIG_SYS_MALLOC_F_LEN
2184 	if (gd && !(gd->flags & GD_FLG_RELOC)) {
2185 		ulong new_ptr;
2186 		void *ptr;
2187 
2188 		new_ptr = gd->malloc_ptr + bytes;
2189 		if (new_ptr > gd->malloc_limit)
2190 			panic("Out of pre-reloc memory");
2191 		ptr = map_sysmem(gd->malloc_base + gd->malloc_ptr, bytes);
2192 		gd->malloc_ptr = ALIGN(new_ptr, sizeof(new_ptr));
2193 		return ptr;
2194 	}
2195 #endif
2196 
2197   /* check if mem_malloc_init() was run */
2198   if ((mem_malloc_start == 0) && (mem_malloc_end == 0)) {
2199     /* not initialized yet */
2200     return NULL;
2201   }
2202 
2203   if ((long)bytes < 0) return NULL;
2204 
2205   nb = request2size(bytes);  /* padded request size; */
2206 
2207   /* Check for exact match in a bin */
2208 
2209   if (is_small_request(nb))  /* Faster version for small requests */
2210   {
2211     idx = smallbin_index(nb);
2212 
2213     /* No traversal or size check necessary for small bins.  */
2214 
2215     q = bin_at(idx);
2216     victim = last(q);
2217 
2218     /* Also scan the next one, since it would have a remainder < MINSIZE */
2219     if (victim == q)
2220     {
2221       q = next_bin(q);
2222       victim = last(q);
2223     }
2224     if (victim != q)
2225     {
2226       victim_size = chunksize(victim);
2227       unlink(victim, bck, fwd);
2228       set_inuse_bit_at_offset(victim, victim_size);
2229       check_malloced_chunk(victim, nb);
2230       return chunk2mem(victim);
2231     }
2232 
2233     idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */
2234 
2235   }
2236   else
2237   {
2238     idx = bin_index(nb);
2239     bin = bin_at(idx);
2240 
2241     for (victim = last(bin); victim != bin; victim = victim->bk)
2242     {
2243       victim_size = chunksize(victim);
2244       remainder_size = victim_size - nb;
2245 
2246       if (remainder_size >= (long)MINSIZE) /* too big */
2247       {
2248 	--idx; /* adjust to rescan below after checking last remainder */
2249 	break;
2250       }
2251 
2252       else if (remainder_size >= 0) /* exact fit */
2253       {
2254 	unlink(victim, bck, fwd);
2255 	set_inuse_bit_at_offset(victim, victim_size);
2256 	check_malloced_chunk(victim, nb);
2257 	return chunk2mem(victim);
2258       }
2259     }
2260 
2261     ++idx;
2262 
2263   }
2264 
2265   /* Try to use the last split-off remainder */
2266 
2267   if ( (victim = last_remainder->fd) != last_remainder)
2268   {
2269     victim_size = chunksize(victim);
2270     remainder_size = victim_size - nb;
2271 
2272     if (remainder_size >= (long)MINSIZE) /* re-split */
2273     {
2274       remainder = chunk_at_offset(victim, nb);
2275       set_head(victim, nb | PREV_INUSE);
2276       link_last_remainder(remainder);
2277       set_head(remainder, remainder_size | PREV_INUSE);
2278       set_foot(remainder, remainder_size);
2279       check_malloced_chunk(victim, nb);
2280       return chunk2mem(victim);
2281     }
2282 
2283     clear_last_remainder;
2284 
2285     if (remainder_size >= 0)  /* exhaust */
2286     {
2287       set_inuse_bit_at_offset(victim, victim_size);
2288       check_malloced_chunk(victim, nb);
2289       return chunk2mem(victim);
2290     }
2291 
2292     /* Else place in bin */
2293 
2294     frontlink(victim, victim_size, remainder_index, bck, fwd);
2295   }
2296 
2297   /*
2298      If there are any possibly nonempty big-enough blocks,
2299      search for best fitting chunk by scanning bins in blockwidth units.
2300   */
2301 
2302   if ( (block = idx2binblock(idx)) <= binblocks_r)
2303   {
2304 
2305     /* Get to the first marked block */
2306 
2307     if ( (block & binblocks_r) == 0)
2308     {
2309       /* force to an even block boundary */
2310       idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH;
2311       block <<= 1;
2312       while ((block & binblocks_r) == 0)
2313       {
2314 	idx += BINBLOCKWIDTH;
2315 	block <<= 1;
2316       }
2317     }
2318 
2319     /* For each possibly nonempty block ... */
2320     for (;;)
2321     {
2322       startidx = idx;          /* (track incomplete blocks) */
2323       q = bin = bin_at(idx);
2324 
2325       /* For each bin in this block ... */
2326       do
2327       {
2328 	/* Find and use first big enough chunk ... */
2329 
2330 	for (victim = last(bin); victim != bin; victim = victim->bk)
2331 	{
2332 	  victim_size = chunksize(victim);
2333 	  remainder_size = victim_size - nb;
2334 
2335 	  if (remainder_size >= (long)MINSIZE) /* split */
2336 	  {
2337 	    remainder = chunk_at_offset(victim, nb);
2338 	    set_head(victim, nb | PREV_INUSE);
2339 	    unlink(victim, bck, fwd);
2340 	    link_last_remainder(remainder);
2341 	    set_head(remainder, remainder_size | PREV_INUSE);
2342 	    set_foot(remainder, remainder_size);
2343 	    check_malloced_chunk(victim, nb);
2344 	    return chunk2mem(victim);
2345 	  }
2346 
2347 	  else if (remainder_size >= 0)  /* take */
2348 	  {
2349 	    set_inuse_bit_at_offset(victim, victim_size);
2350 	    unlink(victim, bck, fwd);
2351 	    check_malloced_chunk(victim, nb);
2352 	    return chunk2mem(victim);
2353 	  }
2354 
2355 	}
2356 
2357        bin = next_bin(bin);
2358 
2359       } while ((++idx & (BINBLOCKWIDTH - 1)) != 0);
2360 
2361       /* Clear out the block bit. */
2362 
2363       do   /* Possibly backtrack to try to clear a partial block */
2364       {
2365 	if ((startidx & (BINBLOCKWIDTH - 1)) == 0)
2366 	{
2367 	  av_[1] = (mbinptr)(binblocks_r & ~block);
2368 	  break;
2369 	}
2370 	--startidx;
2371        q = prev_bin(q);
2372       } while (first(q) == q);
2373 
2374       /* Get to the next possibly nonempty block */
2375 
2376       if ( (block <<= 1) <= binblocks_r && (block != 0) )
2377       {
2378 	while ((block & binblocks_r) == 0)
2379 	{
2380 	  idx += BINBLOCKWIDTH;
2381 	  block <<= 1;
2382 	}
2383       }
2384       else
2385 	break;
2386     }
2387   }
2388 
2389 
2390   /* Try to use top chunk */
2391 
2392   /* Require that there be a remainder, ensuring top always exists  */
2393   if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
2394   {
2395 
2396 #if HAVE_MMAP
2397     /* If big and would otherwise need to extend, try to use mmap instead */
2398     if ((unsigned long)nb >= (unsigned long)mmap_threshold &&
2399 	(victim = mmap_chunk(nb)) != 0)
2400       return chunk2mem(victim);
2401 #endif
2402 
2403     /* Try to extend */
2404     malloc_extend_top(nb);
2405     if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
2406       return NULL; /* propagate failure */
2407   }
2408 
2409   victim = top;
2410   set_head(victim, nb | PREV_INUSE);
2411   top = chunk_at_offset(victim, nb);
2412   set_head(top, remainder_size | PREV_INUSE);
2413   check_malloced_chunk(victim, nb);
2414   return chunk2mem(victim);
2415 
2416 }
2417 
2418 
2419 
2420 
2421 /*
2422 
2423   free() algorithm :
2424 
2425     cases:
2426 
2427        1. free(0) has no effect.
2428 
2429        2. If the chunk was allocated via mmap, it is release via munmap().
2430 
2431        3. If a returned chunk borders the current high end of memory,
2432 	  it is consolidated into the top, and if the total unused
2433 	  topmost memory exceeds the trim threshold, malloc_trim is
2434 	  called.
2435 
2436        4. Other chunks are consolidated as they arrive, and
2437 	  placed in corresponding bins. (This includes the case of
2438 	  consolidating with the current `last_remainder').
2439 
2440 */
2441 
2442 
2443 #if __STD_C
2444 void fREe(Void_t* mem)
2445 #else
2446 void fREe(mem) Void_t* mem;
2447 #endif
2448 {
2449   mchunkptr p;         /* chunk corresponding to mem */
2450   INTERNAL_SIZE_T hd;  /* its head field */
2451   INTERNAL_SIZE_T sz;  /* its size */
2452   int       idx;       /* its bin index */
2453   mchunkptr next;      /* next contiguous chunk */
2454   INTERNAL_SIZE_T nextsz; /* its size */
2455   INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */
2456   mchunkptr bck;       /* misc temp for linking */
2457   mchunkptr fwd;       /* misc temp for linking */
2458   int       islr;      /* track whether merging with last_remainder */
2459 
2460 #ifdef CONFIG_SYS_MALLOC_F_LEN
2461 	/* free() is a no-op - all the memory will be freed on relocation */
2462 	if (!(gd->flags & GD_FLG_RELOC))
2463 		return;
2464 #endif
2465 
2466   if (mem == NULL)                              /* free(0) has no effect */
2467     return;
2468 
2469   p = mem2chunk(mem);
2470   hd = p->size;
2471 
2472 #if HAVE_MMAP
2473   if (hd & IS_MMAPPED)                       /* release mmapped memory. */
2474   {
2475     munmap_chunk(p);
2476     return;
2477   }
2478 #endif
2479 
2480   check_inuse_chunk(p);
2481 
2482   sz = hd & ~PREV_INUSE;
2483   next = chunk_at_offset(p, sz);
2484   nextsz = chunksize(next);
2485 
2486   if (next == top)                            /* merge with top */
2487   {
2488     sz += nextsz;
2489 
2490     if (!(hd & PREV_INUSE))                    /* consolidate backward */
2491     {
2492       prevsz = p->prev_size;
2493       p = chunk_at_offset(p, -((long) prevsz));
2494       sz += prevsz;
2495       unlink(p, bck, fwd);
2496     }
2497 
2498     set_head(p, sz | PREV_INUSE);
2499     top = p;
2500     if ((unsigned long)(sz) >= (unsigned long)trim_threshold)
2501       malloc_trim(top_pad);
2502     return;
2503   }
2504 
2505   set_head(next, nextsz);                    /* clear inuse bit */
2506 
2507   islr = 0;
2508 
2509   if (!(hd & PREV_INUSE))                    /* consolidate backward */
2510   {
2511     prevsz = p->prev_size;
2512     p = chunk_at_offset(p, -((long) prevsz));
2513     sz += prevsz;
2514 
2515     if (p->fd == last_remainder)             /* keep as last_remainder */
2516       islr = 1;
2517     else
2518       unlink(p, bck, fwd);
2519   }
2520 
2521   if (!(inuse_bit_at_offset(next, nextsz)))   /* consolidate forward */
2522   {
2523     sz += nextsz;
2524 
2525     if (!islr && next->fd == last_remainder)  /* re-insert last_remainder */
2526     {
2527       islr = 1;
2528       link_last_remainder(p);
2529     }
2530     else
2531       unlink(next, bck, fwd);
2532   }
2533 
2534 
2535   set_head(p, sz | PREV_INUSE);
2536   set_foot(p, sz);
2537   if (!islr)
2538     frontlink(p, sz, idx, bck, fwd);
2539 }
2540 
2541 
2542 
2543 
2544 
2545 /*
2546 
2547   Realloc algorithm:
2548 
2549     Chunks that were obtained via mmap cannot be extended or shrunk
2550     unless HAVE_MREMAP is defined, in which case mremap is used.
2551     Otherwise, if their reallocation is for additional space, they are
2552     copied.  If for less, they are just left alone.
2553 
2554     Otherwise, if the reallocation is for additional space, and the
2555     chunk can be extended, it is, else a malloc-copy-free sequence is
2556     taken.  There are several different ways that a chunk could be
2557     extended. All are tried:
2558 
2559        * Extending forward into following adjacent free chunk.
2560        * Shifting backwards, joining preceding adjacent space
2561        * Both shifting backwards and extending forward.
2562        * Extending into newly sbrked space
2563 
2564     Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a
2565     size argument of zero (re)allocates a minimum-sized chunk.
2566 
2567     If the reallocation is for less space, and the new request is for
2568     a `small' (<512 bytes) size, then the newly unused space is lopped
2569     off and freed.
2570 
2571     The old unix realloc convention of allowing the last-free'd chunk
2572     to be used as an argument to realloc is no longer supported.
2573     I don't know of any programs still relying on this feature,
2574     and allowing it would also allow too many other incorrect
2575     usages of realloc to be sensible.
2576 
2577 
2578 */
2579 
2580 
2581 #if __STD_C
2582 Void_t* rEALLOc(Void_t* oldmem, size_t bytes)
2583 #else
2584 Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes;
2585 #endif
2586 {
2587   INTERNAL_SIZE_T    nb;      /* padded request size */
2588 
2589   mchunkptr oldp;             /* chunk corresponding to oldmem */
2590   INTERNAL_SIZE_T    oldsize; /* its size */
2591 
2592   mchunkptr newp;             /* chunk to return */
2593   INTERNAL_SIZE_T    newsize; /* its size */
2594   Void_t*   newmem;           /* corresponding user mem */
2595 
2596   mchunkptr next;             /* next contiguous chunk after oldp */
2597   INTERNAL_SIZE_T  nextsize;  /* its size */
2598 
2599   mchunkptr prev;             /* previous contiguous chunk before oldp */
2600   INTERNAL_SIZE_T  prevsize;  /* its size */
2601 
2602   mchunkptr remainder;        /* holds split off extra space from newp */
2603   INTERNAL_SIZE_T  remainder_size;   /* its size */
2604 
2605   mchunkptr bck;              /* misc temp for linking */
2606   mchunkptr fwd;              /* misc temp for linking */
2607 
2608 #ifdef REALLOC_ZERO_BYTES_FREES
2609   if (bytes == 0) { fREe(oldmem); return 0; }
2610 #endif
2611 
2612   if ((long)bytes < 0) return NULL;
2613 
2614   /* realloc of null is supposed to be same as malloc */
2615   if (oldmem == NULL) return mALLOc(bytes);
2616 
2617 #ifdef CONFIG_SYS_MALLOC_F_LEN
2618 	if (!(gd->flags & GD_FLG_RELOC)) {
2619 		/* This is harder to support and should not be needed */
2620 		panic("pre-reloc realloc() is not supported");
2621 	}
2622 #endif
2623 
2624   newp    = oldp    = mem2chunk(oldmem);
2625   newsize = oldsize = chunksize(oldp);
2626 
2627 
2628   nb = request2size(bytes);
2629 
2630 #if HAVE_MMAP
2631   if (chunk_is_mmapped(oldp))
2632   {
2633 #if HAVE_MREMAP
2634     newp = mremap_chunk(oldp, nb);
2635     if(newp) return chunk2mem(newp);
2636 #endif
2637     /* Note the extra SIZE_SZ overhead. */
2638     if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
2639     /* Must alloc, copy, free. */
2640     newmem = mALLOc(bytes);
2641     if (newmem == 0) return 0; /* propagate failure */
2642     MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
2643     munmap_chunk(oldp);
2644     return newmem;
2645   }
2646 #endif
2647 
2648   check_inuse_chunk(oldp);
2649 
2650   if ((long)(oldsize) < (long)(nb))
2651   {
2652 
2653     /* Try expanding forward */
2654 
2655     next = chunk_at_offset(oldp, oldsize);
2656     if (next == top || !inuse(next))
2657     {
2658       nextsize = chunksize(next);
2659 
2660       /* Forward into top only if a remainder */
2661       if (next == top)
2662       {
2663 	if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE))
2664 	{
2665 	  newsize += nextsize;
2666 	  top = chunk_at_offset(oldp, nb);
2667 	  set_head(top, (newsize - nb) | PREV_INUSE);
2668 	  set_head_size(oldp, nb);
2669 	  return chunk2mem(oldp);
2670 	}
2671       }
2672 
2673       /* Forward into next chunk */
2674       else if (((long)(nextsize + newsize) >= (long)(nb)))
2675       {
2676 	unlink(next, bck, fwd);
2677 	newsize  += nextsize;
2678 	goto split;
2679       }
2680     }
2681     else
2682     {
2683       next = NULL;
2684       nextsize = 0;
2685     }
2686 
2687     /* Try shifting backwards. */
2688 
2689     if (!prev_inuse(oldp))
2690     {
2691       prev = prev_chunk(oldp);
2692       prevsize = chunksize(prev);
2693 
2694       /* try forward + backward first to save a later consolidation */
2695 
2696       if (next != NULL)
2697       {
2698 	/* into top */
2699 	if (next == top)
2700 	{
2701 	  if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE))
2702 	  {
2703 	    unlink(prev, bck, fwd);
2704 	    newp = prev;
2705 	    newsize += prevsize + nextsize;
2706 	    newmem = chunk2mem(newp);
2707 	    MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2708 	    top = chunk_at_offset(newp, nb);
2709 	    set_head(top, (newsize - nb) | PREV_INUSE);
2710 	    set_head_size(newp, nb);
2711 	    return newmem;
2712 	  }
2713 	}
2714 
2715 	/* into next chunk */
2716 	else if (((long)(nextsize + prevsize + newsize) >= (long)(nb)))
2717 	{
2718 	  unlink(next, bck, fwd);
2719 	  unlink(prev, bck, fwd);
2720 	  newp = prev;
2721 	  newsize += nextsize + prevsize;
2722 	  newmem = chunk2mem(newp);
2723 	  MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2724 	  goto split;
2725 	}
2726       }
2727 
2728       /* backward only */
2729       if (prev != NULL && (long)(prevsize + newsize) >= (long)nb)
2730       {
2731 	unlink(prev, bck, fwd);
2732 	newp = prev;
2733 	newsize += prevsize;
2734 	newmem = chunk2mem(newp);
2735 	MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2736 	goto split;
2737       }
2738     }
2739 
2740     /* Must allocate */
2741 
2742     newmem = mALLOc (bytes);
2743 
2744     if (newmem == NULL)  /* propagate failure */
2745       return NULL;
2746 
2747     /* Avoid copy if newp is next chunk after oldp. */
2748     /* (This can only happen when new chunk is sbrk'ed.) */
2749 
2750     if ( (newp = mem2chunk(newmem)) == next_chunk(oldp))
2751     {
2752       newsize += chunksize(newp);
2753       newp = oldp;
2754       goto split;
2755     }
2756 
2757     /* Otherwise copy, free, and exit */
2758     MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2759     fREe(oldmem);
2760     return newmem;
2761   }
2762 
2763 
2764  split:  /* split off extra room in old or expanded chunk */
2765 
2766   if (newsize - nb >= MINSIZE) /* split off remainder */
2767   {
2768     remainder = chunk_at_offset(newp, nb);
2769     remainder_size = newsize - nb;
2770     set_head_size(newp, nb);
2771     set_head(remainder, remainder_size | PREV_INUSE);
2772     set_inuse_bit_at_offset(remainder, remainder_size);
2773     fREe(chunk2mem(remainder)); /* let free() deal with it */
2774   }
2775   else
2776   {
2777     set_head_size(newp, newsize);
2778     set_inuse_bit_at_offset(newp, newsize);
2779   }
2780 
2781   check_inuse_chunk(newp);
2782   return chunk2mem(newp);
2783 }
2784 
2785 
2786 
2787 
2788 /*
2789 
2790   memalign algorithm:
2791 
2792     memalign requests more than enough space from malloc, finds a spot
2793     within that chunk that meets the alignment request, and then
2794     possibly frees the leading and trailing space.
2795 
2796     The alignment argument must be a power of two. This property is not
2797     checked by memalign, so misuse may result in random runtime errors.
2798 
2799     8-byte alignment is guaranteed by normal malloc calls, so don't
2800     bother calling memalign with an argument of 8 or less.
2801 
2802     Overreliance on memalign is a sure way to fragment space.
2803 
2804 */
2805 
2806 
2807 #if __STD_C
2808 Void_t* mEMALIGn(size_t alignment, size_t bytes)
2809 #else
2810 Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes;
2811 #endif
2812 {
2813   INTERNAL_SIZE_T    nb;      /* padded  request size */
2814   char*     m;                /* memory returned by malloc call */
2815   mchunkptr p;                /* corresponding chunk */
2816   char*     brk;              /* alignment point within p */
2817   mchunkptr newp;             /* chunk to return */
2818   INTERNAL_SIZE_T  newsize;   /* its size */
2819   INTERNAL_SIZE_T  leadsize;  /* leading space befor alignment point */
2820   mchunkptr remainder;        /* spare room at end to split off */
2821   long      remainder_size;   /* its size */
2822 
2823   if ((long)bytes < 0) return NULL;
2824 
2825   /* If need less alignment than we give anyway, just relay to malloc */
2826 
2827   if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes);
2828 
2829   /* Otherwise, ensure that it is at least a minimum chunk size */
2830 
2831   if (alignment <  MINSIZE) alignment = MINSIZE;
2832 
2833   /* Call malloc with worst case padding to hit alignment. */
2834 
2835   nb = request2size(bytes);
2836   m  = (char*)(mALLOc(nb + alignment + MINSIZE));
2837 
2838   if (m == NULL) return NULL; /* propagate failure */
2839 
2840   p = mem2chunk(m);
2841 
2842   if ((((unsigned long)(m)) % alignment) == 0) /* aligned */
2843   {
2844 #if HAVE_MMAP
2845     if(chunk_is_mmapped(p))
2846       return chunk2mem(p); /* nothing more to do */
2847 #endif
2848   }
2849   else /* misaligned */
2850   {
2851     /*
2852       Find an aligned spot inside chunk.
2853       Since we need to give back leading space in a chunk of at
2854       least MINSIZE, if the first calculation places us at
2855       a spot with less than MINSIZE leader, we can move to the
2856       next aligned spot -- we've allocated enough total room so that
2857       this is always possible.
2858     */
2859 
2860     brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment));
2861     if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment;
2862 
2863     newp = (mchunkptr)brk;
2864     leadsize = brk - (char*)(p);
2865     newsize = chunksize(p) - leadsize;
2866 
2867 #if HAVE_MMAP
2868     if(chunk_is_mmapped(p))
2869     {
2870       newp->prev_size = p->prev_size + leadsize;
2871       set_head(newp, newsize|IS_MMAPPED);
2872       return chunk2mem(newp);
2873     }
2874 #endif
2875 
2876     /* give back leader, use the rest */
2877 
2878     set_head(newp, newsize | PREV_INUSE);
2879     set_inuse_bit_at_offset(newp, newsize);
2880     set_head_size(p, leadsize);
2881     fREe(chunk2mem(p));
2882     p = newp;
2883 
2884     assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0);
2885   }
2886 
2887   /* Also give back spare room at the end */
2888 
2889   remainder_size = chunksize(p) - nb;
2890 
2891   if (remainder_size >= (long)MINSIZE)
2892   {
2893     remainder = chunk_at_offset(p, nb);
2894     set_head(remainder, remainder_size | PREV_INUSE);
2895     set_head_size(p, nb);
2896     fREe(chunk2mem(remainder));
2897   }
2898 
2899   check_inuse_chunk(p);
2900   return chunk2mem(p);
2901 
2902 }
2903 
2904 
2905 
2906 
2907 /*
2908     valloc just invokes memalign with alignment argument equal
2909     to the page size of the system (or as near to this as can
2910     be figured out from all the includes/defines above.)
2911 */
2912 
2913 #if __STD_C
2914 Void_t* vALLOc(size_t bytes)
2915 #else
2916 Void_t* vALLOc(bytes) size_t bytes;
2917 #endif
2918 {
2919   return mEMALIGn (malloc_getpagesize, bytes);
2920 }
2921 
2922 /*
2923   pvalloc just invokes valloc for the nearest pagesize
2924   that will accommodate request
2925 */
2926 
2927 
2928 #if __STD_C
2929 Void_t* pvALLOc(size_t bytes)
2930 #else
2931 Void_t* pvALLOc(bytes) size_t bytes;
2932 #endif
2933 {
2934   size_t pagesize = malloc_getpagesize;
2935   return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1));
2936 }
2937 
2938 /*
2939 
2940   calloc calls malloc, then zeroes out the allocated chunk.
2941 
2942 */
2943 
2944 #if __STD_C
2945 Void_t* cALLOc(size_t n, size_t elem_size)
2946 #else
2947 Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size;
2948 #endif
2949 {
2950   mchunkptr p;
2951   INTERNAL_SIZE_T csz;
2952 
2953   INTERNAL_SIZE_T sz = n * elem_size;
2954 
2955 
2956   /* check if expand_top called, in which case don't need to clear */
2957 #if MORECORE_CLEARS
2958   mchunkptr oldtop = top;
2959   INTERNAL_SIZE_T oldtopsize = chunksize(top);
2960 #endif
2961   Void_t* mem = mALLOc (sz);
2962 
2963   if ((long)n < 0) return NULL;
2964 
2965   if (mem == NULL)
2966     return NULL;
2967   else
2968   {
2969 #ifdef CONFIG_SYS_MALLOC_F_LEN
2970 	if (!(gd->flags & GD_FLG_RELOC)) {
2971 		MALLOC_ZERO(mem, sz);
2972 		return mem;
2973 	}
2974 #endif
2975     p = mem2chunk(mem);
2976 
2977     /* Two optional cases in which clearing not necessary */
2978 
2979 
2980 #if HAVE_MMAP
2981     if (chunk_is_mmapped(p)) return mem;
2982 #endif
2983 
2984     csz = chunksize(p);
2985 
2986 #if MORECORE_CLEARS
2987     if (p == oldtop && csz > oldtopsize)
2988     {
2989       /* clear only the bytes from non-freshly-sbrked memory */
2990       csz = oldtopsize;
2991     }
2992 #endif
2993 
2994     MALLOC_ZERO(mem, csz - SIZE_SZ);
2995     return mem;
2996   }
2997 }
2998 
2999 /*
3000 
3001   cfree just calls free. It is needed/defined on some systems
3002   that pair it with calloc, presumably for odd historical reasons.
3003 
3004 */
3005 
3006 #if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__)
3007 #if __STD_C
3008 void cfree(Void_t *mem)
3009 #else
3010 void cfree(mem) Void_t *mem;
3011 #endif
3012 {
3013   fREe(mem);
3014 }
3015 #endif
3016 
3017 
3018 
3019 /*
3020 
3021     Malloc_trim gives memory back to the system (via negative
3022     arguments to sbrk) if there is unused memory at the `high' end of
3023     the malloc pool. You can call this after freeing large blocks of
3024     memory to potentially reduce the system-level memory requirements
3025     of a program. However, it cannot guarantee to reduce memory. Under
3026     some allocation patterns, some large free blocks of memory will be
3027     locked between two used chunks, so they cannot be given back to
3028     the system.
3029 
3030     The `pad' argument to malloc_trim represents the amount of free
3031     trailing space to leave untrimmed. If this argument is zero,
3032     only the minimum amount of memory to maintain internal data
3033     structures will be left (one page or less). Non-zero arguments
3034     can be supplied to maintain enough trailing space to service
3035     future expected allocations without having to re-obtain memory
3036     from the system.
3037 
3038     Malloc_trim returns 1 if it actually released any memory, else 0.
3039 
3040 */
3041 
3042 #if __STD_C
3043 int malloc_trim(size_t pad)
3044 #else
3045 int malloc_trim(pad) size_t pad;
3046 #endif
3047 {
3048   long  top_size;        /* Amount of top-most memory */
3049   long  extra;           /* Amount to release */
3050   char* current_brk;     /* address returned by pre-check sbrk call */
3051   char* new_brk;         /* address returned by negative sbrk call */
3052 
3053   unsigned long pagesz = malloc_getpagesize;
3054 
3055   top_size = chunksize(top);
3056   extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
3057 
3058   if (extra < (long)pagesz)  /* Not enough memory to release */
3059     return 0;
3060 
3061   else
3062   {
3063     /* Test to make sure no one else called sbrk */
3064     current_brk = (char*)(MORECORE (0));
3065     if (current_brk != (char*)(top) + top_size)
3066       return 0;     /* Apparently we don't own memory; must fail */
3067 
3068     else
3069     {
3070       new_brk = (char*)(MORECORE (-extra));
3071 
3072       if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */
3073       {
3074 	/* Try to figure out what we have */
3075 	current_brk = (char*)(MORECORE (0));
3076 	top_size = current_brk - (char*)top;
3077 	if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */
3078 	{
3079 	  sbrked_mem = current_brk - sbrk_base;
3080 	  set_head(top, top_size | PREV_INUSE);
3081 	}
3082 	check_chunk(top);
3083 	return 0;
3084       }
3085 
3086       else
3087       {
3088 	/* Success. Adjust top accordingly. */
3089 	set_head(top, (top_size - extra) | PREV_INUSE);
3090 	sbrked_mem -= extra;
3091 	check_chunk(top);
3092 	return 1;
3093       }
3094     }
3095   }
3096 }
3097 
3098 
3099 
3100 /*
3101   malloc_usable_size:
3102 
3103     This routine tells you how many bytes you can actually use in an
3104     allocated chunk, which may be more than you requested (although
3105     often not). You can use this many bytes without worrying about
3106     overwriting other allocated objects. Not a particularly great
3107     programming practice, but still sometimes useful.
3108 
3109 */
3110 
3111 #if __STD_C
3112 size_t malloc_usable_size(Void_t* mem)
3113 #else
3114 size_t malloc_usable_size(mem) Void_t* mem;
3115 #endif
3116 {
3117   mchunkptr p;
3118   if (mem == NULL)
3119     return 0;
3120   else
3121   {
3122     p = mem2chunk(mem);
3123     if(!chunk_is_mmapped(p))
3124     {
3125       if (!inuse(p)) return 0;
3126       check_inuse_chunk(p);
3127       return chunksize(p) - SIZE_SZ;
3128     }
3129     return chunksize(p) - 2*SIZE_SZ;
3130   }
3131 }
3132 
3133 
3134 
3135 
3136 /* Utility to update current_mallinfo for malloc_stats and mallinfo() */
3137 
3138 #ifdef DEBUG
3139 static void malloc_update_mallinfo()
3140 {
3141   int i;
3142   mbinptr b;
3143   mchunkptr p;
3144 #ifdef DEBUG
3145   mchunkptr q;
3146 #endif
3147 
3148   INTERNAL_SIZE_T avail = chunksize(top);
3149   int   navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0;
3150 
3151   for (i = 1; i < NAV; ++i)
3152   {
3153     b = bin_at(i);
3154     for (p = last(b); p != b; p = p->bk)
3155     {
3156 #ifdef DEBUG
3157       check_free_chunk(p);
3158       for (q = next_chunk(p);
3159 	   q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE;
3160 	   q = next_chunk(q))
3161 	check_inuse_chunk(q);
3162 #endif
3163       avail += chunksize(p);
3164       navail++;
3165     }
3166   }
3167 
3168   current_mallinfo.ordblks = navail;
3169   current_mallinfo.uordblks = sbrked_mem - avail;
3170   current_mallinfo.fordblks = avail;
3171   current_mallinfo.hblks = n_mmaps;
3172   current_mallinfo.hblkhd = mmapped_mem;
3173   current_mallinfo.keepcost = chunksize(top);
3174 
3175 }
3176 #endif	/* DEBUG */
3177 
3178 
3179 
3180 /*
3181 
3182   malloc_stats:
3183 
3184     Prints on the amount of space obtain from the system (both
3185     via sbrk and mmap), the maximum amount (which may be more than
3186     current if malloc_trim and/or munmap got called), the maximum
3187     number of simultaneous mmap regions used, and the current number
3188     of bytes allocated via malloc (or realloc, etc) but not yet
3189     freed. (Note that this is the number of bytes allocated, not the
3190     number requested. It will be larger than the number requested
3191     because of alignment and bookkeeping overhead.)
3192 
3193 */
3194 
3195 #ifdef DEBUG
3196 void malloc_stats()
3197 {
3198   malloc_update_mallinfo();
3199   printf("max system bytes = %10u\n",
3200 	  (unsigned int)(max_total_mem));
3201   printf("system bytes     = %10u\n",
3202 	  (unsigned int)(sbrked_mem + mmapped_mem));
3203   printf("in use bytes     = %10u\n",
3204 	  (unsigned int)(current_mallinfo.uordblks + mmapped_mem));
3205 #if HAVE_MMAP
3206   printf("max mmap regions = %10u\n",
3207 	  (unsigned int)max_n_mmaps);
3208 #endif
3209 }
3210 #endif	/* DEBUG */
3211 
3212 /*
3213   mallinfo returns a copy of updated current mallinfo.
3214 */
3215 
3216 #ifdef DEBUG
3217 struct mallinfo mALLINFo()
3218 {
3219   malloc_update_mallinfo();
3220   return current_mallinfo;
3221 }
3222 #endif	/* DEBUG */
3223 
3224 
3225 
3226 
3227 /*
3228   mallopt:
3229 
3230     mallopt is the general SVID/XPG interface to tunable parameters.
3231     The format is to provide a (parameter-number, parameter-value) pair.
3232     mallopt then sets the corresponding parameter to the argument
3233     value if it can (i.e., so long as the value is meaningful),
3234     and returns 1 if successful else 0.
3235 
3236     See descriptions of tunable parameters above.
3237 
3238 */
3239 
3240 #if __STD_C
3241 int mALLOPt(int param_number, int value)
3242 #else
3243 int mALLOPt(param_number, value) int param_number; int value;
3244 #endif
3245 {
3246   switch(param_number)
3247   {
3248     case M_TRIM_THRESHOLD:
3249       trim_threshold = value; return 1;
3250     case M_TOP_PAD:
3251       top_pad = value; return 1;
3252     case M_MMAP_THRESHOLD:
3253       mmap_threshold = value; return 1;
3254     case M_MMAP_MAX:
3255 #if HAVE_MMAP
3256       n_mmaps_max = value; return 1;
3257 #else
3258       if (value != 0) return 0; else  n_mmaps_max = value; return 1;
3259 #endif
3260 
3261     default:
3262       return 0;
3263   }
3264 }
3265 
3266 /*
3267 
3268 History:
3269 
3270     V2.6.6 Sun Dec  5 07:42:19 1999  Doug Lea  (dl at gee)
3271       * return null for negative arguments
3272       * Added Several WIN32 cleanups from Martin C. Fong <mcfong@yahoo.com>
3273 	 * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
3274 	  (e.g. WIN32 platforms)
3275 	 * Cleanup up header file inclusion for WIN32 platforms
3276 	 * Cleanup code to avoid Microsoft Visual C++ compiler complaints
3277 	 * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
3278 	   memory allocation routines
3279 	 * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
3280 	 * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
3281 	   usage of 'assert' in non-WIN32 code
3282 	 * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
3283 	   avoid infinite loop
3284       * Always call 'fREe()' rather than 'free()'
3285 
3286     V2.6.5 Wed Jun 17 15:57:31 1998  Doug Lea  (dl at gee)
3287       * Fixed ordering problem with boundary-stamping
3288 
3289     V2.6.3 Sun May 19 08:17:58 1996  Doug Lea  (dl at gee)
3290       * Added pvalloc, as recommended by H.J. Liu
3291       * Added 64bit pointer support mainly from Wolfram Gloger
3292       * Added anonymously donated WIN32 sbrk emulation
3293       * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
3294       * malloc_extend_top: fix mask error that caused wastage after
3295 	foreign sbrks
3296       * Add linux mremap support code from HJ Liu
3297 
3298     V2.6.2 Tue Dec  5 06:52:55 1995  Doug Lea  (dl at gee)
3299       * Integrated most documentation with the code.
3300       * Add support for mmap, with help from
3301 	Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
3302       * Use last_remainder in more cases.
3303       * Pack bins using idea from  colin@nyx10.cs.du.edu
3304       * Use ordered bins instead of best-fit threshhold
3305       * Eliminate block-local decls to simplify tracing and debugging.
3306       * Support another case of realloc via move into top
3307       * Fix error occuring when initial sbrk_base not word-aligned.
3308       * Rely on page size for units instead of SBRK_UNIT to
3309 	avoid surprises about sbrk alignment conventions.
3310       * Add mallinfo, mallopt. Thanks to Raymond Nijssen
3311 	(raymond@es.ele.tue.nl) for the suggestion.
3312       * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
3313       * More precautions for cases where other routines call sbrk,
3314 	courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
3315       * Added macros etc., allowing use in linux libc from
3316 	H.J. Lu (hjl@gnu.ai.mit.edu)
3317       * Inverted this history list
3318 
3319     V2.6.1 Sat Dec  2 14:10:57 1995  Doug Lea  (dl at gee)
3320       * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
3321       * Removed all preallocation code since under current scheme
3322 	the work required to undo bad preallocations exceeds
3323 	the work saved in good cases for most test programs.
3324       * No longer use return list or unconsolidated bins since
3325 	no scheme using them consistently outperforms those that don't
3326 	given above changes.
3327       * Use best fit for very large chunks to prevent some worst-cases.
3328       * Added some support for debugging
3329 
3330     V2.6.0 Sat Nov  4 07:05:23 1995  Doug Lea  (dl at gee)
3331       * Removed footers when chunks are in use. Thanks to
3332 	Paul Wilson (wilson@cs.texas.edu) for the suggestion.
3333 
3334     V2.5.4 Wed Nov  1 07:54:51 1995  Doug Lea  (dl at gee)
3335       * Added malloc_trim, with help from Wolfram Gloger
3336 	(wmglo@Dent.MED.Uni-Muenchen.DE).
3337 
3338     V2.5.3 Tue Apr 26 10:16:01 1994  Doug Lea  (dl at g)
3339 
3340     V2.5.2 Tue Apr  5 16:20:40 1994  Doug Lea  (dl at g)
3341       * realloc: try to expand in both directions
3342       * malloc: swap order of clean-bin strategy;
3343       * realloc: only conditionally expand backwards
3344       * Try not to scavenge used bins
3345       * Use bin counts as a guide to preallocation
3346       * Occasionally bin return list chunks in first scan
3347       * Add a few optimizations from colin@nyx10.cs.du.edu
3348 
3349     V2.5.1 Sat Aug 14 15:40:43 1993  Doug Lea  (dl at g)
3350       * faster bin computation & slightly different binning
3351       * merged all consolidations to one part of malloc proper
3352 	 (eliminating old malloc_find_space & malloc_clean_bin)
3353       * Scan 2 returns chunks (not just 1)
3354       * Propagate failure in realloc if malloc returns 0
3355       * Add stuff to allow compilation on non-ANSI compilers
3356 	  from kpv@research.att.com
3357 
3358     V2.5 Sat Aug  7 07:41:59 1993  Doug Lea  (dl at g.oswego.edu)
3359       * removed potential for odd address access in prev_chunk
3360       * removed dependency on getpagesize.h
3361       * misc cosmetics and a bit more internal documentation
3362       * anticosmetics: mangled names in macros to evade debugger strangeness
3363       * tested on sparc, hp-700, dec-mips, rs6000
3364 	  with gcc & native cc (hp, dec only) allowing
3365 	  Detlefs & Zorn comparison study (in SIGPLAN Notices.)
3366 
3367     Trial version Fri Aug 28 13:14:29 1992  Doug Lea  (dl at g.oswego.edu)
3368       * Based loosely on libg++-1.2X malloc. (It retains some of the overall
3369 	 structure of old version,  but most details differ.)
3370 
3371 */
3372