xref: /openbmc/u-boot/board/ti/am335x/board.c (revision 70e2aaf380ef873901684027ef1082ebd4608785)
1 /*
2  * board.c
3  *
4  * Board functions for TI AM335X based boards
5  *
6  * Copyright (C) 2011, Texas Instruments, Incorporated - http://www.ti.com/
7  *
8  * SPDX-License-Identifier:	GPL-2.0+
9  */
10 
11 #include <common.h>
12 #include <errno.h>
13 #include <spl.h>
14 #include <serial.h>
15 #include <asm/arch/cpu.h>
16 #include <asm/arch/hardware.h>
17 #include <asm/arch/omap.h>
18 #include <asm/arch/ddr_defs.h>
19 #include <asm/arch/clock.h>
20 #include <asm/arch/clk_synthesizer.h>
21 #include <asm/arch/gpio.h>
22 #include <asm/arch/mmc_host_def.h>
23 #include <asm/arch/sys_proto.h>
24 #include <asm/arch/mem.h>
25 #include <asm/io.h>
26 #include <asm/emif.h>
27 #include <asm/gpio.h>
28 #include <asm/omap_sec_common.h>
29 #include <i2c.h>
30 #include <miiphy.h>
31 #include <cpsw.h>
32 #include <power/tps65217.h>
33 #include <power/tps65910.h>
34 #include <environment.h>
35 #include <watchdog.h>
36 #include <environment.h>
37 #include "../common/board_detect.h"
38 #include "board.h"
39 
40 DECLARE_GLOBAL_DATA_PTR;
41 
42 /* GPIO that controls power to DDR on EVM-SK */
43 #define GPIO_TO_PIN(bank, gpio)		(32 * (bank) + (gpio))
44 #define GPIO_DDR_VTT_EN		GPIO_TO_PIN(0, 7)
45 #define ICE_GPIO_DDR_VTT_EN	GPIO_TO_PIN(0, 18)
46 #define GPIO_PR1_MII_CTRL	GPIO_TO_PIN(3, 4)
47 #define GPIO_MUX_MII_CTRL	GPIO_TO_PIN(3, 10)
48 #define GPIO_FET_SWITCH_CTRL	GPIO_TO_PIN(0, 7)
49 #define GPIO_PHY_RESET		GPIO_TO_PIN(2, 5)
50 #define GPIO_ETH0_MODE		GPIO_TO_PIN(0, 11)
51 #define GPIO_ETH1_MODE		GPIO_TO_PIN(1, 26)
52 
53 static struct ctrl_dev *cdev = (struct ctrl_dev *)CTRL_DEVICE_BASE;
54 
55 #define GPIO0_RISINGDETECT	(AM33XX_GPIO0_BASE + OMAP_GPIO_RISINGDETECT)
56 #define GPIO1_RISINGDETECT	(AM33XX_GPIO1_BASE + OMAP_GPIO_RISINGDETECT)
57 
58 #define GPIO0_IRQSTATUS1	(AM33XX_GPIO0_BASE + OMAP_GPIO_IRQSTATUS1)
59 #define GPIO1_IRQSTATUS1	(AM33XX_GPIO1_BASE + OMAP_GPIO_IRQSTATUS1)
60 
61 #define GPIO0_IRQSTATUSRAW	(AM33XX_GPIO0_BASE + 0x024)
62 #define GPIO1_IRQSTATUSRAW	(AM33XX_GPIO1_BASE + 0x024)
63 
64 /*
65  * Read header information from EEPROM into global structure.
66  */
67 #ifdef CONFIG_TI_I2C_BOARD_DETECT
68 void do_board_detect(void)
69 {
70 	enable_i2c0_pin_mux();
71 	i2c_init(CONFIG_SYS_OMAP24_I2C_SPEED, CONFIG_SYS_OMAP24_I2C_SLAVE);
72 
73 	if (ti_i2c_eeprom_am_get(-1, CONFIG_SYS_I2C_EEPROM_ADDR))
74 		printf("ti_i2c_eeprom_init failed\n");
75 }
76 #endif
77 
78 #ifndef CONFIG_DM_SERIAL
79 struct serial_device *default_serial_console(void)
80 {
81 	if (board_is_icev2())
82 		return &eserial4_device;
83 	else
84 		return &eserial1_device;
85 }
86 #endif
87 
88 #ifndef CONFIG_SKIP_LOWLEVEL_INIT
89 static const struct ddr_data ddr2_data = {
90 	.datardsratio0 = MT47H128M16RT25E_RD_DQS,
91 	.datafwsratio0 = MT47H128M16RT25E_PHY_FIFO_WE,
92 	.datawrsratio0 = MT47H128M16RT25E_PHY_WR_DATA,
93 };
94 
95 static const struct cmd_control ddr2_cmd_ctrl_data = {
96 	.cmd0csratio = MT47H128M16RT25E_RATIO,
97 
98 	.cmd1csratio = MT47H128M16RT25E_RATIO,
99 
100 	.cmd2csratio = MT47H128M16RT25E_RATIO,
101 };
102 
103 static const struct emif_regs ddr2_emif_reg_data = {
104 	.sdram_config = MT47H128M16RT25E_EMIF_SDCFG,
105 	.ref_ctrl = MT47H128M16RT25E_EMIF_SDREF,
106 	.sdram_tim1 = MT47H128M16RT25E_EMIF_TIM1,
107 	.sdram_tim2 = MT47H128M16RT25E_EMIF_TIM2,
108 	.sdram_tim3 = MT47H128M16RT25E_EMIF_TIM3,
109 	.emif_ddr_phy_ctlr_1 = MT47H128M16RT25E_EMIF_READ_LATENCY,
110 };
111 
112 static const struct emif_regs ddr2_evm_emif_reg_data = {
113 	.sdram_config = MT47H128M16RT25E_EMIF_SDCFG,
114 	.ref_ctrl = MT47H128M16RT25E_EMIF_SDREF,
115 	.sdram_tim1 = MT47H128M16RT25E_EMIF_TIM1,
116 	.sdram_tim2 = MT47H128M16RT25E_EMIF_TIM2,
117 	.sdram_tim3 = MT47H128M16RT25E_EMIF_TIM3,
118 	.ocp_config = EMIF_OCP_CONFIG_AM335X_EVM,
119 	.emif_ddr_phy_ctlr_1 = MT47H128M16RT25E_EMIF_READ_LATENCY,
120 };
121 
122 static const struct ddr_data ddr3_data = {
123 	.datardsratio0 = MT41J128MJT125_RD_DQS,
124 	.datawdsratio0 = MT41J128MJT125_WR_DQS,
125 	.datafwsratio0 = MT41J128MJT125_PHY_FIFO_WE,
126 	.datawrsratio0 = MT41J128MJT125_PHY_WR_DATA,
127 };
128 
129 static const struct ddr_data ddr3_beagleblack_data = {
130 	.datardsratio0 = MT41K256M16HA125E_RD_DQS,
131 	.datawdsratio0 = MT41K256M16HA125E_WR_DQS,
132 	.datafwsratio0 = MT41K256M16HA125E_PHY_FIFO_WE,
133 	.datawrsratio0 = MT41K256M16HA125E_PHY_WR_DATA,
134 };
135 
136 static const struct ddr_data ddr3_evm_data = {
137 	.datardsratio0 = MT41J512M8RH125_RD_DQS,
138 	.datawdsratio0 = MT41J512M8RH125_WR_DQS,
139 	.datafwsratio0 = MT41J512M8RH125_PHY_FIFO_WE,
140 	.datawrsratio0 = MT41J512M8RH125_PHY_WR_DATA,
141 };
142 
143 static const struct ddr_data ddr3_icev2_data = {
144 	.datardsratio0 = MT41J128MJT125_RD_DQS_400MHz,
145 	.datawdsratio0 = MT41J128MJT125_WR_DQS_400MHz,
146 	.datafwsratio0 = MT41J128MJT125_PHY_FIFO_WE_400MHz,
147 	.datawrsratio0 = MT41J128MJT125_PHY_WR_DATA_400MHz,
148 };
149 
150 static const struct cmd_control ddr3_cmd_ctrl_data = {
151 	.cmd0csratio = MT41J128MJT125_RATIO,
152 	.cmd0iclkout = MT41J128MJT125_INVERT_CLKOUT,
153 
154 	.cmd1csratio = MT41J128MJT125_RATIO,
155 	.cmd1iclkout = MT41J128MJT125_INVERT_CLKOUT,
156 
157 	.cmd2csratio = MT41J128MJT125_RATIO,
158 	.cmd2iclkout = MT41J128MJT125_INVERT_CLKOUT,
159 };
160 
161 static const struct cmd_control ddr3_beagleblack_cmd_ctrl_data = {
162 	.cmd0csratio = MT41K256M16HA125E_RATIO,
163 	.cmd0iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
164 
165 	.cmd1csratio = MT41K256M16HA125E_RATIO,
166 	.cmd1iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
167 
168 	.cmd2csratio = MT41K256M16HA125E_RATIO,
169 	.cmd2iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
170 };
171 
172 static const struct cmd_control ddr3_evm_cmd_ctrl_data = {
173 	.cmd0csratio = MT41J512M8RH125_RATIO,
174 	.cmd0iclkout = MT41J512M8RH125_INVERT_CLKOUT,
175 
176 	.cmd1csratio = MT41J512M8RH125_RATIO,
177 	.cmd1iclkout = MT41J512M8RH125_INVERT_CLKOUT,
178 
179 	.cmd2csratio = MT41J512M8RH125_RATIO,
180 	.cmd2iclkout = MT41J512M8RH125_INVERT_CLKOUT,
181 };
182 
183 static const struct cmd_control ddr3_icev2_cmd_ctrl_data = {
184 	.cmd0csratio = MT41J128MJT125_RATIO_400MHz,
185 	.cmd0iclkout = MT41J128MJT125_INVERT_CLKOUT_400MHz,
186 
187 	.cmd1csratio = MT41J128MJT125_RATIO_400MHz,
188 	.cmd1iclkout = MT41J128MJT125_INVERT_CLKOUT_400MHz,
189 
190 	.cmd2csratio = MT41J128MJT125_RATIO_400MHz,
191 	.cmd2iclkout = MT41J128MJT125_INVERT_CLKOUT_400MHz,
192 };
193 
194 static struct emif_regs ddr3_emif_reg_data = {
195 	.sdram_config = MT41J128MJT125_EMIF_SDCFG,
196 	.ref_ctrl = MT41J128MJT125_EMIF_SDREF,
197 	.sdram_tim1 = MT41J128MJT125_EMIF_TIM1,
198 	.sdram_tim2 = MT41J128MJT125_EMIF_TIM2,
199 	.sdram_tim3 = MT41J128MJT125_EMIF_TIM3,
200 	.zq_config = MT41J128MJT125_ZQ_CFG,
201 	.emif_ddr_phy_ctlr_1 = MT41J128MJT125_EMIF_READ_LATENCY |
202 				PHY_EN_DYN_PWRDN,
203 };
204 
205 static struct emif_regs ddr3_beagleblack_emif_reg_data = {
206 	.sdram_config = MT41K256M16HA125E_EMIF_SDCFG,
207 	.ref_ctrl = MT41K256M16HA125E_EMIF_SDREF,
208 	.sdram_tim1 = MT41K256M16HA125E_EMIF_TIM1,
209 	.sdram_tim2 = MT41K256M16HA125E_EMIF_TIM2,
210 	.sdram_tim3 = MT41K256M16HA125E_EMIF_TIM3,
211 	.ocp_config = EMIF_OCP_CONFIG_BEAGLEBONE_BLACK,
212 	.zq_config = MT41K256M16HA125E_ZQ_CFG,
213 	.emif_ddr_phy_ctlr_1 = MT41K256M16HA125E_EMIF_READ_LATENCY,
214 };
215 
216 static struct emif_regs ddr3_evm_emif_reg_data = {
217 	.sdram_config = MT41J512M8RH125_EMIF_SDCFG,
218 	.ref_ctrl = MT41J512M8RH125_EMIF_SDREF,
219 	.sdram_tim1 = MT41J512M8RH125_EMIF_TIM1,
220 	.sdram_tim2 = MT41J512M8RH125_EMIF_TIM2,
221 	.sdram_tim3 = MT41J512M8RH125_EMIF_TIM3,
222 	.ocp_config = EMIF_OCP_CONFIG_AM335X_EVM,
223 	.zq_config = MT41J512M8RH125_ZQ_CFG,
224 	.emif_ddr_phy_ctlr_1 = MT41J512M8RH125_EMIF_READ_LATENCY |
225 				PHY_EN_DYN_PWRDN,
226 };
227 
228 static struct emif_regs ddr3_icev2_emif_reg_data = {
229 	.sdram_config = MT41J128MJT125_EMIF_SDCFG_400MHz,
230 	.ref_ctrl = MT41J128MJT125_EMIF_SDREF_400MHz,
231 	.sdram_tim1 = MT41J128MJT125_EMIF_TIM1_400MHz,
232 	.sdram_tim2 = MT41J128MJT125_EMIF_TIM2_400MHz,
233 	.sdram_tim3 = MT41J128MJT125_EMIF_TIM3_400MHz,
234 	.zq_config = MT41J128MJT125_ZQ_CFG_400MHz,
235 	.emif_ddr_phy_ctlr_1 = MT41J128MJT125_EMIF_READ_LATENCY_400MHz |
236 				PHY_EN_DYN_PWRDN,
237 };
238 
239 #ifdef CONFIG_SPL_OS_BOOT
240 int spl_start_uboot(void)
241 {
242 	/* break into full u-boot on 'c' */
243 	if (serial_tstc() && serial_getc() == 'c')
244 		return 1;
245 
246 #ifdef CONFIG_SPL_ENV_SUPPORT
247 	env_init();
248 	env_relocate_spec();
249 	if (getenv_yesno("boot_os") != 1)
250 		return 1;
251 #endif
252 
253 	return 0;
254 }
255 #endif
256 
257 #define OSC	(V_OSCK/1000000)
258 const struct dpll_params dpll_ddr = {
259 		266, OSC-1, 1, -1, -1, -1, -1};
260 const struct dpll_params dpll_ddr_evm_sk = {
261 		303, OSC-1, 1, -1, -1, -1, -1};
262 const struct dpll_params dpll_ddr_bone_black = {
263 		400, OSC-1, 1, -1, -1, -1, -1};
264 
265 void am33xx_spl_board_init(void)
266 {
267 	int mpu_vdd;
268 
269 	/* Get the frequency */
270 	dpll_mpu_opp100.m = am335x_get_efuse_mpu_max_freq(cdev);
271 
272 	if (board_is_bone() || board_is_bone_lt()) {
273 		/* BeagleBone PMIC Code */
274 		int usb_cur_lim;
275 
276 		/*
277 		 * Only perform PMIC configurations if board rev > A1
278 		 * on Beaglebone White
279 		 */
280 		if (board_is_bone() && !strncmp(board_ti_get_rev(), "00A1", 4))
281 			return;
282 
283 		if (i2c_probe(TPS65217_CHIP_PM))
284 			return;
285 
286 		/*
287 		 * On Beaglebone White we need to ensure we have AC power
288 		 * before increasing the frequency.
289 		 */
290 		if (board_is_bone()) {
291 			uchar pmic_status_reg;
292 			if (tps65217_reg_read(TPS65217_STATUS,
293 					      &pmic_status_reg))
294 				return;
295 			if (!(pmic_status_reg & TPS65217_PWR_SRC_AC_BITMASK)) {
296 				puts("No AC power, disabling frequency switch\n");
297 				return;
298 			}
299 		}
300 
301 		/*
302 		 * Override what we have detected since we know if we have
303 		 * a Beaglebone Black it supports 1GHz.
304 		 */
305 		if (board_is_bone_lt())
306 			dpll_mpu_opp100.m = MPUPLL_M_1000;
307 
308 		/*
309 		 * Increase USB current limit to 1300mA or 1800mA and set
310 		 * the MPU voltage controller as needed.
311 		 */
312 		if (dpll_mpu_opp100.m == MPUPLL_M_1000) {
313 			usb_cur_lim = TPS65217_USB_INPUT_CUR_LIMIT_1800MA;
314 			mpu_vdd = TPS65217_DCDC_VOLT_SEL_1325MV;
315 		} else {
316 			usb_cur_lim = TPS65217_USB_INPUT_CUR_LIMIT_1300MA;
317 			mpu_vdd = TPS65217_DCDC_VOLT_SEL_1275MV;
318 		}
319 
320 		if (tps65217_reg_write(TPS65217_PROT_LEVEL_NONE,
321 				       TPS65217_POWER_PATH,
322 				       usb_cur_lim,
323 				       TPS65217_USB_INPUT_CUR_LIMIT_MASK))
324 			puts("tps65217_reg_write failure\n");
325 
326 		/* Set DCDC3 (CORE) voltage to 1.125V */
327 		if (tps65217_voltage_update(TPS65217_DEFDCDC3,
328 					    TPS65217_DCDC_VOLT_SEL_1125MV)) {
329 			puts("tps65217_voltage_update failure\n");
330 			return;
331 		}
332 
333 		/* Set CORE Frequencies to OPP100 */
334 		do_setup_dpll(&dpll_core_regs, &dpll_core_opp100);
335 
336 		/* Set DCDC2 (MPU) voltage */
337 		if (tps65217_voltage_update(TPS65217_DEFDCDC2, mpu_vdd)) {
338 			puts("tps65217_voltage_update failure\n");
339 			return;
340 		}
341 
342 		/*
343 		 * Set LDO3, LDO4 output voltage to 3.3V for Beaglebone.
344 		 * Set LDO3 to 1.8V and LDO4 to 3.3V for Beaglebone Black.
345 		 */
346 		if (board_is_bone()) {
347 			if (tps65217_reg_write(TPS65217_PROT_LEVEL_2,
348 					       TPS65217_DEFLS1,
349 					       TPS65217_LDO_VOLTAGE_OUT_3_3,
350 					       TPS65217_LDO_MASK))
351 				puts("tps65217_reg_write failure\n");
352 		} else {
353 			if (tps65217_reg_write(TPS65217_PROT_LEVEL_2,
354 					       TPS65217_DEFLS1,
355 					       TPS65217_LDO_VOLTAGE_OUT_1_8,
356 					       TPS65217_LDO_MASK))
357 				puts("tps65217_reg_write failure\n");
358 		}
359 
360 		if (tps65217_reg_write(TPS65217_PROT_LEVEL_2,
361 				       TPS65217_DEFLS2,
362 				       TPS65217_LDO_VOLTAGE_OUT_3_3,
363 				       TPS65217_LDO_MASK))
364 			puts("tps65217_reg_write failure\n");
365 	} else {
366 		int sil_rev;
367 
368 		/*
369 		 * The GP EVM, IDK and EVM SK use a TPS65910 PMIC.  For all
370 		 * MPU frequencies we support we use a CORE voltage of
371 		 * 1.1375V.  For MPU voltage we need to switch based on
372 		 * the frequency we are running at.
373 		 */
374 		if (i2c_probe(TPS65910_CTRL_I2C_ADDR))
375 			return;
376 
377 		/*
378 		 * Depending on MPU clock and PG we will need a different
379 		 * VDD to drive at that speed.
380 		 */
381 		sil_rev = readl(&cdev->deviceid) >> 28;
382 		mpu_vdd = am335x_get_tps65910_mpu_vdd(sil_rev,
383 						      dpll_mpu_opp100.m);
384 
385 		/* Tell the TPS65910 to use i2c */
386 		tps65910_set_i2c_control();
387 
388 		/* First update MPU voltage. */
389 		if (tps65910_voltage_update(MPU, mpu_vdd))
390 			return;
391 
392 		/* Second, update the CORE voltage. */
393 		if (tps65910_voltage_update(CORE, TPS65910_OP_REG_SEL_1_1_3))
394 			return;
395 
396 		/* Set CORE Frequencies to OPP100 */
397 		do_setup_dpll(&dpll_core_regs, &dpll_core_opp100);
398 	}
399 
400 	/* Set MPU Frequency to what we detected now that voltages are set */
401 	do_setup_dpll(&dpll_mpu_regs, &dpll_mpu_opp100);
402 }
403 
404 const struct dpll_params *get_dpll_ddr_params(void)
405 {
406 	if (board_is_evm_sk())
407 		return &dpll_ddr_evm_sk;
408 	else if (board_is_bone_lt() || board_is_icev2())
409 		return &dpll_ddr_bone_black;
410 	else if (board_is_evm_15_or_later())
411 		return &dpll_ddr_evm_sk;
412 	else
413 		return &dpll_ddr;
414 }
415 
416 void set_uart_mux_conf(void)
417 {
418 #if CONFIG_CONS_INDEX == 1
419 	enable_uart0_pin_mux();
420 #elif CONFIG_CONS_INDEX == 2
421 	enable_uart1_pin_mux();
422 #elif CONFIG_CONS_INDEX == 3
423 	enable_uart2_pin_mux();
424 #elif CONFIG_CONS_INDEX == 4
425 	enable_uart3_pin_mux();
426 #elif CONFIG_CONS_INDEX == 5
427 	enable_uart4_pin_mux();
428 #elif CONFIG_CONS_INDEX == 6
429 	enable_uart5_pin_mux();
430 #endif
431 }
432 
433 void set_mux_conf_regs(void)
434 {
435 	enable_board_pin_mux();
436 }
437 
438 const struct ctrl_ioregs ioregs_evmsk = {
439 	.cm0ioctl		= MT41J128MJT125_IOCTRL_VALUE,
440 	.cm1ioctl		= MT41J128MJT125_IOCTRL_VALUE,
441 	.cm2ioctl		= MT41J128MJT125_IOCTRL_VALUE,
442 	.dt0ioctl		= MT41J128MJT125_IOCTRL_VALUE,
443 	.dt1ioctl		= MT41J128MJT125_IOCTRL_VALUE,
444 };
445 
446 const struct ctrl_ioregs ioregs_bonelt = {
447 	.cm0ioctl		= MT41K256M16HA125E_IOCTRL_VALUE,
448 	.cm1ioctl		= MT41K256M16HA125E_IOCTRL_VALUE,
449 	.cm2ioctl		= MT41K256M16HA125E_IOCTRL_VALUE,
450 	.dt0ioctl		= MT41K256M16HA125E_IOCTRL_VALUE,
451 	.dt1ioctl		= MT41K256M16HA125E_IOCTRL_VALUE,
452 };
453 
454 const struct ctrl_ioregs ioregs_evm15 = {
455 	.cm0ioctl		= MT41J512M8RH125_IOCTRL_VALUE,
456 	.cm1ioctl		= MT41J512M8RH125_IOCTRL_VALUE,
457 	.cm2ioctl		= MT41J512M8RH125_IOCTRL_VALUE,
458 	.dt0ioctl		= MT41J512M8RH125_IOCTRL_VALUE,
459 	.dt1ioctl		= MT41J512M8RH125_IOCTRL_VALUE,
460 };
461 
462 const struct ctrl_ioregs ioregs = {
463 	.cm0ioctl		= MT47H128M16RT25E_IOCTRL_VALUE,
464 	.cm1ioctl		= MT47H128M16RT25E_IOCTRL_VALUE,
465 	.cm2ioctl		= MT47H128M16RT25E_IOCTRL_VALUE,
466 	.dt0ioctl		= MT47H128M16RT25E_IOCTRL_VALUE,
467 	.dt1ioctl		= MT47H128M16RT25E_IOCTRL_VALUE,
468 };
469 
470 void sdram_init(void)
471 {
472 	if (board_is_evm_sk()) {
473 		/*
474 		 * EVM SK 1.2A and later use gpio0_7 to enable DDR3.
475 		 * This is safe enough to do on older revs.
476 		 */
477 		gpio_request(GPIO_DDR_VTT_EN, "ddr_vtt_en");
478 		gpio_direction_output(GPIO_DDR_VTT_EN, 1);
479 	}
480 
481 	if (board_is_icev2()) {
482 		gpio_request(ICE_GPIO_DDR_VTT_EN, "ddr_vtt_en");
483 		gpio_direction_output(ICE_GPIO_DDR_VTT_EN, 1);
484 	}
485 
486 	if (board_is_evm_sk())
487 		config_ddr(303, &ioregs_evmsk, &ddr3_data,
488 			   &ddr3_cmd_ctrl_data, &ddr3_emif_reg_data, 0);
489 	else if (board_is_bone_lt())
490 		config_ddr(400, &ioregs_bonelt,
491 			   &ddr3_beagleblack_data,
492 			   &ddr3_beagleblack_cmd_ctrl_data,
493 			   &ddr3_beagleblack_emif_reg_data, 0);
494 	else if (board_is_evm_15_or_later())
495 		config_ddr(303, &ioregs_evm15, &ddr3_evm_data,
496 			   &ddr3_evm_cmd_ctrl_data, &ddr3_evm_emif_reg_data, 0);
497 	else if (board_is_icev2())
498 		config_ddr(400, &ioregs_evmsk, &ddr3_icev2_data,
499 			   &ddr3_icev2_cmd_ctrl_data, &ddr3_icev2_emif_reg_data,
500 			   0);
501 	else if (board_is_gp_evm())
502 		config_ddr(266, &ioregs, &ddr2_data,
503 			   &ddr2_cmd_ctrl_data, &ddr2_evm_emif_reg_data, 0);
504 	else
505 		config_ddr(266, &ioregs, &ddr2_data,
506 			   &ddr2_cmd_ctrl_data, &ddr2_emif_reg_data, 0);
507 }
508 #endif
509 
510 #if !defined(CONFIG_SPL_BUILD) || \
511 	(defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD))
512 static void request_and_set_gpio(int gpio, char *name, int val)
513 {
514 	int ret;
515 
516 	ret = gpio_request(gpio, name);
517 	if (ret < 0) {
518 		printf("%s: Unable to request %s\n", __func__, name);
519 		return;
520 	}
521 
522 	ret = gpio_direction_output(gpio, 0);
523 	if (ret < 0) {
524 		printf("%s: Unable to set %s  as output\n", __func__, name);
525 		goto err_free_gpio;
526 	}
527 
528 	gpio_set_value(gpio, val);
529 
530 	return;
531 
532 err_free_gpio:
533 	gpio_free(gpio);
534 }
535 
536 #define REQUEST_AND_SET_GPIO(N)	request_and_set_gpio(N, #N, 1);
537 #define REQUEST_AND_CLR_GPIO(N)	request_and_set_gpio(N, #N, 0);
538 
539 /**
540  * RMII mode on ICEv2 board needs 50MHz clock. Given the clock
541  * synthesizer With a capacitor of 18pF, and 25MHz input clock cycle
542  * PLL1 gives an output of 100MHz. So, configuring the div2/3 as 2 to
543  * give 50MHz output for Eth0 and 1.
544  */
545 static struct clk_synth cdce913_data = {
546 	.id = 0x81,
547 	.capacitor = 0x90,
548 	.mux = 0x6d,
549 	.pdiv2 = 0x2,
550 	.pdiv3 = 0x2,
551 };
552 #endif
553 
554 /*
555  * Basic board specific setup.  Pinmux has been handled already.
556  */
557 int board_init(void)
558 {
559 #if defined(CONFIG_HW_WATCHDOG)
560 	hw_watchdog_init();
561 #endif
562 
563 	gd->bd->bi_boot_params = CONFIG_SYS_SDRAM_BASE + 0x100;
564 #if defined(CONFIG_NOR) || defined(CONFIG_NAND)
565 	gpmc_init();
566 #endif
567 
568 #if !defined(CONFIG_SPL_BUILD) || \
569 	(defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD))
570 	if (board_is_icev2()) {
571 		int rv;
572 		u32 reg;
573 
574 		REQUEST_AND_SET_GPIO(GPIO_PR1_MII_CTRL);
575 		/* Make J19 status available on GPIO1_26 */
576 		REQUEST_AND_CLR_GPIO(GPIO_MUX_MII_CTRL);
577 
578 		REQUEST_AND_SET_GPIO(GPIO_FET_SWITCH_CTRL);
579 		/*
580 		 * Both ports can be set as RMII-CPSW or MII-PRU-ETH using
581 		 * jumpers near the port. Read the jumper value and set
582 		 * the pinmux, external mux and PHY clock accordingly.
583 		 * As jumper line is overridden by PHY RX_DV pin immediately
584 		 * after bootstrap (power-up/reset), we need to sample
585 		 * it during PHY reset using GPIO rising edge detection.
586 		 */
587 		REQUEST_AND_SET_GPIO(GPIO_PHY_RESET);
588 		/* Enable rising edge IRQ on GPIO0_11 and GPIO 1_26 */
589 		reg = readl(GPIO0_RISINGDETECT) | BIT(11);
590 		writel(reg, GPIO0_RISINGDETECT);
591 		reg = readl(GPIO1_RISINGDETECT) | BIT(26);
592 		writel(reg, GPIO1_RISINGDETECT);
593 		/* Reset PHYs to capture the Jumper setting */
594 		gpio_set_value(GPIO_PHY_RESET, 0);
595 		udelay(2);	/* PHY datasheet states 1uS min. */
596 		gpio_set_value(GPIO_PHY_RESET, 1);
597 
598 		reg = readl(GPIO0_IRQSTATUSRAW) & BIT(11);
599 		if (reg) {
600 			writel(reg, GPIO0_IRQSTATUS1); /* clear irq */
601 			/* RMII mode */
602 			printf("ETH0, CPSW\n");
603 		} else {
604 			/* MII mode */
605 			printf("ETH0, PRU\n");
606 			cdce913_data.pdiv3 = 4;	/* 25MHz PHY clk */
607 		}
608 
609 		reg = readl(GPIO1_IRQSTATUSRAW) & BIT(26);
610 		if (reg) {
611 			writel(reg, GPIO1_IRQSTATUS1); /* clear irq */
612 			/* RMII mode */
613 			printf("ETH1, CPSW\n");
614 			gpio_set_value(GPIO_MUX_MII_CTRL, 1);
615 		} else {
616 			/* MII mode */
617 			printf("ETH1, PRU\n");
618 			cdce913_data.pdiv2 = 4;	/* 25MHz PHY clk */
619 		}
620 
621 		/* disable rising edge IRQs */
622 		reg = readl(GPIO0_RISINGDETECT) & ~BIT(11);
623 		writel(reg, GPIO0_RISINGDETECT);
624 		reg = readl(GPIO1_RISINGDETECT) & ~BIT(26);
625 		writel(reg, GPIO1_RISINGDETECT);
626 
627 		rv = setup_clock_synthesizer(&cdce913_data);
628 		if (rv) {
629 			printf("Clock synthesizer setup failed %d\n", rv);
630 			return rv;
631 		}
632 
633 		/* reset PHYs */
634 		gpio_set_value(GPIO_PHY_RESET, 0);
635 		udelay(2);	/* PHY datasheet states 1uS min. */
636 		gpio_set_value(GPIO_PHY_RESET, 1);
637 	}
638 #endif
639 
640 	return 0;
641 }
642 
643 #ifdef CONFIG_BOARD_LATE_INIT
644 int board_late_init(void)
645 {
646 #if !defined(CONFIG_SPL_BUILD)
647 	uint8_t mac_addr[6];
648 	uint32_t mac_hi, mac_lo;
649 #endif
650 
651 #ifdef CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG
652 	char *name = NULL;
653 
654 	if (board_is_bbg1())
655 		name = "BBG1";
656 	set_board_info_env(name);
657 
658 	/*
659 	 * Default FIT boot on HS devices. Non FIT images are not allowed
660 	 * on HS devices.
661 	 */
662 	if (get_device_type() == HS_DEVICE)
663 		setenv("boot_fit", "1");
664 #endif
665 
666 #if !defined(CONFIG_SPL_BUILD)
667 	/* try reading mac address from efuse */
668 	mac_lo = readl(&cdev->macid0l);
669 	mac_hi = readl(&cdev->macid0h);
670 	mac_addr[0] = mac_hi & 0xFF;
671 	mac_addr[1] = (mac_hi & 0xFF00) >> 8;
672 	mac_addr[2] = (mac_hi & 0xFF0000) >> 16;
673 	mac_addr[3] = (mac_hi & 0xFF000000) >> 24;
674 	mac_addr[4] = mac_lo & 0xFF;
675 	mac_addr[5] = (mac_lo & 0xFF00) >> 8;
676 
677 	if (!getenv("ethaddr")) {
678 		printf("<ethaddr> not set. Validating first E-fuse MAC\n");
679 
680 		if (is_valid_ethaddr(mac_addr))
681 			eth_setenv_enetaddr("ethaddr", mac_addr);
682 	}
683 
684 	mac_lo = readl(&cdev->macid1l);
685 	mac_hi = readl(&cdev->macid1h);
686 	mac_addr[0] = mac_hi & 0xFF;
687 	mac_addr[1] = (mac_hi & 0xFF00) >> 8;
688 	mac_addr[2] = (mac_hi & 0xFF0000) >> 16;
689 	mac_addr[3] = (mac_hi & 0xFF000000) >> 24;
690 	mac_addr[4] = mac_lo & 0xFF;
691 	mac_addr[5] = (mac_lo & 0xFF00) >> 8;
692 
693 	if (!getenv("eth1addr")) {
694 		if (is_valid_ethaddr(mac_addr))
695 			eth_setenv_enetaddr("eth1addr", mac_addr);
696 	}
697 #endif
698 
699 	return 0;
700 }
701 #endif
702 
703 #ifndef CONFIG_DM_ETH
704 
705 #if (defined(CONFIG_DRIVER_TI_CPSW) && !defined(CONFIG_SPL_BUILD)) || \
706 	(defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD))
707 static void cpsw_control(int enabled)
708 {
709 	/* VTP can be added here */
710 
711 	return;
712 }
713 
714 static struct cpsw_slave_data cpsw_slaves[] = {
715 	{
716 		.slave_reg_ofs	= 0x208,
717 		.sliver_reg_ofs	= 0xd80,
718 		.phy_addr	= 0,
719 	},
720 	{
721 		.slave_reg_ofs	= 0x308,
722 		.sliver_reg_ofs	= 0xdc0,
723 		.phy_addr	= 1,
724 	},
725 };
726 
727 static struct cpsw_platform_data cpsw_data = {
728 	.mdio_base		= CPSW_MDIO_BASE,
729 	.cpsw_base		= CPSW_BASE,
730 	.mdio_div		= 0xff,
731 	.channels		= 8,
732 	.cpdma_reg_ofs		= 0x800,
733 	.slaves			= 1,
734 	.slave_data		= cpsw_slaves,
735 	.ale_reg_ofs		= 0xd00,
736 	.ale_entries		= 1024,
737 	.host_port_reg_ofs	= 0x108,
738 	.hw_stats_reg_ofs	= 0x900,
739 	.bd_ram_ofs		= 0x2000,
740 	.mac_control		= (1 << 5),
741 	.control		= cpsw_control,
742 	.host_port_num		= 0,
743 	.version		= CPSW_CTRL_VERSION_2,
744 };
745 #endif
746 
747 #if ((defined(CONFIG_SPL_ETH_SUPPORT) || defined(CONFIG_SPL_USBETH_SUPPORT)) &&\
748 	defined(CONFIG_SPL_BUILD)) || \
749 	((defined(CONFIG_DRIVER_TI_CPSW) || \
750 	  defined(CONFIG_USB_ETHER) && defined(CONFIG_MUSB_GADGET)) && \
751 	 !defined(CONFIG_SPL_BUILD))
752 
753 /*
754  * This function will:
755  * Read the eFuse for MAC addresses, and set ethaddr/eth1addr/usbnet_devaddr
756  * in the environment
757  * Perform fixups to the PHY present on certain boards.  We only need this
758  * function in:
759  * - SPL with either CPSW or USB ethernet support
760  * - Full U-Boot, with either CPSW or USB ethernet
761  * Build in only these cases to avoid warnings about unused variables
762  * when we build an SPL that has neither option but full U-Boot will.
763  */
764 int board_eth_init(bd_t *bis)
765 {
766 	int rv, n = 0;
767 #if defined(CONFIG_USB_ETHER) && \
768 	(!defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_USBETH_SUPPORT))
769 	uint8_t mac_addr[6];
770 	uint32_t mac_hi, mac_lo;
771 
772 	/*
773 	 * use efuse mac address for USB ethernet as we know that
774 	 * both CPSW and USB ethernet will never be active at the same time
775 	 */
776 	mac_lo = readl(&cdev->macid0l);
777 	mac_hi = readl(&cdev->macid0h);
778 	mac_addr[0] = mac_hi & 0xFF;
779 	mac_addr[1] = (mac_hi & 0xFF00) >> 8;
780 	mac_addr[2] = (mac_hi & 0xFF0000) >> 16;
781 	mac_addr[3] = (mac_hi & 0xFF000000) >> 24;
782 	mac_addr[4] = mac_lo & 0xFF;
783 	mac_addr[5] = (mac_lo & 0xFF00) >> 8;
784 #endif
785 
786 
787 #if (defined(CONFIG_DRIVER_TI_CPSW) && !defined(CONFIG_SPL_BUILD)) || \
788 	(defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD))
789 
790 #ifdef CONFIG_DRIVER_TI_CPSW
791 	if (board_is_bone() || board_is_bone_lt() ||
792 	    board_is_idk()) {
793 		writel(MII_MODE_ENABLE, &cdev->miisel);
794 		cpsw_slaves[0].phy_if = cpsw_slaves[1].phy_if =
795 				PHY_INTERFACE_MODE_MII;
796 	} else if (board_is_icev2()) {
797 		writel(RMII_MODE_ENABLE | RMII_CHIPCKL_ENABLE, &cdev->miisel);
798 		cpsw_slaves[0].phy_if = PHY_INTERFACE_MODE_RMII;
799 		cpsw_slaves[1].phy_if = PHY_INTERFACE_MODE_RMII;
800 		cpsw_slaves[0].phy_addr = 1;
801 		cpsw_slaves[1].phy_addr = 3;
802 	} else {
803 		writel((RGMII_MODE_ENABLE | RGMII_INT_DELAY), &cdev->miisel);
804 		cpsw_slaves[0].phy_if = cpsw_slaves[1].phy_if =
805 				PHY_INTERFACE_MODE_RGMII;
806 	}
807 
808 	rv = cpsw_register(&cpsw_data);
809 	if (rv < 0)
810 		printf("Error %d registering CPSW switch\n", rv);
811 	else
812 		n += rv;
813 #endif
814 
815 	/*
816 	 *
817 	 * CPSW RGMII Internal Delay Mode is not supported in all PVT
818 	 * operating points.  So we must set the TX clock delay feature
819 	 * in the AR8051 PHY.  Since we only support a single ethernet
820 	 * device in U-Boot, we only do this for the first instance.
821 	 */
822 #define AR8051_PHY_DEBUG_ADDR_REG	0x1d
823 #define AR8051_PHY_DEBUG_DATA_REG	0x1e
824 #define AR8051_DEBUG_RGMII_CLK_DLY_REG	0x5
825 #define AR8051_RGMII_TX_CLK_DLY		0x100
826 
827 	if (board_is_evm_sk() || board_is_gp_evm()) {
828 		const char *devname;
829 		devname = miiphy_get_current_dev();
830 
831 		miiphy_write(devname, 0x0, AR8051_PHY_DEBUG_ADDR_REG,
832 				AR8051_DEBUG_RGMII_CLK_DLY_REG);
833 		miiphy_write(devname, 0x0, AR8051_PHY_DEBUG_DATA_REG,
834 				AR8051_RGMII_TX_CLK_DLY);
835 	}
836 #endif
837 #if defined(CONFIG_USB_ETHER) && \
838 	(!defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_USBETH_SUPPORT))
839 	if (is_valid_ethaddr(mac_addr))
840 		eth_setenv_enetaddr("usbnet_devaddr", mac_addr);
841 
842 	rv = usb_eth_initialize(bis);
843 	if (rv < 0)
844 		printf("Error %d registering USB_ETHER\n", rv);
845 	else
846 		n += rv;
847 #endif
848 	return n;
849 }
850 #endif
851 
852 #endif /* CONFIG_DM_ETH */
853 
854 #ifdef CONFIG_SPL_LOAD_FIT
855 int board_fit_config_name_match(const char *name)
856 {
857 	if (board_is_gp_evm() && !strcmp(name, "am335x-evm"))
858 		return 0;
859 	else if (board_is_bone() && !strcmp(name, "am335x-bone"))
860 		return 0;
861 	else if (board_is_bone_lt() && !strcmp(name, "am335x-boneblack"))
862 		return 0;
863 	else if (board_is_evm_sk() && !strcmp(name, "am335x-evmsk"))
864 		return 0;
865 	else if (board_is_bbg1() && !strcmp(name, "am335x-bonegreen"))
866 		return 0;
867 	else if (board_is_icev2() && !strcmp(name, "am335x-icev2"))
868 		return 0;
869 	else
870 		return -1;
871 }
872 #endif
873 
874 #ifdef CONFIG_TI_SECURE_DEVICE
875 void board_fit_image_post_process(void **p_image, size_t *p_size)
876 {
877 	secure_boot_verify_image(p_image, p_size);
878 }
879 #endif
880