xref: /openbmc/u-boot/board/freescale/t4qds/t4240qds.c (revision 4810400ec963721f0488ba98128955176c1869e1)
1 /*
2  * Copyright 2009-2012 Freescale Semiconductor, Inc.
3  *
4  * SPDX-License-Identifier:	GPL-2.0+
5  */
6 
7 #include <common.h>
8 #include <command.h>
9 #include <i2c.h>
10 #include <netdev.h>
11 #include <linux/compiler.h>
12 #include <asm/mmu.h>
13 #include <asm/processor.h>
14 #include <asm/cache.h>
15 #include <asm/immap_85xx.h>
16 #include <asm/fsl_law.h>
17 #include <asm/fsl_serdes.h>
18 #include <asm/fsl_portals.h>
19 #include <asm/fsl_liodn.h>
20 #include <fm_eth.h>
21 
22 #include "../common/qixis.h"
23 #include "../common/vsc3316_3308.h"
24 #include "t4qds.h"
25 #include "t4240qds_qixis.h"
26 
27 DECLARE_GLOBAL_DATA_PTR;
28 
29 static int8_t vsc3316_fsm1_tx[8][2] = { {0, 0}, {1, 1}, {6, 6}, {7, 7},
30 				{8, 8}, {9, 9}, {14, 14}, {15, 15} };
31 
32 static int8_t vsc3316_fsm2_tx[8][2] = { {2, 2}, {3, 3}, {4, 4}, {5, 5},
33 				{10, 10}, {11, 11}, {12, 12}, {13, 13} };
34 
35 static int8_t vsc3316_fsm1_rx[8][2] = { {2, 12}, {3, 13}, {4, 5}, {5, 4},
36 				{10, 11}, {11, 10}, {12, 2}, {13, 3} };
37 
38 static int8_t vsc3316_fsm2_rx[8][2] = { {0, 15}, {1, 14}, {6, 7}, {7, 6},
39 				{8, 9}, {9, 8}, {14, 1}, {15, 0} };
40 
41 int checkboard(void)
42 {
43 	char buf[64];
44 	u8 sw;
45 	struct cpu_type *cpu = gd->arch.cpu;
46 	unsigned int i;
47 
48 	printf("Board: %sQDS, ", cpu->name);
49 	printf("Sys ID: 0x%02x, Sys Ver: 0x%02x, ",
50 	       QIXIS_READ(id), QIXIS_READ(arch));
51 
52 	sw = QIXIS_READ(brdcfg[0]);
53 	sw = (sw & QIXIS_LBMAP_MASK) >> QIXIS_LBMAP_SHIFT;
54 
55 	if (sw < 0x8)
56 		printf("vBank: %d\n", sw);
57 	else if (sw == 0x8)
58 		puts("Promjet\n");
59 	else if (sw == 0x9)
60 		puts("NAND\n");
61 	else
62 		printf("invalid setting of SW%u\n", QIXIS_LBMAP_SWITCH);
63 
64 	printf("FPGA: v%d (%s), build %d",
65 	       (int)QIXIS_READ(scver), qixis_read_tag(buf),
66 	       (int)qixis_read_minor());
67 	/* the timestamp string contains "\n" at the end */
68 	printf(" on %s", qixis_read_time(buf));
69 
70 	/*
71 	 * Display the actual SERDES reference clocks as configured by the
72 	 * dip switches on the board.  Note that the SWx registers could
73 	 * technically be set to force the reference clocks to match the
74 	 * values that the SERDES expects (or vice versa).  For now, however,
75 	 * we just display both values and hope the user notices when they
76 	 * don't match.
77 	 */
78 	puts("SERDES Reference Clocks: ");
79 	sw = QIXIS_READ(brdcfg[2]);
80 	for (i = 0; i < MAX_SERDES; i++) {
81 		static const char * const freq[] = {
82 			"100", "125", "156.25", "161.1328125"};
83 		unsigned int clock = (sw >> (6 - 2 * i)) & 3;
84 
85 		printf("SERDES%u=%sMHz ", i+1, freq[clock]);
86 	}
87 	puts("\n");
88 
89 	return 0;
90 }
91 
92 int select_i2c_ch_pca9547(u8 ch)
93 {
94 	int ret;
95 
96 	ret = i2c_write(I2C_MUX_PCA_ADDR_PRI, 0, 1, &ch, 1);
97 	if (ret) {
98 		puts("PCA: failed to select proper channel\n");
99 		return ret;
100 	}
101 
102 	return 0;
103 }
104 
105 /*
106  * read_voltage from sensor on I2C bus
107  * We use average of 4 readings, waiting for 532us befor another reading
108  */
109 #define NUM_READINGS	4	/* prefer to be power of 2 for efficiency */
110 #define WAIT_FOR_ADC	532	/* wait for 532 microseconds for ADC */
111 
112 static inline int read_voltage(void)
113 {
114 	int i, ret, voltage_read = 0;
115 	u16 vol_mon;
116 
117 	for (i = 0; i < NUM_READINGS; i++) {
118 		ret = i2c_read(I2C_VOL_MONITOR_ADDR,
119 			I2C_VOL_MONITOR_BUS_V_OFFSET, 1, (void *)&vol_mon, 2);
120 		if (ret) {
121 			printf("VID: failed to read core voltage\n");
122 			return ret;
123 		}
124 		if (vol_mon & I2C_VOL_MONITOR_BUS_V_OVF) {
125 			printf("VID: Core voltage sensor error\n");
126 			return -1;
127 		}
128 		debug("VID: bus voltage reads 0x%04x\n", vol_mon);
129 		/* LSB = 4mv */
130 		voltage_read += (vol_mon >> I2C_VOL_MONITOR_BUS_V_SHIFT) * 4;
131 		udelay(WAIT_FOR_ADC);
132 	}
133 	/* calculate the average */
134 	voltage_read /= NUM_READINGS;
135 
136 	return voltage_read;
137 }
138 
139 /*
140  * We need to calculate how long before the voltage starts to drop or increase
141  * It returns with the loop count. Each loop takes several readings (532us)
142  */
143 static inline int wait_for_voltage_change(int vdd_last)
144 {
145 	int timeout, vdd_current;
146 
147 	vdd_current = read_voltage();
148 	/* wait until voltage starts to drop */
149 	for (timeout = 0; abs(vdd_last - vdd_current) <= 4 &&
150 		timeout < 100; timeout++) {
151 		vdd_current = read_voltage();
152 	}
153 	if (timeout >= 100) {
154 		printf("VID: Voltage adjustment timeout\n");
155 		return -1;
156 	}
157 	return timeout;
158 }
159 
160 /*
161  * argument 'wait' is the time we know the voltage difference can be measured
162  * this function keeps reading the voltage until it is stable
163  */
164 static inline int wait_for_voltage_stable(int wait)
165 {
166 	int timeout, vdd_current, vdd_last;
167 
168 	vdd_last = read_voltage();
169 	udelay(wait * NUM_READINGS * WAIT_FOR_ADC);
170 	/* wait until voltage is stable */
171 	vdd_current = read_voltage();
172 	for (timeout = 0; abs(vdd_last - vdd_current) >= 4 &&
173 		timeout < 100; timeout++) {
174 		vdd_last = vdd_current;
175 		udelay(wait * NUM_READINGS * WAIT_FOR_ADC);
176 		vdd_current = read_voltage();
177 	}
178 	if (timeout >= 100) {
179 		printf("VID: Voltage adjustment timeout\n");
180 		return -1;
181 	}
182 
183 	return vdd_current;
184 }
185 
186 static inline int set_voltage(u8 vid)
187 {
188 	int wait, vdd_last;
189 
190 	vdd_last = read_voltage();
191 	QIXIS_WRITE(brdcfg[6], vid);
192 	wait = wait_for_voltage_change(vdd_last);
193 	if (wait < 0)
194 		return -1;
195 	debug("VID: Waited %d us\n", wait * NUM_READINGS * WAIT_FOR_ADC);
196 	wait = wait ? wait : 1;
197 
198 	vdd_last = wait_for_voltage_stable(wait);
199 	if (vdd_last < 0)
200 		return -1;
201 	debug("VID: Current voltage is %d mV\n", vdd_last);
202 
203 	return vdd_last;
204 }
205 
206 
207 static int adjust_vdd(ulong vdd_override)
208 {
209 	int re_enable = disable_interrupts();
210 	ccsr_gur_t __iomem *gur =
211 		(void __iomem *)(CONFIG_SYS_MPC85xx_GUTS_ADDR);
212 	u32 fusesr;
213 	u8 vid, vid_current;
214 	int vdd_target, vdd_current, vdd_last;
215 	int ret;
216 	unsigned long vdd_string_override;
217 	char *vdd_string;
218 	static const uint16_t vdd[32] = {
219 		0,	/* unused */
220 		9875,	/* 0.9875V */
221 		9750,
222 		9625,
223 		9500,
224 		9375,
225 		9250,
226 		9125,
227 		9000,
228 		8875,
229 		8750,
230 		8625,
231 		8500,
232 		8375,
233 		8250,
234 		8125,
235 		10000,	/* 1.0000V */
236 		10125,
237 		10250,
238 		10375,
239 		10500,
240 		10625,
241 		10750,
242 		10875,
243 		11000,
244 		0,	/* reserved */
245 	};
246 	struct vdd_drive {
247 		u8 vid;
248 		unsigned voltage;
249 	};
250 
251 	ret = select_i2c_ch_pca9547(I2C_MUX_CH_VOL_MONITOR);
252 	if (ret) {
253 		debug("VID: I2c failed to switch channel\n");
254 		ret = -1;
255 		goto exit;
256 	}
257 
258 	/* get the voltage ID from fuse status register */
259 	fusesr = in_be32(&gur->dcfg_fusesr);
260 	vid = (fusesr >> FSL_CORENET_DCFG_FUSESR_VID_SHIFT) &
261 		FSL_CORENET_DCFG_FUSESR_VID_MASK;
262 	if (vid == FSL_CORENET_DCFG_FUSESR_VID_MASK) {
263 		vid = (fusesr >> FSL_CORENET_DCFG_FUSESR_ALTVID_SHIFT) &
264 			FSL_CORENET_DCFG_FUSESR_ALTVID_MASK;
265 	}
266 	vdd_target = vdd[vid];
267 
268 	/* check override variable for overriding VDD */
269 	vdd_string = getenv("t4240qds_vdd_mv");
270 	if (vdd_override == 0 && vdd_string &&
271 	    !strict_strtoul(vdd_string, 10, &vdd_string_override))
272 		vdd_override = vdd_string_override;
273 	if (vdd_override >= 819 && vdd_override <= 1212) {
274 		vdd_target = vdd_override * 10; /* convert to 1/10 mV */
275 		debug("VDD override is %lu\n", vdd_override);
276 	} else if (vdd_override != 0) {
277 		printf("Invalid value.\n");
278 	}
279 
280 	if (vdd_target == 0) {
281 		debug("VID: VID not used\n");
282 		ret = 0;
283 		goto exit;
284 	} else {
285 		/* round up and divice by 10 to get a value in mV */
286 		vdd_target = DIV_ROUND_UP(vdd_target, 10);
287 		debug("VID: vid = %d mV\n", vdd_target);
288 	}
289 
290 	/*
291 	 * Check current board VID setting
292 	 * Voltage regulator support output to 6.250mv step
293 	 * The highes voltage allowed for this board is (vid=0x40) 1.21250V
294 	 * the lowest is (vid=0x7f) 0.81875V
295 	 */
296 	vid_current =  QIXIS_READ(brdcfg[6]);
297 	vdd_current = 121250 - (vid_current - 0x40) * 625;
298 	debug("VID: Current vid setting is (0x%x) %d mV\n",
299 	      vid_current, vdd_current/100);
300 
301 	/*
302 	 * Read voltage monitor to check real voltage.
303 	 * Voltage monitor LSB is 4mv.
304 	 */
305 	vdd_last = read_voltage();
306 	if (vdd_last < 0) {
307 		printf("VID: Could not read voltage sensor abort VID adjustment\n");
308 		ret = -1;
309 		goto exit;
310 	}
311 	debug("VID: Core voltage is at %d mV\n", vdd_last);
312 	/*
313 	 * Adjust voltage to at or 8mV above target.
314 	 * Each step of adjustment is 6.25mV.
315 	 * Stepping down too fast may cause over current.
316 	 */
317 	while (vdd_last > 0 && vid_current < 0x80 &&
318 		vdd_last > (vdd_target + 8)) {
319 		vid_current++;
320 		vdd_last = set_voltage(vid_current);
321 	}
322 	/*
323 	 * Check if we need to step up
324 	 * This happens when board voltage switch was set too low
325 	 */
326 	while (vdd_last > 0 && vid_current >= 0x40 &&
327 		vdd_last < vdd_target + 2) {
328 		vid_current--;
329 		vdd_last = set_voltage(vid_current);
330 	}
331 	if (vdd_last > 0)
332 		printf("VID: Core voltage %d mV\n", vdd_last);
333 	else
334 		ret = -1;
335 
336 exit:
337 	if (re_enable)
338 		enable_interrupts();
339 	return ret;
340 }
341 
342 /* Configure Crossbar switches for Front-Side SerDes Ports */
343 int config_frontside_crossbar_vsc3316(void)
344 {
345 	ccsr_gur_t *gur = (void *)(CONFIG_SYS_MPC85xx_GUTS_ADDR);
346 	u32 srds_prtcl_s1, srds_prtcl_s2;
347 	int ret;
348 
349 	ret = select_i2c_ch_pca9547(I2C_MUX_CH_VSC3316_FS);
350 	if (ret)
351 		return ret;
352 
353 	srds_prtcl_s1 = in_be32(&gur->rcwsr[4]) &
354 			FSL_CORENET2_RCWSR4_SRDS1_PRTCL;
355 	srds_prtcl_s1 >>= FSL_CORENET2_RCWSR4_SRDS1_PRTCL_SHIFT;
356 	switch (srds_prtcl_s1) {
357 	case 38:
358 		/* swap first lane and third lane on slot1 */
359 		vsc3316_fsm1_tx[0][1] = 14;
360 		vsc3316_fsm1_tx[6][1] = 0;
361 		vsc3316_fsm1_rx[1][1] = 2;
362 		vsc3316_fsm1_rx[6][1] = 13;
363 	case 40:
364 	case 46:
365 	case 48:
366 		/* swap first lane and third lane on slot2 */
367 		vsc3316_fsm1_tx[2][1] = 8;
368 		vsc3316_fsm1_tx[4][1] = 6;
369 		vsc3316_fsm1_rx[2][1] = 10;
370 		vsc3316_fsm1_rx[5][1] = 5;
371 	default:
372 		ret = vsc3316_config(VSC3316_FSM_TX_ADDR, vsc3316_fsm1_tx, 8);
373 		if (ret)
374 			return ret;
375 		ret = vsc3316_config(VSC3316_FSM_RX_ADDR, vsc3316_fsm1_rx, 8);
376 		if (ret)
377 			return ret;
378 		break;
379 	}
380 
381 	srds_prtcl_s2 = in_be32(&gur->rcwsr[4]) &
382 				FSL_CORENET2_RCWSR4_SRDS2_PRTCL;
383 	srds_prtcl_s2 >>= FSL_CORENET2_RCWSR4_SRDS2_PRTCL_SHIFT;
384 	switch (srds_prtcl_s2) {
385 	case 38:
386 		/* swap first lane and third lane on slot3 */
387 		vsc3316_fsm2_tx[2][1] = 11;
388 		vsc3316_fsm2_tx[5][1] = 4;
389 		vsc3316_fsm2_rx[2][1] = 9;
390 		vsc3316_fsm2_rx[4][1] = 7;
391 	case 40:
392 	case 46:
393 	case 48:
394 	case 50:
395 	case 52:
396 	case 54:
397 		/* swap first lane and third lane on slot4 */
398 		vsc3316_fsm2_tx[6][1] = 3;
399 		vsc3316_fsm2_tx[1][1] = 12;
400 		vsc3316_fsm2_rx[0][1] = 1;
401 		vsc3316_fsm2_rx[6][1] = 15;
402 	default:
403 		ret = vsc3316_config(VSC3316_FSM_TX_ADDR, vsc3316_fsm2_tx, 8);
404 		if (ret)
405 			return ret;
406 		ret = vsc3316_config(VSC3316_FSM_RX_ADDR, vsc3316_fsm2_rx, 8);
407 		if (ret)
408 			return ret;
409 		break;
410 	}
411 
412 	return 0;
413 }
414 
415 int config_backside_crossbar_mux(void)
416 {
417 	ccsr_gur_t *gur = (void *)(CONFIG_SYS_MPC85xx_GUTS_ADDR);
418 	u32 srds_prtcl_s3, srds_prtcl_s4;
419 	u8 brdcfg;
420 
421 	srds_prtcl_s3 = in_be32(&gur->rcwsr[4]) &
422 			FSL_CORENET2_RCWSR4_SRDS3_PRTCL;
423 	srds_prtcl_s3 >>= FSL_CORENET2_RCWSR4_SRDS3_PRTCL_SHIFT;
424 	switch (srds_prtcl_s3) {
425 	case 0:
426 		/* SerDes3 is not enabled */
427 		break;
428 	case 2:
429 	case 9:
430 	case 10:
431 		/* SD3(0:7) => SLOT5(0:7) */
432 		brdcfg = QIXIS_READ(brdcfg[12]);
433 		brdcfg &= ~BRDCFG12_SD3MX_MASK;
434 		brdcfg |= BRDCFG12_SD3MX_SLOT5;
435 		QIXIS_WRITE(brdcfg[12], brdcfg);
436 		break;
437 	case 4:
438 	case 6:
439 	case 8:
440 	case 12:
441 	case 14:
442 	case 16:
443 	case 17:
444 	case 19:
445 	case 20:
446 		/* SD3(4:7) => SLOT6(0:3) */
447 		brdcfg = QIXIS_READ(brdcfg[12]);
448 		brdcfg &= ~BRDCFG12_SD3MX_MASK;
449 		brdcfg |= BRDCFG12_SD3MX_SLOT6;
450 		QIXIS_WRITE(brdcfg[12], brdcfg);
451 		break;
452 	default:
453 		printf("WARNING: unsupported for SerDes3 Protocol %d\n",
454 		       srds_prtcl_s3);
455 		return -1;
456 	}
457 
458 	srds_prtcl_s4 = in_be32(&gur->rcwsr[4]) &
459 			FSL_CORENET2_RCWSR4_SRDS4_PRTCL;
460 	srds_prtcl_s4 >>= FSL_CORENET2_RCWSR4_SRDS4_PRTCL_SHIFT;
461 	switch (srds_prtcl_s4) {
462 	case 0:
463 		/* SerDes4 is not enabled */
464 		break;
465 	case 2:
466 		/* 10b, SD4(0:7) => SLOT7(0:7) */
467 		brdcfg = QIXIS_READ(brdcfg[12]);
468 		brdcfg &= ~BRDCFG12_SD4MX_MASK;
469 		brdcfg |= BRDCFG12_SD4MX_SLOT7;
470 		QIXIS_WRITE(brdcfg[12], brdcfg);
471 		break;
472 	case 4:
473 	case 6:
474 	case 8:
475 		/* x1b, SD4(4:7) => SLOT8(0:3) */
476 		brdcfg = QIXIS_READ(brdcfg[12]);
477 		brdcfg &= ~BRDCFG12_SD4MX_MASK;
478 		brdcfg |= BRDCFG12_SD4MX_SLOT8;
479 		QIXIS_WRITE(brdcfg[12], brdcfg);
480 		break;
481 	case 10:
482 	case 12:
483 	case 14:
484 	case 16:
485 	case 18:
486 		/* 00b, SD4(4:5) => AURORA, SD4(6:7) => SATA */
487 		brdcfg = QIXIS_READ(brdcfg[12]);
488 		brdcfg &= ~BRDCFG12_SD4MX_MASK;
489 		brdcfg |= BRDCFG12_SD4MX_AURO_SATA;
490 		QIXIS_WRITE(brdcfg[12], brdcfg);
491 		break;
492 	default:
493 		printf("WARNING: unsupported for SerDes4 Protocol %d\n",
494 		       srds_prtcl_s4);
495 		return -1;
496 	}
497 
498 	return 0;
499 }
500 
501 int board_early_init_r(void)
502 {
503 	const unsigned int flashbase = CONFIG_SYS_FLASH_BASE;
504 	const u8 flash_esel = find_tlb_idx((void *)flashbase, 1);
505 
506 	/*
507 	 * Remap Boot flash + PROMJET region to caching-inhibited
508 	 * so that flash can be erased properly.
509 	 */
510 
511 	/* Flush d-cache and invalidate i-cache of any FLASH data */
512 	flush_dcache();
513 	invalidate_icache();
514 
515 	/* invalidate existing TLB entry for flash + promjet */
516 	disable_tlb(flash_esel);
517 
518 	set_tlb(1, flashbase, CONFIG_SYS_FLASH_BASE_PHYS,
519 		MAS3_SX|MAS3_SW|MAS3_SR, MAS2_I|MAS2_G,
520 		0, flash_esel, BOOKE_PAGESZ_256M, 1);
521 
522 	set_liodns();
523 #ifdef CONFIG_SYS_DPAA_QBMAN
524 	setup_portals();
525 #endif
526 
527 	/* Disable remote I2C connection to qixis fpga */
528 	QIXIS_WRITE(brdcfg[5], QIXIS_READ(brdcfg[5]) & ~BRDCFG5_IRE);
529 
530 	/*
531 	 * Adjust core voltage according to voltage ID
532 	 * This function changes I2C mux to channel 2.
533 	 */
534 	if (adjust_vdd(0))
535 		printf("Warning: Adjusting core voltage failed.\n");
536 
537 	/* Configure board SERDES ports crossbar */
538 	config_frontside_crossbar_vsc3316();
539 	config_backside_crossbar_mux();
540 	select_i2c_ch_pca9547(I2C_MUX_CH_DEFAULT);
541 
542 	return 0;
543 }
544 
545 unsigned long get_board_sys_clk(void)
546 {
547 	u8 sysclk_conf = QIXIS_READ(brdcfg[1]);
548 #ifdef CONFIG_FSL_QIXIS_CLOCK_MEASUREMENT
549 	/* use accurate clock measurement */
550 	int freq = QIXIS_READ(clk_freq[0]) << 8 | QIXIS_READ(clk_freq[1]);
551 	int base = QIXIS_READ(clk_base[0]) << 8 | QIXIS_READ(clk_base[1]);
552 	u32 val;
553 
554 	val =  freq * base;
555 	if (val) {
556 		debug("SYS Clock measurement is: %d\n", val);
557 		return val;
558 	} else {
559 		printf("Warning: SYS clock measurement is invalid, using value from brdcfg1.\n");
560 	}
561 #endif
562 
563 	switch (sysclk_conf & 0x0F) {
564 	case QIXIS_SYSCLK_83:
565 		return 83333333;
566 	case QIXIS_SYSCLK_100:
567 		return 100000000;
568 	case QIXIS_SYSCLK_125:
569 		return 125000000;
570 	case QIXIS_SYSCLK_133:
571 		return 133333333;
572 	case QIXIS_SYSCLK_150:
573 		return 150000000;
574 	case QIXIS_SYSCLK_160:
575 		return 160000000;
576 	case QIXIS_SYSCLK_166:
577 		return 166666666;
578 	}
579 	return 66666666;
580 }
581 
582 unsigned long get_board_ddr_clk(void)
583 {
584 	u8 ddrclk_conf = QIXIS_READ(brdcfg[1]);
585 #ifdef CONFIG_FSL_QIXIS_CLOCK_MEASUREMENT
586 	/* use accurate clock measurement */
587 	int freq = QIXIS_READ(clk_freq[2]) << 8 | QIXIS_READ(clk_freq[3]);
588 	int base = QIXIS_READ(clk_base[0]) << 8 | QIXIS_READ(clk_base[1]);
589 	u32 val;
590 
591 	val =  freq * base;
592 	if (val) {
593 		debug("DDR Clock measurement is: %d\n", val);
594 		return val;
595 	} else {
596 		printf("Warning: DDR clock measurement is invalid, using value from brdcfg1.\n");
597 	}
598 #endif
599 
600 	switch ((ddrclk_conf & 0x30) >> 4) {
601 	case QIXIS_DDRCLK_100:
602 		return 100000000;
603 	case QIXIS_DDRCLK_125:
604 		return 125000000;
605 	case QIXIS_DDRCLK_133:
606 		return 133333333;
607 	}
608 	return 66666666;
609 }
610 
611 int misc_init_r(void)
612 {
613 	u8 sw;
614 	serdes_corenet_t *srds_regs =
615 		(void *)CONFIG_SYS_FSL_CORENET_SERDES_ADDR;
616 	u32 actual[MAX_SERDES];
617 	unsigned int i;
618 
619 	sw = QIXIS_READ(brdcfg[2]);
620 	for (i = 0; i < MAX_SERDES; i++) {
621 		unsigned int clock = (sw >> (6 - 2 * i)) & 3;
622 		switch (clock) {
623 		case 0:
624 			actual[i] = SRDS_PLLCR0_RFCK_SEL_100;
625 			break;
626 		case 1:
627 			actual[i] = SRDS_PLLCR0_RFCK_SEL_125;
628 			break;
629 		case 2:
630 			actual[i] = SRDS_PLLCR0_RFCK_SEL_156_25;
631 			break;
632 		case 3:
633 			actual[i] = SRDS_PLLCR0_RFCK_SEL_161_13;
634 			break;
635 		}
636 	}
637 
638 	for (i = 0; i < MAX_SERDES; i++) {
639 		u32 pllcr0 = srds_regs->bank[i].pllcr0;
640 		u32 expected = pllcr0 & SRDS_PLLCR0_RFCK_SEL_MASK;
641 		if (expected != actual[i]) {
642 			printf("Warning: SERDES%u expects reference clock %sMHz, but actual is %sMHz\n",
643 			       i + 1, serdes_clock_to_string(expected),
644 			       serdes_clock_to_string(actual[i]));
645 		}
646 	}
647 
648 	return 0;
649 }
650 
651 void ft_board_setup(void *blob, bd_t *bd)
652 {
653 	phys_addr_t base;
654 	phys_size_t size;
655 
656 	ft_cpu_setup(blob, bd);
657 
658 	base = getenv_bootm_low();
659 	size = getenv_bootm_size();
660 
661 	fdt_fixup_memory(blob, (u64)base, (u64)size);
662 
663 #ifdef CONFIG_PCI
664 	pci_of_setup(blob, bd);
665 #endif
666 
667 	fdt_fixup_liodn(blob);
668 	fdt_fixup_dr_usb(blob, bd);
669 
670 #ifdef CONFIG_SYS_DPAA_FMAN
671 	fdt_fixup_fman_ethernet(blob);
672 	fdt_fixup_board_enet(blob);
673 #endif
674 }
675 
676 /*
677  * This function is called by bdinfo to print detail board information.
678  * As an exmaple for future board, we organize the messages into
679  * several sections. If applicable, the message is in the format of
680  * <name>      = <value>
681  * It should aligned with normal output of bdinfo command.
682  *
683  * Voltage: Core, DDR and another configurable voltages
684  * Clock  : Critical clocks which are not printed already
685  * RCW    : RCW source if not printed already
686  * Misc   : Other important information not in above catagories
687  */
688 void board_detail(void)
689 {
690 	int i;
691 	u8 brdcfg[16], dutcfg[16], rst_ctl;
692 	int vdd, rcwsrc;
693 	static const char * const clk[] = {"66.67", "100", "125", "133.33"};
694 
695 	for (i = 0; i < 16; i++) {
696 		brdcfg[i] = qixis_read(offsetof(struct qixis, brdcfg[0]) + i);
697 		dutcfg[i] = qixis_read(offsetof(struct qixis, dutcfg[0]) + i);
698 	}
699 
700 	/* Voltage secion */
701 	if (!select_i2c_ch_pca9547(I2C_MUX_CH_VOL_MONITOR)) {
702 		vdd = read_voltage();
703 		if (vdd > 0)
704 			printf("Core voltage= %d mV\n", vdd);
705 		select_i2c_ch_pca9547(I2C_MUX_CH_DEFAULT);
706 	}
707 
708 	printf("XVDD        = 1.%d V\n", ((brdcfg[8] & 0xf) - 4) * 5 + 25);
709 
710 	/* clock section */
711 	printf("SYSCLK      = %s MHz\nDDRCLK      = %s MHz\n",
712 	       clk[(brdcfg[11] >> 2) & 0x3], clk[brdcfg[11] & 3]);
713 
714 	/* RCW section */
715 	rcwsrc = (dutcfg[0] << 1) + (dutcfg[1] & 1);
716 	puts("RCW source  = ");
717 	switch (rcwsrc) {
718 	case 0x017:
719 	case 0x01f:
720 		puts("8-bit NOR\n");
721 		break;
722 	case 0x027:
723 	case 0x02F:
724 		puts("16-bit NOR\n");
725 		break;
726 	case 0x040:
727 		puts("SDHC/eMMC\n");
728 		break;
729 	case 0x044:
730 		puts("SPI 16-bit addressing\n");
731 		break;
732 	case 0x045:
733 		puts("SPI 24-bit addressing\n");
734 		break;
735 	case 0x048:
736 		puts("I2C normal addressing\n");
737 		break;
738 	case 0x049:
739 		puts("I2C extended addressing\n");
740 		break;
741 	case 0x108:
742 	case 0x109:
743 	case 0x10a:
744 	case 0x10b:
745 		puts("8-bit NAND, 2KB\n");
746 		break;
747 	default:
748 		if ((rcwsrc >= 0x080) && (rcwsrc <= 0x09f))
749 			puts("Hard-coded RCW\n");
750 		else if ((rcwsrc >= 0x110) && (rcwsrc <= 0x11f))
751 			puts("8-bit NAND, 4KB\n");
752 		else
753 			puts("unknown\n");
754 		break;
755 	}
756 
757 	/* Misc section */
758 	rst_ctl = QIXIS_READ(rst_ctl);
759 	puts("HRESET_REQ  = ");
760 	switch (rst_ctl & 0x30) {
761 	case 0x00:
762 		puts("Ignored\n");
763 		break;
764 	case 0x10:
765 		puts("Assert HRESET\n");
766 		break;
767 	case 0x30:
768 		puts("Reset system\n");
769 		break;
770 	default:
771 		puts("N/A\n");
772 		break;
773 	}
774 }
775 
776 /*
777  * Reverse engineering switch settings.
778  * Some bits cannot be figured out. They will be displayed as
779  * underscore in binary format. mask[] has those bits.
780  * Some bits are calculated differently than the actual switches
781  * if booting with overriding by FPGA.
782  */
783 void qixis_dump_switch(void)
784 {
785 	int i;
786 	u8 sw[9];
787 
788 	/*
789 	 * Any bit with 1 means that bit cannot be reverse engineered.
790 	 * It will be displayed as _ in binary format.
791 	 */
792 	static const u8 mask[] = {0, 0, 0, 0, 0, 0x1, 0xcf, 0x3f, 0x1f};
793 	char buf[10];
794 	u8 brdcfg[16], dutcfg[16];
795 
796 	for (i = 0; i < 16; i++) {
797 		brdcfg[i] = qixis_read(offsetof(struct qixis, brdcfg[0]) + i);
798 		dutcfg[i] = qixis_read(offsetof(struct qixis, dutcfg[0]) + i);
799 	}
800 
801 	sw[0] = dutcfg[0];
802 	sw[1] = (dutcfg[1] << 0x07)		|
803 		((dutcfg[12] & 0xC0) >> 1)	|
804 		((dutcfg[11] & 0xE0) >> 3)	|
805 		((dutcfg[6] & 0x80) >> 6)	|
806 		((dutcfg[1] & 0x80) >> 7);
807 	sw[2] = ((brdcfg[1] & 0x0f) << 4)	|
808 		((brdcfg[1] & 0x30) >> 2)	|
809 		((brdcfg[1] & 0x40) >> 5)	|
810 		((brdcfg[1] & 0x80) >> 7);
811 	sw[3] = brdcfg[2];
812 	sw[4] = ((dutcfg[2] & 0x01) << 7)	|
813 		((dutcfg[2] & 0x06) << 4)	|
814 		((~QIXIS_READ(present)) & 0x10)	|
815 		((brdcfg[3] & 0x80) >> 4)	|
816 		((brdcfg[3] & 0x01) << 2)	|
817 		((brdcfg[6] == 0x62) ? 3 :
818 		((brdcfg[6] == 0x5a) ? 2 :
819 		((brdcfg[6] == 0x5e) ? 1 : 0)));
820 	sw[5] = ((brdcfg[0] & 0x0f) << 4)	|
821 		((QIXIS_READ(rst_ctl) & 0x30) >> 2) |
822 		((brdcfg[0] & 0x40) >> 5);
823 	sw[6] = (brdcfg[11] & 0x20)		|
824 		((brdcfg[5] & 0x02) << 3);
825 	sw[7] = (((~QIXIS_READ(rst_ctl)) & 0x40) << 1) |
826 		((brdcfg[5] & 0x10) << 2);
827 	sw[8] = ((brdcfg[12] & 0x08) << 4)	|
828 		((brdcfg[12] & 0x03) << 5);
829 
830 	puts("DIP switch (reverse-engineering)\n");
831 	for (i = 0; i < 9; i++) {
832 		printf("SW%d         = 0b%s (0x%02x)\n",
833 		       i + 1, byte_to_binary_mask(sw[i], mask[i], buf), sw[i]);
834 	}
835 }
836 
837 static int do_vdd_adjust(cmd_tbl_t *cmdtp,
838 			 int flag, int argc,
839 			 char * const argv[])
840 {
841 	ulong override;
842 
843 	if (argc < 2)
844 		return CMD_RET_USAGE;
845 	if (!strict_strtoul(argv[1], 10, &override))
846 		adjust_vdd(override);	/* the value is checked by callee */
847 	else
848 		return CMD_RET_USAGE;
849 
850 	return 0;
851 }
852 
853 U_BOOT_CMD(
854 	vdd_override, 2, 0, do_vdd_adjust,
855 	"Override VDD",
856 	"- override with the voltage specified in mV, eg. 1050"
857 );
858