xref: /openbmc/u-boot/arch/x86/include/asm/bitops.h (revision 9ec4a67ef342b2dbcecc9721f5369f022ea59b26)
1 #ifndef _I386_BITOPS_H
2 #define _I386_BITOPS_H
3 
4 /*
5  * Copyright 1992, Linus Torvalds.
6  */
7 
8 
9 /*
10  * These have to be done with inline assembly: that way the bit-setting
11  * is guaranteed to be atomic. All bit operations return 0 if the bit
12  * was cleared before the operation and != 0 if it was not.
13  *
14  * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
15  */
16 
17 #include <asm-generic/bitops/fls.h>
18 #include <asm-generic/bitops/__fls.h>
19 #include <asm-generic/bitops/fls64.h>
20 
21 #ifdef CONFIG_SMP
22 #define LOCK_PREFIX "lock ; "
23 #else
24 #define LOCK_PREFIX ""
25 #endif
26 
27 #define ADDR (*(volatile long *) addr)
28 
29 /**
30  * set_bit - Atomically set a bit in memory
31  * @nr: the bit to set
32  * @addr: the address to start counting from
33  *
34  * This function is atomic and may not be reordered.  See __set_bit()
35  * if you do not require the atomic guarantees.
36  * Note that @nr may be almost arbitrarily large; this function is not
37  * restricted to acting on a single-word quantity.
38  */
39 static __inline__ void set_bit(int nr, volatile void * addr)
40 {
41 	__asm__ __volatile__( LOCK_PREFIX
42 		"btsl %1,%0"
43 		:"=m" (ADDR)
44 		:"Ir" (nr));
45 }
46 
47 /**
48  * __set_bit - Set a bit in memory
49  * @nr: the bit to set
50  * @addr: the address to start counting from
51  *
52  * Unlike set_bit(), this function is non-atomic and may be reordered.
53  * If it's called on the same region of memory simultaneously, the effect
54  * may be that only one operation succeeds.
55  */
56 static __inline__ void __set_bit(int nr, volatile void * addr)
57 {
58 	__asm__(
59 		"btsl %1,%0"
60 		:"=m" (ADDR)
61 		:"Ir" (nr));
62 }
63 
64 /**
65  * clear_bit - Clears a bit in memory
66  * @nr: Bit to clear
67  * @addr: Address to start counting from
68  *
69  * clear_bit() is atomic and may not be reordered.  However, it does
70  * not contain a memory barrier, so if it is used for locking purposes,
71  * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
72  * in order to ensure changes are visible on other processors.
73  */
74 static __inline__ void clear_bit(int nr, volatile void * addr)
75 {
76 	__asm__ __volatile__( LOCK_PREFIX
77 		"btrl %1,%0"
78 		:"=m" (ADDR)
79 		:"Ir" (nr));
80 }
81 #define smp_mb__before_clear_bit()	barrier()
82 #define smp_mb__after_clear_bit()	barrier()
83 
84 /**
85  * __change_bit - Toggle a bit in memory
86  * @nr: the bit to set
87  * @addr: the address to start counting from
88  *
89  * Unlike change_bit(), this function is non-atomic and may be reordered.
90  * If it's called on the same region of memory simultaneously, the effect
91  * may be that only one operation succeeds.
92  */
93 static __inline__ void __change_bit(int nr, volatile void * addr)
94 {
95 	__asm__ __volatile__(
96 		"btcl %1,%0"
97 		:"=m" (ADDR)
98 		:"Ir" (nr));
99 }
100 
101 /**
102  * change_bit - Toggle a bit in memory
103  * @nr: Bit to clear
104  * @addr: Address to start counting from
105  *
106  * change_bit() is atomic and may not be reordered.
107  * Note that @nr may be almost arbitrarily large; this function is not
108  * restricted to acting on a single-word quantity.
109  */
110 static __inline__ void change_bit(int nr, volatile void * addr)
111 {
112 	__asm__ __volatile__( LOCK_PREFIX
113 		"btcl %1,%0"
114 		:"=m" (ADDR)
115 		:"Ir" (nr));
116 }
117 
118 /**
119  * test_and_set_bit - Set a bit and return its old value
120  * @nr: Bit to set
121  * @addr: Address to count from
122  *
123  * This operation is atomic and cannot be reordered.
124  * It also implies a memory barrier.
125  */
126 static __inline__ int test_and_set_bit(int nr, volatile void * addr)
127 {
128 	int oldbit;
129 
130 	__asm__ __volatile__( LOCK_PREFIX
131 		"btsl %2,%1\n\tsbbl %0,%0"
132 		:"=r" (oldbit),"=m" (ADDR)
133 		:"Ir" (nr) : "memory");
134 	return oldbit;
135 }
136 
137 /**
138  * __test_and_set_bit - Set a bit and return its old value
139  * @nr: Bit to set
140  * @addr: Address to count from
141  *
142  * This operation is non-atomic and can be reordered.
143  * If two examples of this operation race, one can appear to succeed
144  * but actually fail.  You must protect multiple accesses with a lock.
145  */
146 static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
147 {
148 	int oldbit;
149 
150 	__asm__(
151 		"btsl %2,%1\n\tsbbl %0,%0"
152 		:"=r" (oldbit),"=m" (ADDR)
153 		:"Ir" (nr));
154 	return oldbit;
155 }
156 
157 /**
158  * test_and_clear_bit - Clear a bit and return its old value
159  * @nr: Bit to set
160  * @addr: Address to count from
161  *
162  * This operation is atomic and cannot be reordered.
163  * It also implies a memory barrier.
164  */
165 static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
166 {
167 	int oldbit;
168 
169 	__asm__ __volatile__( LOCK_PREFIX
170 		"btrl %2,%1\n\tsbbl %0,%0"
171 		:"=r" (oldbit),"=m" (ADDR)
172 		:"Ir" (nr) : "memory");
173 	return oldbit;
174 }
175 
176 /**
177  * __test_and_clear_bit - Clear a bit and return its old value
178  * @nr: Bit to set
179  * @addr: Address to count from
180  *
181  * This operation is non-atomic and can be reordered.
182  * If two examples of this operation race, one can appear to succeed
183  * but actually fail.  You must protect multiple accesses with a lock.
184  */
185 static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
186 {
187 	int oldbit;
188 
189 	__asm__(
190 		"btrl %2,%1\n\tsbbl %0,%0"
191 		:"=r" (oldbit),"=m" (ADDR)
192 		:"Ir" (nr));
193 	return oldbit;
194 }
195 
196 /* WARNING: non atomic and it can be reordered! */
197 static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
198 {
199 	int oldbit;
200 
201 	__asm__ __volatile__(
202 		"btcl %2,%1\n\tsbbl %0,%0"
203 		:"=r" (oldbit),"=m" (ADDR)
204 		:"Ir" (nr) : "memory");
205 	return oldbit;
206 }
207 
208 /**
209  * test_and_change_bit - Change a bit and return its new value
210  * @nr: Bit to set
211  * @addr: Address to count from
212  *
213  * This operation is atomic and cannot be reordered.
214  * It also implies a memory barrier.
215  */
216 static __inline__ int test_and_change_bit(int nr, volatile void * addr)
217 {
218 	int oldbit;
219 
220 	__asm__ __volatile__( LOCK_PREFIX
221 		"btcl %2,%1\n\tsbbl %0,%0"
222 		:"=r" (oldbit),"=m" (ADDR)
223 		:"Ir" (nr) : "memory");
224 	return oldbit;
225 }
226 
227 #if 0 /* Fool kernel-doc since it doesn't do macros yet */
228 /**
229  * test_bit - Determine whether a bit is set
230  * @nr: bit number to test
231  * @addr: Address to start counting from
232  */
233 static int test_bit(int nr, const volatile void * addr);
234 #endif
235 
236 static __inline__ int constant_test_bit(int nr, const volatile void * addr)
237 {
238 	return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0;
239 }
240 
241 static __inline__ int variable_test_bit(int nr, volatile void * addr)
242 {
243 	int oldbit;
244 
245 	__asm__ __volatile__(
246 		"btl %2,%1\n\tsbbl %0,%0"
247 		:"=r" (oldbit)
248 		:"m" (ADDR),"Ir" (nr));
249 	return oldbit;
250 }
251 
252 #define test_bit(nr,addr) \
253 (__builtin_constant_p(nr) ? \
254  constant_test_bit((nr),(addr)) : \
255  variable_test_bit((nr),(addr)))
256 
257 /**
258  * find_first_zero_bit - find the first zero bit in a memory region
259  * @addr: The address to start the search at
260  * @size: The maximum size to search
261  *
262  * Returns the bit-number of the first zero bit, not the number of the byte
263  * containing a bit.
264  */
265 static __inline__ int find_first_zero_bit(void * addr, unsigned size)
266 {
267 	int d0, d1, d2;
268 	int res;
269 
270 	if (!size)
271 		return 0;
272 	/* This looks at memory. Mark it volatile to tell gcc not to move it around */
273 	__asm__ __volatile__(
274 		"movl $-1,%%eax\n\t"
275 		"xorl %%edx,%%edx\n\t"
276 		"repe; scasl\n\t"
277 		"je 1f\n\t"
278 		"xorl -4(%%edi),%%eax\n\t"
279 		"subl $4,%%edi\n\t"
280 		"bsfl %%eax,%%edx\n"
281 		"1:\tsubl %%ebx,%%edi\n\t"
282 		"shll $3,%%edi\n\t"
283 		"addl %%edi,%%edx"
284 		:"=d" (res), "=&c" (d0), "=&D" (d1), "=&a" (d2)
285 		:"1" ((size + 31) >> 5), "2" (addr), "b" (addr));
286 	return res;
287 }
288 
289 /**
290  * find_next_zero_bit - find the first zero bit in a memory region
291  * @addr: The address to base the search on
292  * @offset: The bitnumber to start searching at
293  * @size: The maximum size to search
294  */
295 static __inline__ int find_next_zero_bit (void * addr, int size, int offset)
296 {
297 	unsigned long * p = ((unsigned long *) addr) + (offset >> 5);
298 	int set = 0, bit = offset & 31, res;
299 
300 	if (bit) {
301 		/*
302 		 * Look for zero in first byte
303 		 */
304 		__asm__("bsfl %1,%0\n\t"
305 			"jne 1f\n\t"
306 			"movl $32, %0\n"
307 			"1:"
308 			: "=r" (set)
309 			: "r" (~(*p >> bit)));
310 		if (set < (32 - bit))
311 			return set + offset;
312 		set = 32 - bit;
313 		p++;
314 	}
315 	/*
316 	 * No zero yet, search remaining full bytes for a zero
317 	 */
318 	res = find_first_zero_bit (p, size - 32 * (p - (unsigned long *) addr));
319 	return (offset + set + res);
320 }
321 
322 /**
323  * ffz - find first zero in word.
324  * @word: The word to search
325  *
326  * Undefined if no zero exists, so code should check against ~0UL first.
327  */
328 static __inline__ unsigned long ffz(unsigned long word)
329 {
330 	__asm__("bsfl %1,%0"
331 		:"=r" (word)
332 		:"r" (~word));
333 	return word;
334 }
335 
336 #ifdef __KERNEL__
337 
338 /**
339  * __ffs - find first set bit in word
340  * @word: The word to search
341  *
342  * Undefined if no bit exists, so code should check against 0 first.
343  */
344 static inline unsigned long __ffs(unsigned long word)
345 {
346 	__asm__("rep; bsf %1,%0"
347 		: "=r" (word)
348 		: "rm" (word));
349 	return word;
350 }
351 
352 /**
353  * ffs - find first bit set
354  * @x: the word to search
355  *
356  * This is defined the same way as
357  * the libc and compiler builtin ffs routines, therefore
358  * differs in spirit from the above ffz (man ffs).
359  */
360 static __inline__ int ffs(int x)
361 {
362 	int r;
363 
364 	__asm__("bsfl %1,%0\n\t"
365 		"jnz 1f\n\t"
366 		"movl $-1,%0\n"
367 		"1:" : "=r" (r) : "rm" (x));
368 
369 	return r+1;
370 }
371 #define PLATFORM_FFS
372 
373 static inline int __ilog2(unsigned int x)
374 {
375 	return generic_fls(x) - 1;
376 }
377 
378 /**
379  * hweightN - returns the hamming weight of a N-bit word
380  * @x: the word to weigh
381  *
382  * The Hamming Weight of a number is the total number of bits set in it.
383  */
384 
385 #define hweight32(x) generic_hweight32(x)
386 #define hweight16(x) generic_hweight16(x)
387 #define hweight8(x) generic_hweight8(x)
388 
389 #endif /* __KERNEL__ */
390 
391 #ifdef __KERNEL__
392 
393 #define ext2_set_bit                 __test_and_set_bit
394 #define ext2_clear_bit               __test_and_clear_bit
395 #define ext2_test_bit                test_bit
396 #define ext2_find_first_zero_bit     find_first_zero_bit
397 #define ext2_find_next_zero_bit      find_next_zero_bit
398 
399 /* Bitmap functions for the minix filesystem.  */
400 #define minix_test_and_set_bit(nr,addr) __test_and_set_bit(nr,addr)
401 #define minix_set_bit(nr,addr) __set_bit(nr,addr)
402 #define minix_test_and_clear_bit(nr,addr) __test_and_clear_bit(nr,addr)
403 #define minix_test_bit(nr,addr) test_bit(nr,addr)
404 #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
405 
406 #endif /* __KERNEL__ */
407 
408 #endif /* _I386_BITOPS_H */
409