1*fea25720SGraeme Russ #ifndef _I386_BITOPS_H 2*fea25720SGraeme Russ #define _I386_BITOPS_H 3*fea25720SGraeme Russ 4*fea25720SGraeme Russ /* 5*fea25720SGraeme Russ * Copyright 1992, Linus Torvalds. 6*fea25720SGraeme Russ */ 7*fea25720SGraeme Russ 8*fea25720SGraeme Russ 9*fea25720SGraeme Russ /* 10*fea25720SGraeme Russ * These have to be done with inline assembly: that way the bit-setting 11*fea25720SGraeme Russ * is guaranteed to be atomic. All bit operations return 0 if the bit 12*fea25720SGraeme Russ * was cleared before the operation and != 0 if it was not. 13*fea25720SGraeme Russ * 14*fea25720SGraeme Russ * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1). 15*fea25720SGraeme Russ */ 16*fea25720SGraeme Russ 17*fea25720SGraeme Russ #ifdef CONFIG_SMP 18*fea25720SGraeme Russ #define LOCK_PREFIX "lock ; " 19*fea25720SGraeme Russ #else 20*fea25720SGraeme Russ #define LOCK_PREFIX "" 21*fea25720SGraeme Russ #endif 22*fea25720SGraeme Russ 23*fea25720SGraeme Russ #define ADDR (*(volatile long *) addr) 24*fea25720SGraeme Russ 25*fea25720SGraeme Russ /** 26*fea25720SGraeme Russ * set_bit - Atomically set a bit in memory 27*fea25720SGraeme Russ * @nr: the bit to set 28*fea25720SGraeme Russ * @addr: the address to start counting from 29*fea25720SGraeme Russ * 30*fea25720SGraeme Russ * This function is atomic and may not be reordered. See __set_bit() 31*fea25720SGraeme Russ * if you do not require the atomic guarantees. 32*fea25720SGraeme Russ * Note that @nr may be almost arbitrarily large; this function is not 33*fea25720SGraeme Russ * restricted to acting on a single-word quantity. 34*fea25720SGraeme Russ */ 35*fea25720SGraeme Russ static __inline__ void set_bit(int nr, volatile void * addr) 36*fea25720SGraeme Russ { 37*fea25720SGraeme Russ __asm__ __volatile__( LOCK_PREFIX 38*fea25720SGraeme Russ "btsl %1,%0" 39*fea25720SGraeme Russ :"=m" (ADDR) 40*fea25720SGraeme Russ :"Ir" (nr)); 41*fea25720SGraeme Russ } 42*fea25720SGraeme Russ 43*fea25720SGraeme Russ /** 44*fea25720SGraeme Russ * __set_bit - Set a bit in memory 45*fea25720SGraeme Russ * @nr: the bit to set 46*fea25720SGraeme Russ * @addr: the address to start counting from 47*fea25720SGraeme Russ * 48*fea25720SGraeme Russ * Unlike set_bit(), this function is non-atomic and may be reordered. 49*fea25720SGraeme Russ * If it's called on the same region of memory simultaneously, the effect 50*fea25720SGraeme Russ * may be that only one operation succeeds. 51*fea25720SGraeme Russ */ 52*fea25720SGraeme Russ static __inline__ void __set_bit(int nr, volatile void * addr) 53*fea25720SGraeme Russ { 54*fea25720SGraeme Russ __asm__( 55*fea25720SGraeme Russ "btsl %1,%0" 56*fea25720SGraeme Russ :"=m" (ADDR) 57*fea25720SGraeme Russ :"Ir" (nr)); 58*fea25720SGraeme Russ } 59*fea25720SGraeme Russ 60*fea25720SGraeme Russ /** 61*fea25720SGraeme Russ * clear_bit - Clears a bit in memory 62*fea25720SGraeme Russ * @nr: Bit to clear 63*fea25720SGraeme Russ * @addr: Address to start counting from 64*fea25720SGraeme Russ * 65*fea25720SGraeme Russ * clear_bit() is atomic and may not be reordered. However, it does 66*fea25720SGraeme Russ * not contain a memory barrier, so if it is used for locking purposes, 67*fea25720SGraeme Russ * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() 68*fea25720SGraeme Russ * in order to ensure changes are visible on other processors. 69*fea25720SGraeme Russ */ 70*fea25720SGraeme Russ static __inline__ void clear_bit(int nr, volatile void * addr) 71*fea25720SGraeme Russ { 72*fea25720SGraeme Russ __asm__ __volatile__( LOCK_PREFIX 73*fea25720SGraeme Russ "btrl %1,%0" 74*fea25720SGraeme Russ :"=m" (ADDR) 75*fea25720SGraeme Russ :"Ir" (nr)); 76*fea25720SGraeme Russ } 77*fea25720SGraeme Russ #define smp_mb__before_clear_bit() barrier() 78*fea25720SGraeme Russ #define smp_mb__after_clear_bit() barrier() 79*fea25720SGraeme Russ 80*fea25720SGraeme Russ /** 81*fea25720SGraeme Russ * __change_bit - Toggle a bit in memory 82*fea25720SGraeme Russ * @nr: the bit to set 83*fea25720SGraeme Russ * @addr: the address to start counting from 84*fea25720SGraeme Russ * 85*fea25720SGraeme Russ * Unlike change_bit(), this function is non-atomic and may be reordered. 86*fea25720SGraeme Russ * If it's called on the same region of memory simultaneously, the effect 87*fea25720SGraeme Russ * may be that only one operation succeeds. 88*fea25720SGraeme Russ */ 89*fea25720SGraeme Russ static __inline__ void __change_bit(int nr, volatile void * addr) 90*fea25720SGraeme Russ { 91*fea25720SGraeme Russ __asm__ __volatile__( 92*fea25720SGraeme Russ "btcl %1,%0" 93*fea25720SGraeme Russ :"=m" (ADDR) 94*fea25720SGraeme Russ :"Ir" (nr)); 95*fea25720SGraeme Russ } 96*fea25720SGraeme Russ 97*fea25720SGraeme Russ /** 98*fea25720SGraeme Russ * change_bit - Toggle a bit in memory 99*fea25720SGraeme Russ * @nr: Bit to clear 100*fea25720SGraeme Russ * @addr: Address to start counting from 101*fea25720SGraeme Russ * 102*fea25720SGraeme Russ * change_bit() is atomic and may not be reordered. 103*fea25720SGraeme Russ * Note that @nr may be almost arbitrarily large; this function is not 104*fea25720SGraeme Russ * restricted to acting on a single-word quantity. 105*fea25720SGraeme Russ */ 106*fea25720SGraeme Russ static __inline__ void change_bit(int nr, volatile void * addr) 107*fea25720SGraeme Russ { 108*fea25720SGraeme Russ __asm__ __volatile__( LOCK_PREFIX 109*fea25720SGraeme Russ "btcl %1,%0" 110*fea25720SGraeme Russ :"=m" (ADDR) 111*fea25720SGraeme Russ :"Ir" (nr)); 112*fea25720SGraeme Russ } 113*fea25720SGraeme Russ 114*fea25720SGraeme Russ /** 115*fea25720SGraeme Russ * test_and_set_bit - Set a bit and return its old value 116*fea25720SGraeme Russ * @nr: Bit to set 117*fea25720SGraeme Russ * @addr: Address to count from 118*fea25720SGraeme Russ * 119*fea25720SGraeme Russ * This operation is atomic and cannot be reordered. 120*fea25720SGraeme Russ * It also implies a memory barrier. 121*fea25720SGraeme Russ */ 122*fea25720SGraeme Russ static __inline__ int test_and_set_bit(int nr, volatile void * addr) 123*fea25720SGraeme Russ { 124*fea25720SGraeme Russ int oldbit; 125*fea25720SGraeme Russ 126*fea25720SGraeme Russ __asm__ __volatile__( LOCK_PREFIX 127*fea25720SGraeme Russ "btsl %2,%1\n\tsbbl %0,%0" 128*fea25720SGraeme Russ :"=r" (oldbit),"=m" (ADDR) 129*fea25720SGraeme Russ :"Ir" (nr) : "memory"); 130*fea25720SGraeme Russ return oldbit; 131*fea25720SGraeme Russ } 132*fea25720SGraeme Russ 133*fea25720SGraeme Russ /** 134*fea25720SGraeme Russ * __test_and_set_bit - Set a bit and return its old value 135*fea25720SGraeme Russ * @nr: Bit to set 136*fea25720SGraeme Russ * @addr: Address to count from 137*fea25720SGraeme Russ * 138*fea25720SGraeme Russ * This operation is non-atomic and can be reordered. 139*fea25720SGraeme Russ * If two examples of this operation race, one can appear to succeed 140*fea25720SGraeme Russ * but actually fail. You must protect multiple accesses with a lock. 141*fea25720SGraeme Russ */ 142*fea25720SGraeme Russ static __inline__ int __test_and_set_bit(int nr, volatile void * addr) 143*fea25720SGraeme Russ { 144*fea25720SGraeme Russ int oldbit; 145*fea25720SGraeme Russ 146*fea25720SGraeme Russ __asm__( 147*fea25720SGraeme Russ "btsl %2,%1\n\tsbbl %0,%0" 148*fea25720SGraeme Russ :"=r" (oldbit),"=m" (ADDR) 149*fea25720SGraeme Russ :"Ir" (nr)); 150*fea25720SGraeme Russ return oldbit; 151*fea25720SGraeme Russ } 152*fea25720SGraeme Russ 153*fea25720SGraeme Russ /** 154*fea25720SGraeme Russ * test_and_clear_bit - Clear a bit and return its old value 155*fea25720SGraeme Russ * @nr: Bit to set 156*fea25720SGraeme Russ * @addr: Address to count from 157*fea25720SGraeme Russ * 158*fea25720SGraeme Russ * This operation is atomic and cannot be reordered. 159*fea25720SGraeme Russ * It also implies a memory barrier. 160*fea25720SGraeme Russ */ 161*fea25720SGraeme Russ static __inline__ int test_and_clear_bit(int nr, volatile void * addr) 162*fea25720SGraeme Russ { 163*fea25720SGraeme Russ int oldbit; 164*fea25720SGraeme Russ 165*fea25720SGraeme Russ __asm__ __volatile__( LOCK_PREFIX 166*fea25720SGraeme Russ "btrl %2,%1\n\tsbbl %0,%0" 167*fea25720SGraeme Russ :"=r" (oldbit),"=m" (ADDR) 168*fea25720SGraeme Russ :"Ir" (nr) : "memory"); 169*fea25720SGraeme Russ return oldbit; 170*fea25720SGraeme Russ } 171*fea25720SGraeme Russ 172*fea25720SGraeme Russ /** 173*fea25720SGraeme Russ * __test_and_clear_bit - Clear a bit and return its old value 174*fea25720SGraeme Russ * @nr: Bit to set 175*fea25720SGraeme Russ * @addr: Address to count from 176*fea25720SGraeme Russ * 177*fea25720SGraeme Russ * This operation is non-atomic and can be reordered. 178*fea25720SGraeme Russ * If two examples of this operation race, one can appear to succeed 179*fea25720SGraeme Russ * but actually fail. You must protect multiple accesses with a lock. 180*fea25720SGraeme Russ */ 181*fea25720SGraeme Russ static __inline__ int __test_and_clear_bit(int nr, volatile void * addr) 182*fea25720SGraeme Russ { 183*fea25720SGraeme Russ int oldbit; 184*fea25720SGraeme Russ 185*fea25720SGraeme Russ __asm__( 186*fea25720SGraeme Russ "btrl %2,%1\n\tsbbl %0,%0" 187*fea25720SGraeme Russ :"=r" (oldbit),"=m" (ADDR) 188*fea25720SGraeme Russ :"Ir" (nr)); 189*fea25720SGraeme Russ return oldbit; 190*fea25720SGraeme Russ } 191*fea25720SGraeme Russ 192*fea25720SGraeme Russ /* WARNING: non atomic and it can be reordered! */ 193*fea25720SGraeme Russ static __inline__ int __test_and_change_bit(int nr, volatile void * addr) 194*fea25720SGraeme Russ { 195*fea25720SGraeme Russ int oldbit; 196*fea25720SGraeme Russ 197*fea25720SGraeme Russ __asm__ __volatile__( 198*fea25720SGraeme Russ "btcl %2,%1\n\tsbbl %0,%0" 199*fea25720SGraeme Russ :"=r" (oldbit),"=m" (ADDR) 200*fea25720SGraeme Russ :"Ir" (nr) : "memory"); 201*fea25720SGraeme Russ return oldbit; 202*fea25720SGraeme Russ } 203*fea25720SGraeme Russ 204*fea25720SGraeme Russ /** 205*fea25720SGraeme Russ * test_and_change_bit - Change a bit and return its new value 206*fea25720SGraeme Russ * @nr: Bit to set 207*fea25720SGraeme Russ * @addr: Address to count from 208*fea25720SGraeme Russ * 209*fea25720SGraeme Russ * This operation is atomic and cannot be reordered. 210*fea25720SGraeme Russ * It also implies a memory barrier. 211*fea25720SGraeme Russ */ 212*fea25720SGraeme Russ static __inline__ int test_and_change_bit(int nr, volatile void * addr) 213*fea25720SGraeme Russ { 214*fea25720SGraeme Russ int oldbit; 215*fea25720SGraeme Russ 216*fea25720SGraeme Russ __asm__ __volatile__( LOCK_PREFIX 217*fea25720SGraeme Russ "btcl %2,%1\n\tsbbl %0,%0" 218*fea25720SGraeme Russ :"=r" (oldbit),"=m" (ADDR) 219*fea25720SGraeme Russ :"Ir" (nr) : "memory"); 220*fea25720SGraeme Russ return oldbit; 221*fea25720SGraeme Russ } 222*fea25720SGraeme Russ 223*fea25720SGraeme Russ #if 0 /* Fool kernel-doc since it doesn't do macros yet */ 224*fea25720SGraeme Russ /** 225*fea25720SGraeme Russ * test_bit - Determine whether a bit is set 226*fea25720SGraeme Russ * @nr: bit number to test 227*fea25720SGraeme Russ * @addr: Address to start counting from 228*fea25720SGraeme Russ */ 229*fea25720SGraeme Russ static int test_bit(int nr, const volatile void * addr); 230*fea25720SGraeme Russ #endif 231*fea25720SGraeme Russ 232*fea25720SGraeme Russ static __inline__ int constant_test_bit(int nr, const volatile void * addr) 233*fea25720SGraeme Russ { 234*fea25720SGraeme Russ return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0; 235*fea25720SGraeme Russ } 236*fea25720SGraeme Russ 237*fea25720SGraeme Russ static __inline__ int variable_test_bit(int nr, volatile void * addr) 238*fea25720SGraeme Russ { 239*fea25720SGraeme Russ int oldbit; 240*fea25720SGraeme Russ 241*fea25720SGraeme Russ __asm__ __volatile__( 242*fea25720SGraeme Russ "btl %2,%1\n\tsbbl %0,%0" 243*fea25720SGraeme Russ :"=r" (oldbit) 244*fea25720SGraeme Russ :"m" (ADDR),"Ir" (nr)); 245*fea25720SGraeme Russ return oldbit; 246*fea25720SGraeme Russ } 247*fea25720SGraeme Russ 248*fea25720SGraeme Russ #define test_bit(nr,addr) \ 249*fea25720SGraeme Russ (__builtin_constant_p(nr) ? \ 250*fea25720SGraeme Russ constant_test_bit((nr),(addr)) : \ 251*fea25720SGraeme Russ variable_test_bit((nr),(addr))) 252*fea25720SGraeme Russ 253*fea25720SGraeme Russ /** 254*fea25720SGraeme Russ * find_first_zero_bit - find the first zero bit in a memory region 255*fea25720SGraeme Russ * @addr: The address to start the search at 256*fea25720SGraeme Russ * @size: The maximum size to search 257*fea25720SGraeme Russ * 258*fea25720SGraeme Russ * Returns the bit-number of the first zero bit, not the number of the byte 259*fea25720SGraeme Russ * containing a bit. 260*fea25720SGraeme Russ */ 261*fea25720SGraeme Russ static __inline__ int find_first_zero_bit(void * addr, unsigned size) 262*fea25720SGraeme Russ { 263*fea25720SGraeme Russ int d0, d1, d2; 264*fea25720SGraeme Russ int res; 265*fea25720SGraeme Russ 266*fea25720SGraeme Russ if (!size) 267*fea25720SGraeme Russ return 0; 268*fea25720SGraeme Russ /* This looks at memory. Mark it volatile to tell gcc not to move it around */ 269*fea25720SGraeme Russ __asm__ __volatile__( 270*fea25720SGraeme Russ "movl $-1,%%eax\n\t" 271*fea25720SGraeme Russ "xorl %%edx,%%edx\n\t" 272*fea25720SGraeme Russ "repe; scasl\n\t" 273*fea25720SGraeme Russ "je 1f\n\t" 274*fea25720SGraeme Russ "xorl -4(%%edi),%%eax\n\t" 275*fea25720SGraeme Russ "subl $4,%%edi\n\t" 276*fea25720SGraeme Russ "bsfl %%eax,%%edx\n" 277*fea25720SGraeme Russ "1:\tsubl %%ebx,%%edi\n\t" 278*fea25720SGraeme Russ "shll $3,%%edi\n\t" 279*fea25720SGraeme Russ "addl %%edi,%%edx" 280*fea25720SGraeme Russ :"=d" (res), "=&c" (d0), "=&D" (d1), "=&a" (d2) 281*fea25720SGraeme Russ :"1" ((size + 31) >> 5), "2" (addr), "b" (addr)); 282*fea25720SGraeme Russ return res; 283*fea25720SGraeme Russ } 284*fea25720SGraeme Russ 285*fea25720SGraeme Russ /** 286*fea25720SGraeme Russ * find_next_zero_bit - find the first zero bit in a memory region 287*fea25720SGraeme Russ * @addr: The address to base the search on 288*fea25720SGraeme Russ * @offset: The bitnumber to start searching at 289*fea25720SGraeme Russ * @size: The maximum size to search 290*fea25720SGraeme Russ */ 291*fea25720SGraeme Russ static __inline__ int find_next_zero_bit (void * addr, int size, int offset) 292*fea25720SGraeme Russ { 293*fea25720SGraeme Russ unsigned long * p = ((unsigned long *) addr) + (offset >> 5); 294*fea25720SGraeme Russ int set = 0, bit = offset & 31, res; 295*fea25720SGraeme Russ 296*fea25720SGraeme Russ if (bit) { 297*fea25720SGraeme Russ /* 298*fea25720SGraeme Russ * Look for zero in first byte 299*fea25720SGraeme Russ */ 300*fea25720SGraeme Russ __asm__("bsfl %1,%0\n\t" 301*fea25720SGraeme Russ "jne 1f\n\t" 302*fea25720SGraeme Russ "movl $32, %0\n" 303*fea25720SGraeme Russ "1:" 304*fea25720SGraeme Russ : "=r" (set) 305*fea25720SGraeme Russ : "r" (~(*p >> bit))); 306*fea25720SGraeme Russ if (set < (32 - bit)) 307*fea25720SGraeme Russ return set + offset; 308*fea25720SGraeme Russ set = 32 - bit; 309*fea25720SGraeme Russ p++; 310*fea25720SGraeme Russ } 311*fea25720SGraeme Russ /* 312*fea25720SGraeme Russ * No zero yet, search remaining full bytes for a zero 313*fea25720SGraeme Russ */ 314*fea25720SGraeme Russ res = find_first_zero_bit (p, size - 32 * (p - (unsigned long *) addr)); 315*fea25720SGraeme Russ return (offset + set + res); 316*fea25720SGraeme Russ } 317*fea25720SGraeme Russ 318*fea25720SGraeme Russ /** 319*fea25720SGraeme Russ * ffz - find first zero in word. 320*fea25720SGraeme Russ * @word: The word to search 321*fea25720SGraeme Russ * 322*fea25720SGraeme Russ * Undefined if no zero exists, so code should check against ~0UL first. 323*fea25720SGraeme Russ */ 324*fea25720SGraeme Russ static __inline__ unsigned long ffz(unsigned long word) 325*fea25720SGraeme Russ { 326*fea25720SGraeme Russ __asm__("bsfl %1,%0" 327*fea25720SGraeme Russ :"=r" (word) 328*fea25720SGraeme Russ :"r" (~word)); 329*fea25720SGraeme Russ return word; 330*fea25720SGraeme Russ } 331*fea25720SGraeme Russ 332*fea25720SGraeme Russ #ifdef __KERNEL__ 333*fea25720SGraeme Russ 334*fea25720SGraeme Russ /** 335*fea25720SGraeme Russ * ffs - find first bit set 336*fea25720SGraeme Russ * @x: the word to search 337*fea25720SGraeme Russ * 338*fea25720SGraeme Russ * This is defined the same way as 339*fea25720SGraeme Russ * the libc and compiler builtin ffs routines, therefore 340*fea25720SGraeme Russ * differs in spirit from the above ffz (man ffs). 341*fea25720SGraeme Russ */ 342*fea25720SGraeme Russ static __inline__ int ffs(int x) 343*fea25720SGraeme Russ { 344*fea25720SGraeme Russ int r; 345*fea25720SGraeme Russ 346*fea25720SGraeme Russ __asm__("bsfl %1,%0\n\t" 347*fea25720SGraeme Russ "jnz 1f\n\t" 348*fea25720SGraeme Russ "movl $-1,%0\n" 349*fea25720SGraeme Russ "1:" : "=r" (r) : "g" (x)); 350*fea25720SGraeme Russ return r+1; 351*fea25720SGraeme Russ } 352*fea25720SGraeme Russ #define PLATFORM_FFS 353*fea25720SGraeme Russ 354*fea25720SGraeme Russ /** 355*fea25720SGraeme Russ * hweightN - returns the hamming weight of a N-bit word 356*fea25720SGraeme Russ * @x: the word to weigh 357*fea25720SGraeme Russ * 358*fea25720SGraeme Russ * The Hamming Weight of a number is the total number of bits set in it. 359*fea25720SGraeme Russ */ 360*fea25720SGraeme Russ 361*fea25720SGraeme Russ #define hweight32(x) generic_hweight32(x) 362*fea25720SGraeme Russ #define hweight16(x) generic_hweight16(x) 363*fea25720SGraeme Russ #define hweight8(x) generic_hweight8(x) 364*fea25720SGraeme Russ 365*fea25720SGraeme Russ #endif /* __KERNEL__ */ 366*fea25720SGraeme Russ 367*fea25720SGraeme Russ #ifdef __KERNEL__ 368*fea25720SGraeme Russ 369*fea25720SGraeme Russ #define ext2_set_bit __test_and_set_bit 370*fea25720SGraeme Russ #define ext2_clear_bit __test_and_clear_bit 371*fea25720SGraeme Russ #define ext2_test_bit test_bit 372*fea25720SGraeme Russ #define ext2_find_first_zero_bit find_first_zero_bit 373*fea25720SGraeme Russ #define ext2_find_next_zero_bit find_next_zero_bit 374*fea25720SGraeme Russ 375*fea25720SGraeme Russ /* Bitmap functions for the minix filesystem. */ 376*fea25720SGraeme Russ #define minix_test_and_set_bit(nr,addr) __test_and_set_bit(nr,addr) 377*fea25720SGraeme Russ #define minix_set_bit(nr,addr) __set_bit(nr,addr) 378*fea25720SGraeme Russ #define minix_test_and_clear_bit(nr,addr) __test_and_clear_bit(nr,addr) 379*fea25720SGraeme Russ #define minix_test_bit(nr,addr) test_bit(nr,addr) 380*fea25720SGraeme Russ #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) 381*fea25720SGraeme Russ 382*fea25720SGraeme Russ #endif /* __KERNEL__ */ 383*fea25720SGraeme Russ 384*fea25720SGraeme Russ #endif /* _I386_BITOPS_H */ 385