xref: /openbmc/u-boot/arch/x86/include/asm/bitops.h (revision fea25720013f84427a0ba8833a38614fcaf488ba)
1*fea25720SGraeme Russ #ifndef _I386_BITOPS_H
2*fea25720SGraeme Russ #define _I386_BITOPS_H
3*fea25720SGraeme Russ 
4*fea25720SGraeme Russ /*
5*fea25720SGraeme Russ  * Copyright 1992, Linus Torvalds.
6*fea25720SGraeme Russ  */
7*fea25720SGraeme Russ 
8*fea25720SGraeme Russ 
9*fea25720SGraeme Russ /*
10*fea25720SGraeme Russ  * These have to be done with inline assembly: that way the bit-setting
11*fea25720SGraeme Russ  * is guaranteed to be atomic. All bit operations return 0 if the bit
12*fea25720SGraeme Russ  * was cleared before the operation and != 0 if it was not.
13*fea25720SGraeme Russ  *
14*fea25720SGraeme Russ  * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
15*fea25720SGraeme Russ  */
16*fea25720SGraeme Russ 
17*fea25720SGraeme Russ #ifdef CONFIG_SMP
18*fea25720SGraeme Russ #define LOCK_PREFIX "lock ; "
19*fea25720SGraeme Russ #else
20*fea25720SGraeme Russ #define LOCK_PREFIX ""
21*fea25720SGraeme Russ #endif
22*fea25720SGraeme Russ 
23*fea25720SGraeme Russ #define ADDR (*(volatile long *) addr)
24*fea25720SGraeme Russ 
25*fea25720SGraeme Russ /**
26*fea25720SGraeme Russ  * set_bit - Atomically set a bit in memory
27*fea25720SGraeme Russ  * @nr: the bit to set
28*fea25720SGraeme Russ  * @addr: the address to start counting from
29*fea25720SGraeme Russ  *
30*fea25720SGraeme Russ  * This function is atomic and may not be reordered.  See __set_bit()
31*fea25720SGraeme Russ  * if you do not require the atomic guarantees.
32*fea25720SGraeme Russ  * Note that @nr may be almost arbitrarily large; this function is not
33*fea25720SGraeme Russ  * restricted to acting on a single-word quantity.
34*fea25720SGraeme Russ  */
35*fea25720SGraeme Russ static __inline__ void set_bit(int nr, volatile void * addr)
36*fea25720SGraeme Russ {
37*fea25720SGraeme Russ 	__asm__ __volatile__( LOCK_PREFIX
38*fea25720SGraeme Russ 		"btsl %1,%0"
39*fea25720SGraeme Russ 		:"=m" (ADDR)
40*fea25720SGraeme Russ 		:"Ir" (nr));
41*fea25720SGraeme Russ }
42*fea25720SGraeme Russ 
43*fea25720SGraeme Russ /**
44*fea25720SGraeme Russ  * __set_bit - Set a bit in memory
45*fea25720SGraeme Russ  * @nr: the bit to set
46*fea25720SGraeme Russ  * @addr: the address to start counting from
47*fea25720SGraeme Russ  *
48*fea25720SGraeme Russ  * Unlike set_bit(), this function is non-atomic and may be reordered.
49*fea25720SGraeme Russ  * If it's called on the same region of memory simultaneously, the effect
50*fea25720SGraeme Russ  * may be that only one operation succeeds.
51*fea25720SGraeme Russ  */
52*fea25720SGraeme Russ static __inline__ void __set_bit(int nr, volatile void * addr)
53*fea25720SGraeme Russ {
54*fea25720SGraeme Russ 	__asm__(
55*fea25720SGraeme Russ 		"btsl %1,%0"
56*fea25720SGraeme Russ 		:"=m" (ADDR)
57*fea25720SGraeme Russ 		:"Ir" (nr));
58*fea25720SGraeme Russ }
59*fea25720SGraeme Russ 
60*fea25720SGraeme Russ /**
61*fea25720SGraeme Russ  * clear_bit - Clears a bit in memory
62*fea25720SGraeme Russ  * @nr: Bit to clear
63*fea25720SGraeme Russ  * @addr: Address to start counting from
64*fea25720SGraeme Russ  *
65*fea25720SGraeme Russ  * clear_bit() is atomic and may not be reordered.  However, it does
66*fea25720SGraeme Russ  * not contain a memory barrier, so if it is used for locking purposes,
67*fea25720SGraeme Russ  * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
68*fea25720SGraeme Russ  * in order to ensure changes are visible on other processors.
69*fea25720SGraeme Russ  */
70*fea25720SGraeme Russ static __inline__ void clear_bit(int nr, volatile void * addr)
71*fea25720SGraeme Russ {
72*fea25720SGraeme Russ 	__asm__ __volatile__( LOCK_PREFIX
73*fea25720SGraeme Russ 		"btrl %1,%0"
74*fea25720SGraeme Russ 		:"=m" (ADDR)
75*fea25720SGraeme Russ 		:"Ir" (nr));
76*fea25720SGraeme Russ }
77*fea25720SGraeme Russ #define smp_mb__before_clear_bit()	barrier()
78*fea25720SGraeme Russ #define smp_mb__after_clear_bit()	barrier()
79*fea25720SGraeme Russ 
80*fea25720SGraeme Russ /**
81*fea25720SGraeme Russ  * __change_bit - Toggle a bit in memory
82*fea25720SGraeme Russ  * @nr: the bit to set
83*fea25720SGraeme Russ  * @addr: the address to start counting from
84*fea25720SGraeme Russ  *
85*fea25720SGraeme Russ  * Unlike change_bit(), this function is non-atomic and may be reordered.
86*fea25720SGraeme Russ  * If it's called on the same region of memory simultaneously, the effect
87*fea25720SGraeme Russ  * may be that only one operation succeeds.
88*fea25720SGraeme Russ  */
89*fea25720SGraeme Russ static __inline__ void __change_bit(int nr, volatile void * addr)
90*fea25720SGraeme Russ {
91*fea25720SGraeme Russ 	__asm__ __volatile__(
92*fea25720SGraeme Russ 		"btcl %1,%0"
93*fea25720SGraeme Russ 		:"=m" (ADDR)
94*fea25720SGraeme Russ 		:"Ir" (nr));
95*fea25720SGraeme Russ }
96*fea25720SGraeme Russ 
97*fea25720SGraeme Russ /**
98*fea25720SGraeme Russ  * change_bit - Toggle a bit in memory
99*fea25720SGraeme Russ  * @nr: Bit to clear
100*fea25720SGraeme Russ  * @addr: Address to start counting from
101*fea25720SGraeme Russ  *
102*fea25720SGraeme Russ  * change_bit() is atomic and may not be reordered.
103*fea25720SGraeme Russ  * Note that @nr may be almost arbitrarily large; this function is not
104*fea25720SGraeme Russ  * restricted to acting on a single-word quantity.
105*fea25720SGraeme Russ  */
106*fea25720SGraeme Russ static __inline__ void change_bit(int nr, volatile void * addr)
107*fea25720SGraeme Russ {
108*fea25720SGraeme Russ 	__asm__ __volatile__( LOCK_PREFIX
109*fea25720SGraeme Russ 		"btcl %1,%0"
110*fea25720SGraeme Russ 		:"=m" (ADDR)
111*fea25720SGraeme Russ 		:"Ir" (nr));
112*fea25720SGraeme Russ }
113*fea25720SGraeme Russ 
114*fea25720SGraeme Russ /**
115*fea25720SGraeme Russ  * test_and_set_bit - Set a bit and return its old value
116*fea25720SGraeme Russ  * @nr: Bit to set
117*fea25720SGraeme Russ  * @addr: Address to count from
118*fea25720SGraeme Russ  *
119*fea25720SGraeme Russ  * This operation is atomic and cannot be reordered.
120*fea25720SGraeme Russ  * It also implies a memory barrier.
121*fea25720SGraeme Russ  */
122*fea25720SGraeme Russ static __inline__ int test_and_set_bit(int nr, volatile void * addr)
123*fea25720SGraeme Russ {
124*fea25720SGraeme Russ 	int oldbit;
125*fea25720SGraeme Russ 
126*fea25720SGraeme Russ 	__asm__ __volatile__( LOCK_PREFIX
127*fea25720SGraeme Russ 		"btsl %2,%1\n\tsbbl %0,%0"
128*fea25720SGraeme Russ 		:"=r" (oldbit),"=m" (ADDR)
129*fea25720SGraeme Russ 		:"Ir" (nr) : "memory");
130*fea25720SGraeme Russ 	return oldbit;
131*fea25720SGraeme Russ }
132*fea25720SGraeme Russ 
133*fea25720SGraeme Russ /**
134*fea25720SGraeme Russ  * __test_and_set_bit - Set a bit and return its old value
135*fea25720SGraeme Russ  * @nr: Bit to set
136*fea25720SGraeme Russ  * @addr: Address to count from
137*fea25720SGraeme Russ  *
138*fea25720SGraeme Russ  * This operation is non-atomic and can be reordered.
139*fea25720SGraeme Russ  * If two examples of this operation race, one can appear to succeed
140*fea25720SGraeme Russ  * but actually fail.  You must protect multiple accesses with a lock.
141*fea25720SGraeme Russ  */
142*fea25720SGraeme Russ static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
143*fea25720SGraeme Russ {
144*fea25720SGraeme Russ 	int oldbit;
145*fea25720SGraeme Russ 
146*fea25720SGraeme Russ 	__asm__(
147*fea25720SGraeme Russ 		"btsl %2,%1\n\tsbbl %0,%0"
148*fea25720SGraeme Russ 		:"=r" (oldbit),"=m" (ADDR)
149*fea25720SGraeme Russ 		:"Ir" (nr));
150*fea25720SGraeme Russ 	return oldbit;
151*fea25720SGraeme Russ }
152*fea25720SGraeme Russ 
153*fea25720SGraeme Russ /**
154*fea25720SGraeme Russ  * test_and_clear_bit - Clear a bit and return its old value
155*fea25720SGraeme Russ  * @nr: Bit to set
156*fea25720SGraeme Russ  * @addr: Address to count from
157*fea25720SGraeme Russ  *
158*fea25720SGraeme Russ  * This operation is atomic and cannot be reordered.
159*fea25720SGraeme Russ  * It also implies a memory barrier.
160*fea25720SGraeme Russ  */
161*fea25720SGraeme Russ static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
162*fea25720SGraeme Russ {
163*fea25720SGraeme Russ 	int oldbit;
164*fea25720SGraeme Russ 
165*fea25720SGraeme Russ 	__asm__ __volatile__( LOCK_PREFIX
166*fea25720SGraeme Russ 		"btrl %2,%1\n\tsbbl %0,%0"
167*fea25720SGraeme Russ 		:"=r" (oldbit),"=m" (ADDR)
168*fea25720SGraeme Russ 		:"Ir" (nr) : "memory");
169*fea25720SGraeme Russ 	return oldbit;
170*fea25720SGraeme Russ }
171*fea25720SGraeme Russ 
172*fea25720SGraeme Russ /**
173*fea25720SGraeme Russ  * __test_and_clear_bit - Clear a bit and return its old value
174*fea25720SGraeme Russ  * @nr: Bit to set
175*fea25720SGraeme Russ  * @addr: Address to count from
176*fea25720SGraeme Russ  *
177*fea25720SGraeme Russ  * This operation is non-atomic and can be reordered.
178*fea25720SGraeme Russ  * If two examples of this operation race, one can appear to succeed
179*fea25720SGraeme Russ  * but actually fail.  You must protect multiple accesses with a lock.
180*fea25720SGraeme Russ  */
181*fea25720SGraeme Russ static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
182*fea25720SGraeme Russ {
183*fea25720SGraeme Russ 	int oldbit;
184*fea25720SGraeme Russ 
185*fea25720SGraeme Russ 	__asm__(
186*fea25720SGraeme Russ 		"btrl %2,%1\n\tsbbl %0,%0"
187*fea25720SGraeme Russ 		:"=r" (oldbit),"=m" (ADDR)
188*fea25720SGraeme Russ 		:"Ir" (nr));
189*fea25720SGraeme Russ 	return oldbit;
190*fea25720SGraeme Russ }
191*fea25720SGraeme Russ 
192*fea25720SGraeme Russ /* WARNING: non atomic and it can be reordered! */
193*fea25720SGraeme Russ static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
194*fea25720SGraeme Russ {
195*fea25720SGraeme Russ 	int oldbit;
196*fea25720SGraeme Russ 
197*fea25720SGraeme Russ 	__asm__ __volatile__(
198*fea25720SGraeme Russ 		"btcl %2,%1\n\tsbbl %0,%0"
199*fea25720SGraeme Russ 		:"=r" (oldbit),"=m" (ADDR)
200*fea25720SGraeme Russ 		:"Ir" (nr) : "memory");
201*fea25720SGraeme Russ 	return oldbit;
202*fea25720SGraeme Russ }
203*fea25720SGraeme Russ 
204*fea25720SGraeme Russ /**
205*fea25720SGraeme Russ  * test_and_change_bit - Change a bit and return its new value
206*fea25720SGraeme Russ  * @nr: Bit to set
207*fea25720SGraeme Russ  * @addr: Address to count from
208*fea25720SGraeme Russ  *
209*fea25720SGraeme Russ  * This operation is atomic and cannot be reordered.
210*fea25720SGraeme Russ  * It also implies a memory barrier.
211*fea25720SGraeme Russ  */
212*fea25720SGraeme Russ static __inline__ int test_and_change_bit(int nr, volatile void * addr)
213*fea25720SGraeme Russ {
214*fea25720SGraeme Russ 	int oldbit;
215*fea25720SGraeme Russ 
216*fea25720SGraeme Russ 	__asm__ __volatile__( LOCK_PREFIX
217*fea25720SGraeme Russ 		"btcl %2,%1\n\tsbbl %0,%0"
218*fea25720SGraeme Russ 		:"=r" (oldbit),"=m" (ADDR)
219*fea25720SGraeme Russ 		:"Ir" (nr) : "memory");
220*fea25720SGraeme Russ 	return oldbit;
221*fea25720SGraeme Russ }
222*fea25720SGraeme Russ 
223*fea25720SGraeme Russ #if 0 /* Fool kernel-doc since it doesn't do macros yet */
224*fea25720SGraeme Russ /**
225*fea25720SGraeme Russ  * test_bit - Determine whether a bit is set
226*fea25720SGraeme Russ  * @nr: bit number to test
227*fea25720SGraeme Russ  * @addr: Address to start counting from
228*fea25720SGraeme Russ  */
229*fea25720SGraeme Russ static int test_bit(int nr, const volatile void * addr);
230*fea25720SGraeme Russ #endif
231*fea25720SGraeme Russ 
232*fea25720SGraeme Russ static __inline__ int constant_test_bit(int nr, const volatile void * addr)
233*fea25720SGraeme Russ {
234*fea25720SGraeme Russ 	return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0;
235*fea25720SGraeme Russ }
236*fea25720SGraeme Russ 
237*fea25720SGraeme Russ static __inline__ int variable_test_bit(int nr, volatile void * addr)
238*fea25720SGraeme Russ {
239*fea25720SGraeme Russ 	int oldbit;
240*fea25720SGraeme Russ 
241*fea25720SGraeme Russ 	__asm__ __volatile__(
242*fea25720SGraeme Russ 		"btl %2,%1\n\tsbbl %0,%0"
243*fea25720SGraeme Russ 		:"=r" (oldbit)
244*fea25720SGraeme Russ 		:"m" (ADDR),"Ir" (nr));
245*fea25720SGraeme Russ 	return oldbit;
246*fea25720SGraeme Russ }
247*fea25720SGraeme Russ 
248*fea25720SGraeme Russ #define test_bit(nr,addr) \
249*fea25720SGraeme Russ (__builtin_constant_p(nr) ? \
250*fea25720SGraeme Russ  constant_test_bit((nr),(addr)) : \
251*fea25720SGraeme Russ  variable_test_bit((nr),(addr)))
252*fea25720SGraeme Russ 
253*fea25720SGraeme Russ /**
254*fea25720SGraeme Russ  * find_first_zero_bit - find the first zero bit in a memory region
255*fea25720SGraeme Russ  * @addr: The address to start the search at
256*fea25720SGraeme Russ  * @size: The maximum size to search
257*fea25720SGraeme Russ  *
258*fea25720SGraeme Russ  * Returns the bit-number of the first zero bit, not the number of the byte
259*fea25720SGraeme Russ  * containing a bit.
260*fea25720SGraeme Russ  */
261*fea25720SGraeme Russ static __inline__ int find_first_zero_bit(void * addr, unsigned size)
262*fea25720SGraeme Russ {
263*fea25720SGraeme Russ 	int d0, d1, d2;
264*fea25720SGraeme Russ 	int res;
265*fea25720SGraeme Russ 
266*fea25720SGraeme Russ 	if (!size)
267*fea25720SGraeme Russ 		return 0;
268*fea25720SGraeme Russ 	/* This looks at memory. Mark it volatile to tell gcc not to move it around */
269*fea25720SGraeme Russ 	__asm__ __volatile__(
270*fea25720SGraeme Russ 		"movl $-1,%%eax\n\t"
271*fea25720SGraeme Russ 		"xorl %%edx,%%edx\n\t"
272*fea25720SGraeme Russ 		"repe; scasl\n\t"
273*fea25720SGraeme Russ 		"je 1f\n\t"
274*fea25720SGraeme Russ 		"xorl -4(%%edi),%%eax\n\t"
275*fea25720SGraeme Russ 		"subl $4,%%edi\n\t"
276*fea25720SGraeme Russ 		"bsfl %%eax,%%edx\n"
277*fea25720SGraeme Russ 		"1:\tsubl %%ebx,%%edi\n\t"
278*fea25720SGraeme Russ 		"shll $3,%%edi\n\t"
279*fea25720SGraeme Russ 		"addl %%edi,%%edx"
280*fea25720SGraeme Russ 		:"=d" (res), "=&c" (d0), "=&D" (d1), "=&a" (d2)
281*fea25720SGraeme Russ 		:"1" ((size + 31) >> 5), "2" (addr), "b" (addr));
282*fea25720SGraeme Russ 	return res;
283*fea25720SGraeme Russ }
284*fea25720SGraeme Russ 
285*fea25720SGraeme Russ /**
286*fea25720SGraeme Russ  * find_next_zero_bit - find the first zero bit in a memory region
287*fea25720SGraeme Russ  * @addr: The address to base the search on
288*fea25720SGraeme Russ  * @offset: The bitnumber to start searching at
289*fea25720SGraeme Russ  * @size: The maximum size to search
290*fea25720SGraeme Russ  */
291*fea25720SGraeme Russ static __inline__ int find_next_zero_bit (void * addr, int size, int offset)
292*fea25720SGraeme Russ {
293*fea25720SGraeme Russ 	unsigned long * p = ((unsigned long *) addr) + (offset >> 5);
294*fea25720SGraeme Russ 	int set = 0, bit = offset & 31, res;
295*fea25720SGraeme Russ 
296*fea25720SGraeme Russ 	if (bit) {
297*fea25720SGraeme Russ 		/*
298*fea25720SGraeme Russ 		 * Look for zero in first byte
299*fea25720SGraeme Russ 		 */
300*fea25720SGraeme Russ 		__asm__("bsfl %1,%0\n\t"
301*fea25720SGraeme Russ 			"jne 1f\n\t"
302*fea25720SGraeme Russ 			"movl $32, %0\n"
303*fea25720SGraeme Russ 			"1:"
304*fea25720SGraeme Russ 			: "=r" (set)
305*fea25720SGraeme Russ 			: "r" (~(*p >> bit)));
306*fea25720SGraeme Russ 		if (set < (32 - bit))
307*fea25720SGraeme Russ 			return set + offset;
308*fea25720SGraeme Russ 		set = 32 - bit;
309*fea25720SGraeme Russ 		p++;
310*fea25720SGraeme Russ 	}
311*fea25720SGraeme Russ 	/*
312*fea25720SGraeme Russ 	 * No zero yet, search remaining full bytes for a zero
313*fea25720SGraeme Russ 	 */
314*fea25720SGraeme Russ 	res = find_first_zero_bit (p, size - 32 * (p - (unsigned long *) addr));
315*fea25720SGraeme Russ 	return (offset + set + res);
316*fea25720SGraeme Russ }
317*fea25720SGraeme Russ 
318*fea25720SGraeme Russ /**
319*fea25720SGraeme Russ  * ffz - find first zero in word.
320*fea25720SGraeme Russ  * @word: The word to search
321*fea25720SGraeme Russ  *
322*fea25720SGraeme Russ  * Undefined if no zero exists, so code should check against ~0UL first.
323*fea25720SGraeme Russ  */
324*fea25720SGraeme Russ static __inline__ unsigned long ffz(unsigned long word)
325*fea25720SGraeme Russ {
326*fea25720SGraeme Russ 	__asm__("bsfl %1,%0"
327*fea25720SGraeme Russ 		:"=r" (word)
328*fea25720SGraeme Russ 		:"r" (~word));
329*fea25720SGraeme Russ 	return word;
330*fea25720SGraeme Russ }
331*fea25720SGraeme Russ 
332*fea25720SGraeme Russ #ifdef __KERNEL__
333*fea25720SGraeme Russ 
334*fea25720SGraeme Russ /**
335*fea25720SGraeme Russ  * ffs - find first bit set
336*fea25720SGraeme Russ  * @x: the word to search
337*fea25720SGraeme Russ  *
338*fea25720SGraeme Russ  * This is defined the same way as
339*fea25720SGraeme Russ  * the libc and compiler builtin ffs routines, therefore
340*fea25720SGraeme Russ  * differs in spirit from the above ffz (man ffs).
341*fea25720SGraeme Russ  */
342*fea25720SGraeme Russ static __inline__ int ffs(int x)
343*fea25720SGraeme Russ {
344*fea25720SGraeme Russ 	int r;
345*fea25720SGraeme Russ 
346*fea25720SGraeme Russ 	__asm__("bsfl %1,%0\n\t"
347*fea25720SGraeme Russ 		"jnz 1f\n\t"
348*fea25720SGraeme Russ 		"movl $-1,%0\n"
349*fea25720SGraeme Russ 		"1:" : "=r" (r) : "g" (x));
350*fea25720SGraeme Russ 	return r+1;
351*fea25720SGraeme Russ }
352*fea25720SGraeme Russ #define PLATFORM_FFS
353*fea25720SGraeme Russ 
354*fea25720SGraeme Russ /**
355*fea25720SGraeme Russ  * hweightN - returns the hamming weight of a N-bit word
356*fea25720SGraeme Russ  * @x: the word to weigh
357*fea25720SGraeme Russ  *
358*fea25720SGraeme Russ  * The Hamming Weight of a number is the total number of bits set in it.
359*fea25720SGraeme Russ  */
360*fea25720SGraeme Russ 
361*fea25720SGraeme Russ #define hweight32(x) generic_hweight32(x)
362*fea25720SGraeme Russ #define hweight16(x) generic_hweight16(x)
363*fea25720SGraeme Russ #define hweight8(x) generic_hweight8(x)
364*fea25720SGraeme Russ 
365*fea25720SGraeme Russ #endif /* __KERNEL__ */
366*fea25720SGraeme Russ 
367*fea25720SGraeme Russ #ifdef __KERNEL__
368*fea25720SGraeme Russ 
369*fea25720SGraeme Russ #define ext2_set_bit                 __test_and_set_bit
370*fea25720SGraeme Russ #define ext2_clear_bit               __test_and_clear_bit
371*fea25720SGraeme Russ #define ext2_test_bit                test_bit
372*fea25720SGraeme Russ #define ext2_find_first_zero_bit     find_first_zero_bit
373*fea25720SGraeme Russ #define ext2_find_next_zero_bit      find_next_zero_bit
374*fea25720SGraeme Russ 
375*fea25720SGraeme Russ /* Bitmap functions for the minix filesystem.  */
376*fea25720SGraeme Russ #define minix_test_and_set_bit(nr,addr) __test_and_set_bit(nr,addr)
377*fea25720SGraeme Russ #define minix_set_bit(nr,addr) __set_bit(nr,addr)
378*fea25720SGraeme Russ #define minix_test_and_clear_bit(nr,addr) __test_and_clear_bit(nr,addr)
379*fea25720SGraeme Russ #define minix_test_bit(nr,addr) test_bit(nr,addr)
380*fea25720SGraeme Russ #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
381*fea25720SGraeme Russ 
382*fea25720SGraeme Russ #endif /* __KERNEL__ */
383*fea25720SGraeme Russ 
384*fea25720SGraeme Russ #endif /* _I386_BITOPS_H */
385