1fea25720SGraeme Russ #ifndef _I386_BITOPS_H 2fea25720SGraeme Russ #define _I386_BITOPS_H 3fea25720SGraeme Russ 4fea25720SGraeme Russ /* 5fea25720SGraeme Russ * Copyright 1992, Linus Torvalds. 6fea25720SGraeme Russ */ 7fea25720SGraeme Russ 8fea25720SGraeme Russ 9fea25720SGraeme Russ /* 10fea25720SGraeme Russ * These have to be done with inline assembly: that way the bit-setting 11fea25720SGraeme Russ * is guaranteed to be atomic. All bit operations return 0 if the bit 12fea25720SGraeme Russ * was cleared before the operation and != 0 if it was not. 13fea25720SGraeme Russ * 14fea25720SGraeme Russ * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1). 15fea25720SGraeme Russ */ 16fea25720SGraeme Russ 17*6c2f758cSFabio Estevam #include <asm-generic/bitops/fls.h> 18*6c2f758cSFabio Estevam #include <asm-generic/bitops/__fls.h> 19*6c2f758cSFabio Estevam #include <asm-generic/bitops/fls64.h> 20*6c2f758cSFabio Estevam 21fea25720SGraeme Russ #ifdef CONFIG_SMP 22fea25720SGraeme Russ #define LOCK_PREFIX "lock ; " 23fea25720SGraeme Russ #else 24fea25720SGraeme Russ #define LOCK_PREFIX "" 25fea25720SGraeme Russ #endif 26fea25720SGraeme Russ 27fea25720SGraeme Russ #define ADDR (*(volatile long *) addr) 28fea25720SGraeme Russ 29fea25720SGraeme Russ /** 30fea25720SGraeme Russ * set_bit - Atomically set a bit in memory 31fea25720SGraeme Russ * @nr: the bit to set 32fea25720SGraeme Russ * @addr: the address to start counting from 33fea25720SGraeme Russ * 34fea25720SGraeme Russ * This function is atomic and may not be reordered. See __set_bit() 35fea25720SGraeme Russ * if you do not require the atomic guarantees. 36fea25720SGraeme Russ * Note that @nr may be almost arbitrarily large; this function is not 37fea25720SGraeme Russ * restricted to acting on a single-word quantity. 38fea25720SGraeme Russ */ 39fea25720SGraeme Russ static __inline__ void set_bit(int nr, volatile void * addr) 40fea25720SGraeme Russ { 41fea25720SGraeme Russ __asm__ __volatile__( LOCK_PREFIX 42fea25720SGraeme Russ "btsl %1,%0" 43fea25720SGraeme Russ :"=m" (ADDR) 44fea25720SGraeme Russ :"Ir" (nr)); 45fea25720SGraeme Russ } 46fea25720SGraeme Russ 47fea25720SGraeme Russ /** 48fea25720SGraeme Russ * __set_bit - Set a bit in memory 49fea25720SGraeme Russ * @nr: the bit to set 50fea25720SGraeme Russ * @addr: the address to start counting from 51fea25720SGraeme Russ * 52fea25720SGraeme Russ * Unlike set_bit(), this function is non-atomic and may be reordered. 53fea25720SGraeme Russ * If it's called on the same region of memory simultaneously, the effect 54fea25720SGraeme Russ * may be that only one operation succeeds. 55fea25720SGraeme Russ */ 56fea25720SGraeme Russ static __inline__ void __set_bit(int nr, volatile void * addr) 57fea25720SGraeme Russ { 58fea25720SGraeme Russ __asm__( 59fea25720SGraeme Russ "btsl %1,%0" 60fea25720SGraeme Russ :"=m" (ADDR) 61fea25720SGraeme Russ :"Ir" (nr)); 62fea25720SGraeme Russ } 63fea25720SGraeme Russ 64fea25720SGraeme Russ /** 65fea25720SGraeme Russ * clear_bit - Clears a bit in memory 66fea25720SGraeme Russ * @nr: Bit to clear 67fea25720SGraeme Russ * @addr: Address to start counting from 68fea25720SGraeme Russ * 69fea25720SGraeme Russ * clear_bit() is atomic and may not be reordered. However, it does 70fea25720SGraeme Russ * not contain a memory barrier, so if it is used for locking purposes, 71fea25720SGraeme Russ * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() 72fea25720SGraeme Russ * in order to ensure changes are visible on other processors. 73fea25720SGraeme Russ */ 74fea25720SGraeme Russ static __inline__ void clear_bit(int nr, volatile void * addr) 75fea25720SGraeme Russ { 76fea25720SGraeme Russ __asm__ __volatile__( LOCK_PREFIX 77fea25720SGraeme Russ "btrl %1,%0" 78fea25720SGraeme Russ :"=m" (ADDR) 79fea25720SGraeme Russ :"Ir" (nr)); 80fea25720SGraeme Russ } 81fea25720SGraeme Russ #define smp_mb__before_clear_bit() barrier() 82fea25720SGraeme Russ #define smp_mb__after_clear_bit() barrier() 83fea25720SGraeme Russ 84fea25720SGraeme Russ /** 85fea25720SGraeme Russ * __change_bit - Toggle a bit in memory 86fea25720SGraeme Russ * @nr: the bit to set 87fea25720SGraeme Russ * @addr: the address to start counting from 88fea25720SGraeme Russ * 89fea25720SGraeme Russ * Unlike change_bit(), this function is non-atomic and may be reordered. 90fea25720SGraeme Russ * If it's called on the same region of memory simultaneously, the effect 91fea25720SGraeme Russ * may be that only one operation succeeds. 92fea25720SGraeme Russ */ 93fea25720SGraeme Russ static __inline__ void __change_bit(int nr, volatile void * addr) 94fea25720SGraeme Russ { 95fea25720SGraeme Russ __asm__ __volatile__( 96fea25720SGraeme Russ "btcl %1,%0" 97fea25720SGraeme Russ :"=m" (ADDR) 98fea25720SGraeme Russ :"Ir" (nr)); 99fea25720SGraeme Russ } 100fea25720SGraeme Russ 101fea25720SGraeme Russ /** 102fea25720SGraeme Russ * change_bit - Toggle a bit in memory 103fea25720SGraeme Russ * @nr: Bit to clear 104fea25720SGraeme Russ * @addr: Address to start counting from 105fea25720SGraeme Russ * 106fea25720SGraeme Russ * change_bit() is atomic and may not be reordered. 107fea25720SGraeme Russ * Note that @nr may be almost arbitrarily large; this function is not 108fea25720SGraeme Russ * restricted to acting on a single-word quantity. 109fea25720SGraeme Russ */ 110fea25720SGraeme Russ static __inline__ void change_bit(int nr, volatile void * addr) 111fea25720SGraeme Russ { 112fea25720SGraeme Russ __asm__ __volatile__( LOCK_PREFIX 113fea25720SGraeme Russ "btcl %1,%0" 114fea25720SGraeme Russ :"=m" (ADDR) 115fea25720SGraeme Russ :"Ir" (nr)); 116fea25720SGraeme Russ } 117fea25720SGraeme Russ 118fea25720SGraeme Russ /** 119fea25720SGraeme Russ * test_and_set_bit - Set a bit and return its old value 120fea25720SGraeme Russ * @nr: Bit to set 121fea25720SGraeme Russ * @addr: Address to count from 122fea25720SGraeme Russ * 123fea25720SGraeme Russ * This operation is atomic and cannot be reordered. 124fea25720SGraeme Russ * It also implies a memory barrier. 125fea25720SGraeme Russ */ 126fea25720SGraeme Russ static __inline__ int test_and_set_bit(int nr, volatile void * addr) 127fea25720SGraeme Russ { 128fea25720SGraeme Russ int oldbit; 129fea25720SGraeme Russ 130fea25720SGraeme Russ __asm__ __volatile__( LOCK_PREFIX 131fea25720SGraeme Russ "btsl %2,%1\n\tsbbl %0,%0" 132fea25720SGraeme Russ :"=r" (oldbit),"=m" (ADDR) 133fea25720SGraeme Russ :"Ir" (nr) : "memory"); 134fea25720SGraeme Russ return oldbit; 135fea25720SGraeme Russ } 136fea25720SGraeme Russ 137fea25720SGraeme Russ /** 138fea25720SGraeme Russ * __test_and_set_bit - Set a bit and return its old value 139fea25720SGraeme Russ * @nr: Bit to set 140fea25720SGraeme Russ * @addr: Address to count from 141fea25720SGraeme Russ * 142fea25720SGraeme Russ * This operation is non-atomic and can be reordered. 143fea25720SGraeme Russ * If two examples of this operation race, one can appear to succeed 144fea25720SGraeme Russ * but actually fail. You must protect multiple accesses with a lock. 145fea25720SGraeme Russ */ 146fea25720SGraeme Russ static __inline__ int __test_and_set_bit(int nr, volatile void * addr) 147fea25720SGraeme Russ { 148fea25720SGraeme Russ int oldbit; 149fea25720SGraeme Russ 150fea25720SGraeme Russ __asm__( 151fea25720SGraeme Russ "btsl %2,%1\n\tsbbl %0,%0" 152fea25720SGraeme Russ :"=r" (oldbit),"=m" (ADDR) 153fea25720SGraeme Russ :"Ir" (nr)); 154fea25720SGraeme Russ return oldbit; 155fea25720SGraeme Russ } 156fea25720SGraeme Russ 157fea25720SGraeme Russ /** 158fea25720SGraeme Russ * test_and_clear_bit - Clear a bit and return its old value 159fea25720SGraeme Russ * @nr: Bit to set 160fea25720SGraeme Russ * @addr: Address to count from 161fea25720SGraeme Russ * 162fea25720SGraeme Russ * This operation is atomic and cannot be reordered. 163fea25720SGraeme Russ * It also implies a memory barrier. 164fea25720SGraeme Russ */ 165fea25720SGraeme Russ static __inline__ int test_and_clear_bit(int nr, volatile void * addr) 166fea25720SGraeme Russ { 167fea25720SGraeme Russ int oldbit; 168fea25720SGraeme Russ 169fea25720SGraeme Russ __asm__ __volatile__( LOCK_PREFIX 170fea25720SGraeme Russ "btrl %2,%1\n\tsbbl %0,%0" 171fea25720SGraeme Russ :"=r" (oldbit),"=m" (ADDR) 172fea25720SGraeme Russ :"Ir" (nr) : "memory"); 173fea25720SGraeme Russ return oldbit; 174fea25720SGraeme Russ } 175fea25720SGraeme Russ 176fea25720SGraeme Russ /** 177fea25720SGraeme Russ * __test_and_clear_bit - Clear a bit and return its old value 178fea25720SGraeme Russ * @nr: Bit to set 179fea25720SGraeme Russ * @addr: Address to count from 180fea25720SGraeme Russ * 181fea25720SGraeme Russ * This operation is non-atomic and can be reordered. 182fea25720SGraeme Russ * If two examples of this operation race, one can appear to succeed 183fea25720SGraeme Russ * but actually fail. You must protect multiple accesses with a lock. 184fea25720SGraeme Russ */ 185fea25720SGraeme Russ static __inline__ int __test_and_clear_bit(int nr, volatile void * addr) 186fea25720SGraeme Russ { 187fea25720SGraeme Russ int oldbit; 188fea25720SGraeme Russ 189fea25720SGraeme Russ __asm__( 190fea25720SGraeme Russ "btrl %2,%1\n\tsbbl %0,%0" 191fea25720SGraeme Russ :"=r" (oldbit),"=m" (ADDR) 192fea25720SGraeme Russ :"Ir" (nr)); 193fea25720SGraeme Russ return oldbit; 194fea25720SGraeme Russ } 195fea25720SGraeme Russ 196fea25720SGraeme Russ /* WARNING: non atomic and it can be reordered! */ 197fea25720SGraeme Russ static __inline__ int __test_and_change_bit(int nr, volatile void * addr) 198fea25720SGraeme Russ { 199fea25720SGraeme Russ int oldbit; 200fea25720SGraeme Russ 201fea25720SGraeme Russ __asm__ __volatile__( 202fea25720SGraeme Russ "btcl %2,%1\n\tsbbl %0,%0" 203fea25720SGraeme Russ :"=r" (oldbit),"=m" (ADDR) 204fea25720SGraeme Russ :"Ir" (nr) : "memory"); 205fea25720SGraeme Russ return oldbit; 206fea25720SGraeme Russ } 207fea25720SGraeme Russ 208fea25720SGraeme Russ /** 209fea25720SGraeme Russ * test_and_change_bit - Change a bit and return its new value 210fea25720SGraeme Russ * @nr: Bit to set 211fea25720SGraeme Russ * @addr: Address to count from 212fea25720SGraeme Russ * 213fea25720SGraeme Russ * This operation is atomic and cannot be reordered. 214fea25720SGraeme Russ * It also implies a memory barrier. 215fea25720SGraeme Russ */ 216fea25720SGraeme Russ static __inline__ int test_and_change_bit(int nr, volatile void * addr) 217fea25720SGraeme Russ { 218fea25720SGraeme Russ int oldbit; 219fea25720SGraeme Russ 220fea25720SGraeme Russ __asm__ __volatile__( LOCK_PREFIX 221fea25720SGraeme Russ "btcl %2,%1\n\tsbbl %0,%0" 222fea25720SGraeme Russ :"=r" (oldbit),"=m" (ADDR) 223fea25720SGraeme Russ :"Ir" (nr) : "memory"); 224fea25720SGraeme Russ return oldbit; 225fea25720SGraeme Russ } 226fea25720SGraeme Russ 227fea25720SGraeme Russ #if 0 /* Fool kernel-doc since it doesn't do macros yet */ 228fea25720SGraeme Russ /** 229fea25720SGraeme Russ * test_bit - Determine whether a bit is set 230fea25720SGraeme Russ * @nr: bit number to test 231fea25720SGraeme Russ * @addr: Address to start counting from 232fea25720SGraeme Russ */ 233fea25720SGraeme Russ static int test_bit(int nr, const volatile void * addr); 234fea25720SGraeme Russ #endif 235fea25720SGraeme Russ 236fea25720SGraeme Russ static __inline__ int constant_test_bit(int nr, const volatile void * addr) 237fea25720SGraeme Russ { 238fea25720SGraeme Russ return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0; 239fea25720SGraeme Russ } 240fea25720SGraeme Russ 241fea25720SGraeme Russ static __inline__ int variable_test_bit(int nr, volatile void * addr) 242fea25720SGraeme Russ { 243fea25720SGraeme Russ int oldbit; 244fea25720SGraeme Russ 245fea25720SGraeme Russ __asm__ __volatile__( 246fea25720SGraeme Russ "btl %2,%1\n\tsbbl %0,%0" 247fea25720SGraeme Russ :"=r" (oldbit) 248fea25720SGraeme Russ :"m" (ADDR),"Ir" (nr)); 249fea25720SGraeme Russ return oldbit; 250fea25720SGraeme Russ } 251fea25720SGraeme Russ 252fea25720SGraeme Russ #define test_bit(nr,addr) \ 253fea25720SGraeme Russ (__builtin_constant_p(nr) ? \ 254fea25720SGraeme Russ constant_test_bit((nr),(addr)) : \ 255fea25720SGraeme Russ variable_test_bit((nr),(addr))) 256fea25720SGraeme Russ 257fea25720SGraeme Russ /** 258fea25720SGraeme Russ * find_first_zero_bit - find the first zero bit in a memory region 259fea25720SGraeme Russ * @addr: The address to start the search at 260fea25720SGraeme Russ * @size: The maximum size to search 261fea25720SGraeme Russ * 262fea25720SGraeme Russ * Returns the bit-number of the first zero bit, not the number of the byte 263fea25720SGraeme Russ * containing a bit. 264fea25720SGraeme Russ */ 265fea25720SGraeme Russ static __inline__ int find_first_zero_bit(void * addr, unsigned size) 266fea25720SGraeme Russ { 267fea25720SGraeme Russ int d0, d1, d2; 268fea25720SGraeme Russ int res; 269fea25720SGraeme Russ 270fea25720SGraeme Russ if (!size) 271fea25720SGraeme Russ return 0; 272fea25720SGraeme Russ /* This looks at memory. Mark it volatile to tell gcc not to move it around */ 273fea25720SGraeme Russ __asm__ __volatile__( 274fea25720SGraeme Russ "movl $-1,%%eax\n\t" 275fea25720SGraeme Russ "xorl %%edx,%%edx\n\t" 276fea25720SGraeme Russ "repe; scasl\n\t" 277fea25720SGraeme Russ "je 1f\n\t" 278fea25720SGraeme Russ "xorl -4(%%edi),%%eax\n\t" 279fea25720SGraeme Russ "subl $4,%%edi\n\t" 280fea25720SGraeme Russ "bsfl %%eax,%%edx\n" 281fea25720SGraeme Russ "1:\tsubl %%ebx,%%edi\n\t" 282fea25720SGraeme Russ "shll $3,%%edi\n\t" 283fea25720SGraeme Russ "addl %%edi,%%edx" 284fea25720SGraeme Russ :"=d" (res), "=&c" (d0), "=&D" (d1), "=&a" (d2) 285fea25720SGraeme Russ :"1" ((size + 31) >> 5), "2" (addr), "b" (addr)); 286fea25720SGraeme Russ return res; 287fea25720SGraeme Russ } 288fea25720SGraeme Russ 289fea25720SGraeme Russ /** 290fea25720SGraeme Russ * find_next_zero_bit - find the first zero bit in a memory region 291fea25720SGraeme Russ * @addr: The address to base the search on 292fea25720SGraeme Russ * @offset: The bitnumber to start searching at 293fea25720SGraeme Russ * @size: The maximum size to search 294fea25720SGraeme Russ */ 295fea25720SGraeme Russ static __inline__ int find_next_zero_bit (void * addr, int size, int offset) 296fea25720SGraeme Russ { 297fea25720SGraeme Russ unsigned long * p = ((unsigned long *) addr) + (offset >> 5); 298fea25720SGraeme Russ int set = 0, bit = offset & 31, res; 299fea25720SGraeme Russ 300fea25720SGraeme Russ if (bit) { 301fea25720SGraeme Russ /* 302fea25720SGraeme Russ * Look for zero in first byte 303fea25720SGraeme Russ */ 304fea25720SGraeme Russ __asm__("bsfl %1,%0\n\t" 305fea25720SGraeme Russ "jne 1f\n\t" 306fea25720SGraeme Russ "movl $32, %0\n" 307fea25720SGraeme Russ "1:" 308fea25720SGraeme Russ : "=r" (set) 309fea25720SGraeme Russ : "r" (~(*p >> bit))); 310fea25720SGraeme Russ if (set < (32 - bit)) 311fea25720SGraeme Russ return set + offset; 312fea25720SGraeme Russ set = 32 - bit; 313fea25720SGraeme Russ p++; 314fea25720SGraeme Russ } 315fea25720SGraeme Russ /* 316fea25720SGraeme Russ * No zero yet, search remaining full bytes for a zero 317fea25720SGraeme Russ */ 318fea25720SGraeme Russ res = find_first_zero_bit (p, size - 32 * (p - (unsigned long *) addr)); 319fea25720SGraeme Russ return (offset + set + res); 320fea25720SGraeme Russ } 321fea25720SGraeme Russ 322fea25720SGraeme Russ /** 323fea25720SGraeme Russ * ffz - find first zero in word. 324fea25720SGraeme Russ * @word: The word to search 325fea25720SGraeme Russ * 326fea25720SGraeme Russ * Undefined if no zero exists, so code should check against ~0UL first. 327fea25720SGraeme Russ */ 328fea25720SGraeme Russ static __inline__ unsigned long ffz(unsigned long word) 329fea25720SGraeme Russ { 330fea25720SGraeme Russ __asm__("bsfl %1,%0" 331fea25720SGraeme Russ :"=r" (word) 332fea25720SGraeme Russ :"r" (~word)); 333fea25720SGraeme Russ return word; 334fea25720SGraeme Russ } 335fea25720SGraeme Russ 336fea25720SGraeme Russ #ifdef __KERNEL__ 337fea25720SGraeme Russ 338fea25720SGraeme Russ /** 339*6c2f758cSFabio Estevam * __ffs - find first set bit in word 340*6c2f758cSFabio Estevam * @word: The word to search 341*6c2f758cSFabio Estevam * 342*6c2f758cSFabio Estevam * Undefined if no bit exists, so code should check against 0 first. 343*6c2f758cSFabio Estevam */ 344*6c2f758cSFabio Estevam static inline unsigned long __ffs(unsigned long word) 345*6c2f758cSFabio Estevam { 346*6c2f758cSFabio Estevam __asm__("rep; bsf %1,%0" 347*6c2f758cSFabio Estevam : "=r" (word) 348*6c2f758cSFabio Estevam : "rm" (word)); 349*6c2f758cSFabio Estevam return word; 350*6c2f758cSFabio Estevam } 351*6c2f758cSFabio Estevam 352*6c2f758cSFabio Estevam /** 353fea25720SGraeme Russ * ffs - find first bit set 354fea25720SGraeme Russ * @x: the word to search 355fea25720SGraeme Russ * 356fea25720SGraeme Russ * This is defined the same way as 357fea25720SGraeme Russ * the libc and compiler builtin ffs routines, therefore 358fea25720SGraeme Russ * differs in spirit from the above ffz (man ffs). 359fea25720SGraeme Russ */ 360fea25720SGraeme Russ static __inline__ int ffs(int x) 361fea25720SGraeme Russ { 362fea25720SGraeme Russ int r; 363fea25720SGraeme Russ 364fea25720SGraeme Russ __asm__("bsfl %1,%0\n\t" 365fea25720SGraeme Russ "jnz 1f\n\t" 366fea25720SGraeme Russ "movl $-1,%0\n" 367*6c2f758cSFabio Estevam "1:" : "=r" (r) : "rm" (x)); 368*6c2f758cSFabio Estevam 369fea25720SGraeme Russ return r+1; 370fea25720SGraeme Russ } 371fea25720SGraeme Russ #define PLATFORM_FFS 372fea25720SGraeme Russ 3738abebe3eSGraeme Russ static inline int __ilog2(unsigned int x) 3748abebe3eSGraeme Russ { 3758abebe3eSGraeme Russ return generic_fls(x) - 1; 3768abebe3eSGraeme Russ } 3778abebe3eSGraeme Russ 378fea25720SGraeme Russ /** 379fea25720SGraeme Russ * hweightN - returns the hamming weight of a N-bit word 380fea25720SGraeme Russ * @x: the word to weigh 381fea25720SGraeme Russ * 382fea25720SGraeme Russ * The Hamming Weight of a number is the total number of bits set in it. 383fea25720SGraeme Russ */ 384fea25720SGraeme Russ 385fea25720SGraeme Russ #define hweight32(x) generic_hweight32(x) 386fea25720SGraeme Russ #define hweight16(x) generic_hweight16(x) 387fea25720SGraeme Russ #define hweight8(x) generic_hweight8(x) 388fea25720SGraeme Russ 389fea25720SGraeme Russ #endif /* __KERNEL__ */ 390fea25720SGraeme Russ 391fea25720SGraeme Russ #ifdef __KERNEL__ 392fea25720SGraeme Russ 393fea25720SGraeme Russ #define ext2_set_bit __test_and_set_bit 394fea25720SGraeme Russ #define ext2_clear_bit __test_and_clear_bit 395fea25720SGraeme Russ #define ext2_test_bit test_bit 396fea25720SGraeme Russ #define ext2_find_first_zero_bit find_first_zero_bit 397fea25720SGraeme Russ #define ext2_find_next_zero_bit find_next_zero_bit 398fea25720SGraeme Russ 399fea25720SGraeme Russ /* Bitmap functions for the minix filesystem. */ 400fea25720SGraeme Russ #define minix_test_and_set_bit(nr,addr) __test_and_set_bit(nr,addr) 401fea25720SGraeme Russ #define minix_set_bit(nr,addr) __set_bit(nr,addr) 402fea25720SGraeme Russ #define minix_test_and_clear_bit(nr,addr) __test_and_clear_bit(nr,addr) 403fea25720SGraeme Russ #define minix_test_bit(nr,addr) test_bit(nr,addr) 404fea25720SGraeme Russ #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) 405fea25720SGraeme Russ 406fea25720SGraeme Russ #endif /* __KERNEL__ */ 407fea25720SGraeme Russ 408fea25720SGraeme Russ #endif /* _I386_BITOPS_H */ 409