xref: /openbmc/u-boot/arch/x86/cpu/ivybridge/sdram.c (revision 679f82c349473c894159795c14a7fc0a8db0cd43)
1 /*
2  * Copyright (c) 2011 The Chromium OS Authors.
3  * (C) Copyright 2010,2011
4  * Graeme Russ, <graeme.russ@gmail.com>
5  *
6  * Portions from Coreboot mainboard/google/link/romstage.c
7  * Copyright (C) 2007-2010 coresystems GmbH
8  * Copyright (C) 2011 Google Inc.
9  *
10  * SPDX-License-Identifier:	GPL-2.0
11  */
12 
13 #include <common.h>
14 #include <errno.h>
15 #include <fdtdec.h>
16 #include <malloc.h>
17 #include <net.h>
18 #include <rtc.h>
19 #include <spi.h>
20 #include <spi_flash.h>
21 #include <asm/processor.h>
22 #include <asm/gpio.h>
23 #include <asm/global_data.h>
24 #include <asm/mrccache.h>
25 #include <asm/mtrr.h>
26 #include <asm/pci.h>
27 #include <asm/arch/me.h>
28 #include <asm/arch/pei_data.h>
29 #include <asm/arch/pch.h>
30 #include <asm/post.h>
31 #include <asm/arch/sandybridge.h>
32 
33 DECLARE_GLOBAL_DATA_PTR;
34 
35 #define CMOS_OFFSET_MRC_SEED		152
36 #define CMOS_OFFSET_MRC_SEED_S3		156
37 #define CMOS_OFFSET_MRC_SEED_CHK	160
38 
39 /*
40  * This function looks for the highest region of memory lower than 4GB which
41  * has enough space for U-Boot where U-Boot is aligned on a page boundary.
42  * It overrides the default implementation found elsewhere which simply
43  * picks the end of ram, wherever that may be. The location of the stack,
44  * the relocation address, and how far U-Boot is moved by relocation are
45  * set in the global data structure.
46  */
47 ulong board_get_usable_ram_top(ulong total_size)
48 {
49 	struct memory_info *info = &gd->arch.meminfo;
50 	uintptr_t dest_addr = 0;
51 	struct memory_area *largest = NULL;
52 	int i;
53 
54 	/* Find largest area of memory below 4GB */
55 
56 	for (i = 0; i < info->num_areas; i++) {
57 		struct memory_area *area = &info->area[i];
58 
59 		if (area->start >= 1ULL << 32)
60 			continue;
61 		if (!largest || area->size > largest->size)
62 			largest = area;
63 	}
64 
65 	/* If no suitable area was found, return an error. */
66 	assert(largest);
67 	if (!largest || largest->size < (2 << 20))
68 		panic("No available memory found for relocation");
69 
70 	dest_addr = largest->start + largest->size;
71 
72 	return (ulong)dest_addr;
73 }
74 
75 void dram_init_banksize(void)
76 {
77 	struct memory_info *info = &gd->arch.meminfo;
78 	int num_banks;
79 	int i;
80 
81 	for (i = 0, num_banks = 0; i < info->num_areas; i++) {
82 		struct memory_area *area = &info->area[i];
83 
84 		if (area->start >= 1ULL << 32)
85 			continue;
86 		gd->bd->bi_dram[num_banks].start = area->start;
87 		gd->bd->bi_dram[num_banks].size = area->size;
88 		num_banks++;
89 	}
90 }
91 
92 static int read_seed_from_cmos(struct pei_data *pei_data)
93 {
94 	u16 c1, c2, checksum, seed_checksum;
95 	struct udevice *dev;
96 	int ret = 0;
97 
98 	ret = uclass_get_device(UCLASS_RTC, 0, &dev);
99 	if (ret) {
100 		debug("Cannot find RTC: err=%d\n", ret);
101 		return -ENODEV;
102 	}
103 
104 	/*
105 	 * Read scrambler seeds from CMOS RAM. We don't want to store them in
106 	 * SPI flash since they change on every boot and that would wear down
107 	 * the flash too much. So we store these in CMOS and the large MRC
108 	 * data in SPI flash.
109 	 */
110 	ret = rtc_read32(dev, CMOS_OFFSET_MRC_SEED, &pei_data->scrambler_seed);
111 	if (!ret) {
112 		ret = rtc_read32(dev, CMOS_OFFSET_MRC_SEED_S3,
113 				 &pei_data->scrambler_seed_s3);
114 	}
115 	if (ret) {
116 		debug("Failed to read from RTC %s\n", dev->name);
117 		return ret;
118 	}
119 
120 	debug("Read scrambler seed    0x%08x from CMOS 0x%02x\n",
121 	      pei_data->scrambler_seed, CMOS_OFFSET_MRC_SEED);
122 	debug("Read S3 scrambler seed 0x%08x from CMOS 0x%02x\n",
123 	      pei_data->scrambler_seed_s3, CMOS_OFFSET_MRC_SEED_S3);
124 
125 	/* Compute seed checksum and compare */
126 	c1 = compute_ip_checksum((u8 *)&pei_data->scrambler_seed,
127 				 sizeof(u32));
128 	c2 = compute_ip_checksum((u8 *)&pei_data->scrambler_seed_s3,
129 				 sizeof(u32));
130 	checksum = add_ip_checksums(sizeof(u32), c1, c2);
131 
132 	seed_checksum = rtc_read8(dev, CMOS_OFFSET_MRC_SEED_CHK);
133 	seed_checksum |= rtc_read8(dev, CMOS_OFFSET_MRC_SEED_CHK + 1) << 8;
134 
135 	if (checksum != seed_checksum) {
136 		debug("%s: invalid seed checksum\n", __func__);
137 		pei_data->scrambler_seed = 0;
138 		pei_data->scrambler_seed_s3 = 0;
139 		return -EINVAL;
140 	}
141 
142 	return 0;
143 }
144 
145 static int prepare_mrc_cache(struct pei_data *pei_data)
146 {
147 	struct mrc_data_container *mrc_cache;
148 	struct mrc_region entry;
149 	int ret;
150 
151 	ret = read_seed_from_cmos(pei_data);
152 	if (ret)
153 		return ret;
154 	ret = mrccache_get_region(NULL, &entry);
155 	if (ret)
156 		return ret;
157 	mrc_cache = mrccache_find_current(&entry);
158 	if (!mrc_cache)
159 		return -ENOENT;
160 
161 	pei_data->mrc_input = mrc_cache->data;
162 	pei_data->mrc_input_len = mrc_cache->data_size;
163 	debug("%s: at %p, size %x checksum %04x\n", __func__,
164 	      pei_data->mrc_input, pei_data->mrc_input_len,
165 	      mrc_cache->checksum);
166 
167 	return 0;
168 }
169 
170 static int write_seeds_to_cmos(struct pei_data *pei_data)
171 {
172 	u16 c1, c2, checksum;
173 	struct udevice *dev;
174 	int ret = 0;
175 
176 	ret = uclass_get_device(UCLASS_RTC, 0, &dev);
177 	if (ret) {
178 		debug("Cannot find RTC: err=%d\n", ret);
179 		return -ENODEV;
180 	}
181 
182 	/* Save the MRC seed values to CMOS */
183 	rtc_write32(dev, CMOS_OFFSET_MRC_SEED, pei_data->scrambler_seed);
184 	debug("Save scrambler seed    0x%08x to CMOS 0x%02x\n",
185 	      pei_data->scrambler_seed, CMOS_OFFSET_MRC_SEED);
186 
187 	rtc_write32(dev, CMOS_OFFSET_MRC_SEED_S3, pei_data->scrambler_seed_s3);
188 	debug("Save s3 scrambler seed 0x%08x to CMOS 0x%02x\n",
189 	      pei_data->scrambler_seed_s3, CMOS_OFFSET_MRC_SEED_S3);
190 
191 	/* Save a simple checksum of the seed values */
192 	c1 = compute_ip_checksum((u8 *)&pei_data->scrambler_seed,
193 				 sizeof(u32));
194 	c2 = compute_ip_checksum((u8 *)&pei_data->scrambler_seed_s3,
195 				 sizeof(u32));
196 	checksum = add_ip_checksums(sizeof(u32), c1, c2);
197 
198 	rtc_write8(dev, CMOS_OFFSET_MRC_SEED_CHK, checksum & 0xff);
199 	rtc_write8(dev, CMOS_OFFSET_MRC_SEED_CHK + 1, (checksum >> 8) & 0xff);
200 
201 	return 0;
202 }
203 
204 /* Use this hook to save our SDRAM parameters */
205 int misc_init_r(void)
206 {
207 	int ret;
208 
209 	ret = mrccache_save();
210 	if (ret)
211 		printf("Unable to save MRC data: %d\n", ret);
212 
213 	return 0;
214 }
215 
216 static const char *const ecc_decoder[] = {
217 	"inactive",
218 	"active on IO",
219 	"disabled on IO",
220 	"active"
221 };
222 
223 /*
224  * Dump in the log memory controller configuration as read from the memory
225  * controller registers.
226  */
227 static void report_memory_config(void)
228 {
229 	u32 addr_decoder_common, addr_decode_ch[2];
230 	int i;
231 
232 	addr_decoder_common = readl(MCHBAR_REG(0x5000));
233 	addr_decode_ch[0] = readl(MCHBAR_REG(0x5004));
234 	addr_decode_ch[1] = readl(MCHBAR_REG(0x5008));
235 
236 	debug("memcfg DDR3 clock %d MHz\n",
237 	      (readl(MCHBAR_REG(0x5e04)) * 13333 * 2 + 50) / 100);
238 	debug("memcfg channel assignment: A: %d, B % d, C % d\n",
239 	      addr_decoder_common & 3,
240 	      (addr_decoder_common >> 2) & 3,
241 	      (addr_decoder_common >> 4) & 3);
242 
243 	for (i = 0; i < ARRAY_SIZE(addr_decode_ch); i++) {
244 		u32 ch_conf = addr_decode_ch[i];
245 		debug("memcfg channel[%d] config (%8.8x):\n", i, ch_conf);
246 		debug("   ECC %s\n", ecc_decoder[(ch_conf >> 24) & 3]);
247 		debug("   enhanced interleave mode %s\n",
248 		      ((ch_conf >> 22) & 1) ? "on" : "off");
249 		debug("   rank interleave %s\n",
250 		      ((ch_conf >> 21) & 1) ? "on" : "off");
251 		debug("   DIMMA %d MB width x%d %s rank%s\n",
252 		      ((ch_conf >> 0) & 0xff) * 256,
253 		      ((ch_conf >> 19) & 1) ? 16 : 8,
254 		      ((ch_conf >> 17) & 1) ? "dual" : "single",
255 		      ((ch_conf >> 16) & 1) ? "" : ", selected");
256 		debug("   DIMMB %d MB width x%d %s rank%s\n",
257 		      ((ch_conf >> 8) & 0xff) * 256,
258 		      ((ch_conf >> 20) & 1) ? 16 : 8,
259 		      ((ch_conf >> 18) & 1) ? "dual" : "single",
260 		      ((ch_conf >> 16) & 1) ? ", selected" : "");
261 	}
262 }
263 
264 static void post_system_agent_init(struct pei_data *pei_data)
265 {
266 	/* If PCIe init is skipped, set the PEG clock gating */
267 	if (!pei_data->pcie_init)
268 		setbits_le32(MCHBAR_REG(0x7010), 1);
269 }
270 
271 static asmlinkage void console_tx_byte(unsigned char byte)
272 {
273 #ifdef DEBUG
274 	putc(byte);
275 #endif
276 }
277 
278 static int recovery_mode_enabled(void)
279 {
280 	return false;
281 }
282 
283 /**
284  * Find the PEI executable in the ROM and execute it.
285  *
286  * @param pei_data: configuration data for UEFI PEI reference code
287  */
288 int sdram_initialise(struct pei_data *pei_data)
289 {
290 	unsigned version;
291 	const char *data;
292 	uint16_t done;
293 	int ret;
294 
295 	report_platform_info();
296 
297 	/* Wait for ME to be ready */
298 	ret = intel_early_me_init();
299 	if (ret)
300 		return ret;
301 	ret = intel_early_me_uma_size();
302 	if (ret < 0)
303 		return ret;
304 
305 	debug("Starting UEFI PEI System Agent\n");
306 
307 	/*
308 	 * Do not pass MRC data in for recovery mode boot,
309 	 * Always pass it in for S3 resume.
310 	 */
311 	if (!recovery_mode_enabled() ||
312 	    pei_data->boot_mode == PEI_BOOT_RESUME) {
313 		ret = prepare_mrc_cache(pei_data);
314 		if (ret)
315 			debug("prepare_mrc_cache failed: %d\n", ret);
316 	}
317 
318 	/* If MRC data is not found we cannot continue S3 resume. */
319 	if (pei_data->boot_mode == PEI_BOOT_RESUME && !pei_data->mrc_input) {
320 		debug("Giving up in sdram_initialize: No MRC data\n");
321 		reset_cpu(0);
322 	}
323 
324 	/* Pass console handler in pei_data */
325 	pei_data->tx_byte = console_tx_byte;
326 
327 	debug("PEI data at %p, size %x:\n", pei_data, sizeof(*pei_data));
328 
329 	data = (char *)CONFIG_X86_MRC_ADDR;
330 	if (data) {
331 		int rv;
332 		int (*func)(struct pei_data *);
333 		ulong start;
334 
335 		debug("Calling MRC at %p\n", data);
336 		post_code(POST_PRE_MRC);
337 		start = get_timer(0);
338 		func = (int (*)(struct pei_data *))data;
339 		rv = func(pei_data);
340 		post_code(POST_MRC);
341 		if (rv) {
342 			switch (rv) {
343 			case -1:
344 				printf("PEI version mismatch.\n");
345 				break;
346 			case -2:
347 				printf("Invalid memory frequency.\n");
348 				break;
349 			default:
350 				printf("MRC returned %x.\n", rv);
351 			}
352 			printf("Nonzero MRC return value.\n");
353 			return -EFAULT;
354 		}
355 		debug("MRC execution time %lu ms\n", get_timer(start));
356 	} else {
357 		printf("UEFI PEI System Agent not found.\n");
358 		return -ENOSYS;
359 	}
360 
361 #if CONFIG_USBDEBUG
362 	/* mrc.bin reconfigures USB, so reinit it to have debug */
363 	early_usbdebug_init();
364 #endif
365 
366 	version = readl(MCHBAR_REG(0x5034));
367 	debug("System Agent Version %d.%d.%d Build %d\n",
368 	      version >> 24 , (version >> 16) & 0xff,
369 	      (version >> 8) & 0xff, version & 0xff);
370 	debug("MRC output data length %#x at %p\n", pei_data->mrc_output_len,
371 	      pei_data->mrc_output);
372 
373 	/*
374 	 * Send ME init done for SandyBridge here.  This is done inside the
375 	 * SystemAgent binary on IvyBridge
376 	 */
377 	done = x86_pci_read_config32(PCH_DEV, PCI_DEVICE_ID);
378 	done &= BASE_REV_MASK;
379 	if (BASE_REV_SNB == done)
380 		intel_early_me_init_done(ME_INIT_STATUS_SUCCESS);
381 	else
382 		intel_early_me_status();
383 
384 	post_system_agent_init(pei_data);
385 	report_memory_config();
386 
387 	/* S3 resume: don't save scrambler seed or MRC data */
388 	if (pei_data->boot_mode != PEI_BOOT_RESUME) {
389 		/*
390 		 * This will be copied to SDRAM in reserve_arch(), then written
391 		 * to SPI flash in mrccache_save()
392 		 */
393 		gd->arch.mrc_output = (char *)pei_data->mrc_output;
394 		gd->arch.mrc_output_len = pei_data->mrc_output_len;
395 		ret = write_seeds_to_cmos(pei_data);
396 		if (ret)
397 			debug("Failed to write seeds to CMOS: %d\n", ret);
398 	}
399 
400 	return 0;
401 }
402 
403 int reserve_arch(void)
404 {
405 	return mrccache_reserve();
406 }
407 
408 static int copy_spd(struct pei_data *peid)
409 {
410 	const int gpio_vector[] = {41, 42, 43, 10, -1};
411 	int spd_index;
412 	const void *blob = gd->fdt_blob;
413 	int node, spd_node;
414 	int ret, i;
415 
416 	for (i = 0; ; i++) {
417 		if (gpio_vector[i] == -1)
418 			break;
419 		ret = gpio_requestf(gpio_vector[i], "spd_id%d", i);
420 		if (ret) {
421 			debug("%s: Could not request gpio %d\n", __func__,
422 			      gpio_vector[i]);
423 			return ret;
424 		}
425 	}
426 	spd_index = gpio_get_values_as_int(gpio_vector);
427 	debug("spd index %d\n", spd_index);
428 	node = fdtdec_next_compatible(blob, 0, COMPAT_MEMORY_SPD);
429 	if (node < 0) {
430 		printf("SPD data not found.\n");
431 		return -ENOENT;
432 	}
433 
434 	for (spd_node = fdt_first_subnode(blob, node);
435 	     spd_node > 0;
436 	     spd_node = fdt_next_subnode(blob, spd_node)) {
437 		const char *data;
438 		int len;
439 
440 		if (fdtdec_get_int(blob, spd_node, "reg", -1) != spd_index)
441 			continue;
442 		data = fdt_getprop(blob, spd_node, "data", &len);
443 		if (len < sizeof(peid->spd_data[0])) {
444 			printf("Missing SPD data\n");
445 			return -EINVAL;
446 		}
447 
448 		debug("Using SDRAM SPD data for '%s'\n",
449 		      fdt_get_name(blob, spd_node, NULL));
450 		memcpy(peid->spd_data[0], data, sizeof(peid->spd_data[0]));
451 		break;
452 	}
453 
454 	if (spd_node < 0) {
455 		printf("No SPD data found for index %d\n", spd_index);
456 		return -ENOENT;
457 	}
458 
459 	return 0;
460 }
461 
462 /**
463  * add_memory_area() - Add a new usable memory area to our list
464  *
465  * Note: @start and @end must not span the first 4GB boundary
466  *
467  * @info:	Place to store memory info
468  * @start:	Start of this memory area
469  * @end:	End of this memory area + 1
470  */
471 static int add_memory_area(struct memory_info *info,
472 			   uint64_t start, uint64_t end)
473 {
474 	struct memory_area *ptr;
475 
476 	if (info->num_areas == CONFIG_NR_DRAM_BANKS)
477 		return -ENOSPC;
478 
479 	ptr = &info->area[info->num_areas];
480 	ptr->start = start;
481 	ptr->size = end - start;
482 	info->total_memory += ptr->size;
483 	if (ptr->start < (1ULL << 32))
484 		info->total_32bit_memory += ptr->size;
485 	debug("%d: memory %llx size %llx, total now %llx / %llx\n",
486 	      info->num_areas, ptr->start, ptr->size,
487 	      info->total_32bit_memory, info->total_memory);
488 	info->num_areas++;
489 
490 	return 0;
491 }
492 
493 /**
494  * sdram_find() - Find available memory
495  *
496  * This is a bit complicated since on x86 there are system memory holes all
497  * over the place. We create a list of available memory blocks
498  */
499 static int sdram_find(pci_dev_t dev)
500 {
501 	struct memory_info *info = &gd->arch.meminfo;
502 	uint32_t tseg_base, uma_size, tolud;
503 	uint64_t tom, me_base, touud;
504 	uint64_t uma_memory_base = 0;
505 	uint64_t uma_memory_size;
506 	unsigned long long tomk;
507 	uint16_t ggc;
508 
509 	/* Total Memory 2GB example:
510 	 *
511 	 *  00000000  0000MB-1992MB  1992MB  RAM     (writeback)
512 	 *  7c800000  1992MB-2000MB     8MB  TSEG    (SMRR)
513 	 *  7d000000  2000MB-2002MB     2MB  GFX GTT (uncached)
514 	 *  7d200000  2002MB-2034MB    32MB  GFX UMA (uncached)
515 	 *  7f200000   2034MB TOLUD
516 	 *  7f800000   2040MB MEBASE
517 	 *  7f800000  2040MB-2048MB     8MB  ME UMA  (uncached)
518 	 *  80000000   2048MB TOM
519 	 * 100000000  4096MB-4102MB     6MB  RAM     (writeback)
520 	 *
521 	 * Total Memory 4GB example:
522 	 *
523 	 *  00000000  0000MB-2768MB  2768MB  RAM     (writeback)
524 	 *  ad000000  2768MB-2776MB     8MB  TSEG    (SMRR)
525 	 *  ad800000  2776MB-2778MB     2MB  GFX GTT (uncached)
526 	 *  ada00000  2778MB-2810MB    32MB  GFX UMA (uncached)
527 	 *  afa00000   2810MB TOLUD
528 	 *  ff800000   4088MB MEBASE
529 	 *  ff800000  4088MB-4096MB     8MB  ME UMA  (uncached)
530 	 * 100000000   4096MB TOM
531 	 * 100000000  4096MB-5374MB  1278MB  RAM     (writeback)
532 	 * 14fe00000   5368MB TOUUD
533 	 */
534 
535 	/* Top of Upper Usable DRAM, including remap */
536 	touud = x86_pci_read_config32(dev, TOUUD+4);
537 	touud <<= 32;
538 	touud |= x86_pci_read_config32(dev, TOUUD);
539 
540 	/* Top of Lower Usable DRAM */
541 	tolud = x86_pci_read_config32(dev, TOLUD);
542 
543 	/* Top of Memory - does not account for any UMA */
544 	tom = x86_pci_read_config32(dev, 0xa4);
545 	tom <<= 32;
546 	tom |= x86_pci_read_config32(dev, 0xa0);
547 
548 	debug("TOUUD %llx TOLUD %08x TOM %llx\n", touud, tolud, tom);
549 
550 	/* ME UMA needs excluding if total memory <4GB */
551 	me_base = x86_pci_read_config32(dev, 0x74);
552 	me_base <<= 32;
553 	me_base |= x86_pci_read_config32(dev, 0x70);
554 
555 	debug("MEBASE %llx\n", me_base);
556 
557 	/* TODO: Get rid of all this shifting by 10 bits */
558 	tomk = tolud >> 10;
559 	if (me_base == tolud) {
560 		/* ME is from MEBASE-TOM */
561 		uma_size = (tom - me_base) >> 10;
562 		/* Increment TOLUD to account for ME as RAM */
563 		tolud += uma_size << 10;
564 		/* UMA starts at old TOLUD */
565 		uma_memory_base = tomk * 1024ULL;
566 		uma_memory_size = uma_size * 1024ULL;
567 		debug("ME UMA base %llx size %uM\n", me_base, uma_size >> 10);
568 	}
569 
570 	/* Graphics memory comes next */
571 	ggc = x86_pci_read_config16(dev, GGC);
572 	if (!(ggc & 2)) {
573 		debug("IGD decoded, subtracting ");
574 
575 		/* Graphics memory */
576 		uma_size = ((ggc >> 3) & 0x1f) * 32 * 1024ULL;
577 		debug("%uM UMA", uma_size >> 10);
578 		tomk -= uma_size;
579 		uma_memory_base = tomk * 1024ULL;
580 		uma_memory_size += uma_size * 1024ULL;
581 
582 		/* GTT Graphics Stolen Memory Size (GGMS) */
583 		uma_size = ((ggc >> 8) & 0x3) * 1024ULL;
584 		tomk -= uma_size;
585 		uma_memory_base = tomk * 1024ULL;
586 		uma_memory_size += uma_size * 1024ULL;
587 		debug(" and %uM GTT\n", uma_size >> 10);
588 	}
589 
590 	/* Calculate TSEG size from its base which must be below GTT */
591 	tseg_base = x86_pci_read_config32(dev, 0xb8);
592 	uma_size = (uma_memory_base - tseg_base) >> 10;
593 	tomk -= uma_size;
594 	uma_memory_base = tomk * 1024ULL;
595 	uma_memory_size += uma_size * 1024ULL;
596 	debug("TSEG base 0x%08x size %uM\n", tseg_base, uma_size >> 10);
597 
598 	debug("Available memory below 4GB: %lluM\n", tomk >> 10);
599 
600 	/* Report the memory regions */
601 	add_memory_area(info, 1 << 20, 2 << 28);
602 	add_memory_area(info, (2 << 28) + (2 << 20), 4 << 28);
603 	add_memory_area(info, (4 << 28) + (2 << 20), tseg_base);
604 	add_memory_area(info, 1ULL << 32, touud);
605 
606 	/* Add MTRRs for memory */
607 	mtrr_add_request(MTRR_TYPE_WRBACK, 0, 2ULL << 30);
608 	mtrr_add_request(MTRR_TYPE_WRBACK, 2ULL << 30, 512 << 20);
609 	mtrr_add_request(MTRR_TYPE_WRBACK, 0xaULL << 28, 256 << 20);
610 	mtrr_add_request(MTRR_TYPE_UNCACHEABLE, tseg_base, 16 << 20);
611 	mtrr_add_request(MTRR_TYPE_UNCACHEABLE, tseg_base + (16 << 20),
612 			 32 << 20);
613 
614 	/*
615 	 * If >= 4GB installed then memory from TOLUD to 4GB
616 	 * is remapped above TOM, TOUUD will account for both
617 	 */
618 	if (touud > (1ULL << 32ULL)) {
619 		debug("Available memory above 4GB: %lluM\n",
620 		      (touud >> 20) - 4096);
621 	}
622 
623 	return 0;
624 }
625 
626 static void rcba_config(void)
627 {
628 	/*
629 	 *             GFX    INTA -> PIRQA (MSI)
630 	 * D28IP_P3IP  WLAN   INTA -> PIRQB
631 	 * D29IP_E1P   EHCI1  INTA -> PIRQD
632 	 * D26IP_E2P   EHCI2  INTA -> PIRQF
633 	 * D31IP_SIP   SATA   INTA -> PIRQF (MSI)
634 	 * D31IP_SMIP  SMBUS  INTB -> PIRQH
635 	 * D31IP_TTIP  THRT   INTC -> PIRQA
636 	 * D27IP_ZIP   HDA    INTA -> PIRQA (MSI)
637 	 *
638 	 * TRACKPAD                -> PIRQE (Edge Triggered)
639 	 * TOUCHSCREEN             -> PIRQG (Edge Triggered)
640 	 */
641 
642 	/* Device interrupt pin register (board specific) */
643 	writel((INTC << D31IP_TTIP) | (NOINT << D31IP_SIP2) |
644 	       (INTB << D31IP_SMIP) | (INTA << D31IP_SIP), RCB_REG(D31IP));
645 	writel(NOINT << D30IP_PIP, RCB_REG(D30IP));
646 	writel(INTA << D29IP_E1P, RCB_REG(D29IP));
647 	writel(INTA << D28IP_P3IP, RCB_REG(D28IP));
648 	writel(INTA << D27IP_ZIP, RCB_REG(D27IP));
649 	writel(INTA << D26IP_E2P, RCB_REG(D26IP));
650 	writel(NOINT << D25IP_LIP, RCB_REG(D25IP));
651 	writel(NOINT << D22IP_MEI1IP, RCB_REG(D22IP));
652 
653 	/* Device interrupt route registers */
654 	writel(DIR_ROUTE(PIRQB, PIRQH, PIRQA, PIRQC), RCB_REG(D31IR));
655 	writel(DIR_ROUTE(PIRQD, PIRQE, PIRQF, PIRQG), RCB_REG(D29IR));
656 	writel(DIR_ROUTE(PIRQB, PIRQC, PIRQD, PIRQE), RCB_REG(D28IR));
657 	writel(DIR_ROUTE(PIRQA, PIRQH, PIRQA, PIRQB), RCB_REG(D27IR));
658 	writel(DIR_ROUTE(PIRQF, PIRQE, PIRQG, PIRQH), RCB_REG(D26IR));
659 	writel(DIR_ROUTE(PIRQA, PIRQB, PIRQC, PIRQD), RCB_REG(D25IR));
660 	writel(DIR_ROUTE(PIRQA, PIRQB, PIRQC, PIRQD), RCB_REG(D22IR));
661 
662 	/* Enable IOAPIC (generic) */
663 	writew(0x0100, RCB_REG(OIC));
664 	/* PCH BWG says to read back the IOAPIC enable register */
665 	(void)readw(RCB_REG(OIC));
666 
667 	/* Disable unused devices (board specific) */
668 	setbits_le32(RCB_REG(FD), PCH_DISABLE_ALWAYS);
669 }
670 
671 int dram_init(void)
672 {
673 	struct pei_data pei_data __aligned(8) = {
674 		.pei_version = PEI_VERSION,
675 		.mchbar = DEFAULT_MCHBAR,
676 		.dmibar = DEFAULT_DMIBAR,
677 		.epbar = DEFAULT_EPBAR,
678 		.pciexbar = CONFIG_PCIE_ECAM_BASE,
679 		.smbusbar = SMBUS_IO_BASE,
680 		.wdbbar = 0x4000000,
681 		.wdbsize = 0x1000,
682 		.hpet_address = CONFIG_HPET_ADDRESS,
683 		.rcba = DEFAULT_RCBABASE,
684 		.pmbase = DEFAULT_PMBASE,
685 		.gpiobase = DEFAULT_GPIOBASE,
686 		.thermalbase = 0xfed08000,
687 		.system_type = 0, /* 0 Mobile, 1 Desktop/Server */
688 		.tseg_size = CONFIG_SMM_TSEG_SIZE,
689 		.ts_addresses = { 0x00, 0x00, 0x00, 0x00 },
690 		.ec_present = 1,
691 		.ddr3lv_support = 1,
692 		/*
693 		 * 0 = leave channel enabled
694 		 * 1 = disable dimm 0 on channel
695 		 * 2 = disable dimm 1 on channel
696 		 * 3 = disable dimm 0+1 on channel
697 		 */
698 		.dimm_channel0_disabled = 2,
699 		.dimm_channel1_disabled = 2,
700 		.max_ddr3_freq = 1600,
701 		.usb_port_config = {
702 			/*
703 			 * Empty and onboard Ports 0-7, set to un-used pin
704 			 * OC3
705 			 */
706 			{ 0, 3, 0x0000 }, /* P0= Empty */
707 			{ 1, 0, 0x0040 }, /* P1= Left USB 1  (OC0) */
708 			{ 1, 1, 0x0040 }, /* P2= Left USB 2  (OC1) */
709 			{ 1, 3, 0x0040 }, /* P3= SDCARD      (no OC) */
710 			{ 0, 3, 0x0000 }, /* P4= Empty */
711 			{ 1, 3, 0x0040 }, /* P5= WWAN        (no OC) */
712 			{ 0, 3, 0x0000 }, /* P6= Empty */
713 			{ 0, 3, 0x0000 }, /* P7= Empty */
714 			/*
715 			 * Empty and onboard Ports 8-13, set to un-used pin
716 			 * OC4
717 			 */
718 			{ 1, 4, 0x0040 }, /* P8= Camera      (no OC) */
719 			{ 1, 4, 0x0040 }, /* P9= Bluetooth   (no OC) */
720 			{ 0, 4, 0x0000 }, /* P10= Empty */
721 			{ 0, 4, 0x0000 }, /* P11= Empty */
722 			{ 0, 4, 0x0000 }, /* P12= Empty */
723 			{ 0, 4, 0x0000 }, /* P13= Empty */
724 		},
725 	};
726 	pci_dev_t dev = PCI_BDF(0, 0, 0);
727 	int ret;
728 
729 	debug("Boot mode %d\n", gd->arch.pei_boot_mode);
730 	debug("mrc_input %p\n", pei_data.mrc_input);
731 	pei_data.boot_mode = gd->arch.pei_boot_mode;
732 	ret = copy_spd(&pei_data);
733 	if (!ret)
734 		ret = sdram_initialise(&pei_data);
735 	if (ret)
736 		return ret;
737 
738 	rcba_config();
739 	quick_ram_check();
740 
741 	writew(0xCAFE, MCHBAR_REG(SSKPD));
742 
743 	post_code(POST_DRAM);
744 
745 	ret = sdram_find(dev);
746 	if (ret)
747 		return ret;
748 
749 	gd->ram_size = gd->arch.meminfo.total_32bit_memory;
750 
751 	return 0;
752 }
753