xref: /openbmc/u-boot/arch/arm/mach-uniphier/dram/umc-pxs2.c (revision 2d2811c230be23d4cc810e60b0582f0b13d70d63)
1 /*
2  * Copyright (C) 2015 Masahiro Yamada <yamada.masahiro@socionext.com>
3  *
4  * based on commit 21b6e480f92ccc38fe0502e3116411d6509d3bf2 of Diag by:
5  * Copyright (C) 2015 Socionext Inc.
6  *
7  * SPDX-License-Identifier:	GPL-2.0+
8  */
9 
10 #include <common.h>
11 #include <linux/err.h>
12 #include <linux/io.h>
13 #include <linux/sizes.h>
14 #include <asm/processor.h>
15 
16 #include "../init.h"
17 #include "../soc-info.h"
18 #include "ddrmphy-regs.h"
19 #include "umc-regs.h"
20 
21 #define DRAM_CH_NR	3
22 
23 enum dram_freq {
24 	DRAM_FREQ_1866M,
25 	DRAM_FREQ_2133M,
26 	DRAM_FREQ_NR,
27 };
28 
29 enum dram_size {
30 	DRAM_SZ_256M,
31 	DRAM_SZ_512M,
32 	DRAM_SZ_NR,
33 };
34 
35 static u32 ddrphy_pgcr2[DRAM_FREQ_NR] = {0x00FC7E5D, 0x00FC90AB};
36 static u32 ddrphy_ptr0[DRAM_FREQ_NR] = {0x0EA09205, 0x10C0A6C6};
37 static u32 ddrphy_ptr1[DRAM_FREQ_NR] = {0x0DAC041B, 0x0FA104B1};
38 static u32 ddrphy_ptr3[DRAM_FREQ_NR] = {0x15171e45, 0x18182357};
39 static u32 ddrphy_ptr4[DRAM_FREQ_NR] = {0x0e9ad8e9, 0x10b34157};
40 static u32 ddrphy_dtpr0[DRAM_FREQ_NR] = {0x35a00d88, 0x39e40e88};
41 static u32 ddrphy_dtpr1[DRAM_FREQ_NR] = {0x2288cc2c, 0x228a04d0};
42 static u32 ddrphy_dtpr2[DRAM_FREQ_NR] = {0x50005e00, 0x50006a00};
43 static u32 ddrphy_dtpr3[DRAM_FREQ_NR] = {0x0010cb49, 0x0010ec89};
44 static u32 ddrphy_mr0[DRAM_FREQ_NR] = {0x00000115, 0x00000125};
45 static u32 ddrphy_mr2[DRAM_FREQ_NR] = {0x000002a0, 0x000002a8};
46 
47 /* dependent on package and board design */
48 static u32 ddrphy_acbdlr0[DRAM_CH_NR] = {0x0000000c, 0x0000000c, 0x00000009};
49 
50 static u32 umc_cmdctla[DRAM_FREQ_NR] = {0x66DD131D, 0x77EE1722};
51 /*
52  * The ch2 is a different generation UMC core.
53  * The register spec is different, unfortunately.
54  */
55 static u32 umc_cmdctlb_ch01[DRAM_FREQ_NR] = {0x13E87C44, 0x18F88C44};
56 static u32 umc_cmdctlb_ch2[DRAM_FREQ_NR] = {0x19E8DC44, 0x1EF8EC44};
57 static u32 umc_spcctla[DRAM_FREQ_NR][DRAM_SZ_NR] = {
58 	{0x004A071D, 0x0078071D},
59 	{0x0055081E, 0x0089081E},
60 };
61 
62 static u32 umc_spcctlb[] = {0x00FF000A, 0x00FF000B};
63 /* The ch2 is different for some reason only hardware guys know... */
64 static u32 umc_flowctla_ch01[] = {0x0800001E, 0x08000022};
65 static u32 umc_flowctla_ch2[] = {0x0800001E, 0x0800001E};
66 
67 /* DDR multiPHY */
68 static inline int ddrphy_get_rank(int dx)
69 {
70 	return dx / 2;
71 }
72 
73 static void ddrphy_fifo_reset(void __iomem *phy_base)
74 {
75 	u32 tmp;
76 
77 	tmp = readl(phy_base + DMPHY_PGCR0);
78 	tmp &= ~DMPHY_PGCR0_PHYFRST;
79 	writel(tmp, phy_base + DMPHY_PGCR0);
80 
81 	udelay(1);
82 
83 	tmp |= DMPHY_PGCR0_PHYFRST;
84 	writel(tmp, phy_base + DMPHY_PGCR0);
85 
86 	udelay(1);
87 }
88 
89 static void ddrphy_vt_ctrl(void __iomem *phy_base, int enable)
90 {
91 	u32 tmp;
92 
93 	tmp = readl(phy_base + DMPHY_PGCR1);
94 
95 	if (enable)
96 		tmp &= ~DMPHY_PGCR1_INHVT;
97 	else
98 		tmp |= DMPHY_PGCR1_INHVT;
99 
100 	writel(tmp, phy_base + DMPHY_PGCR1);
101 
102 	if (!enable) {
103 		while (!(readl(phy_base + DMPHY_PGSR1) & DMPHY_PGSR1_VTSTOP))
104 			cpu_relax();
105 	}
106 }
107 
108 static void ddrphy_dqs_delay_fixup(void __iomem *phy_base, int nr_dx, int step)
109 {
110 	int dx;
111 	u32 lcdlr1, rdqsd;
112 	void __iomem *dx_base = phy_base + DMPHY_DX_BASE;
113 
114 	ddrphy_vt_ctrl(phy_base, 0);
115 
116 	for (dx = 0; dx < nr_dx; dx++) {
117 		lcdlr1 = readl(dx_base + DMPHY_DX_LCDLR1);
118 		rdqsd = (lcdlr1 >> 8) & 0xff;
119 		rdqsd = clamp(rdqsd + step, 0U, 0xffU);
120 		lcdlr1 = (lcdlr1 & ~(0xff << 8)) | (rdqsd << 8);
121 		writel(lcdlr1, dx_base + DMPHY_DX_LCDLR1);
122 		readl(dx_base + DMPHY_DX_LCDLR1); /* relax */
123 		dx_base += DMPHY_DX_STRIDE;
124 	}
125 
126 	ddrphy_vt_ctrl(phy_base, 1);
127 }
128 
129 static int ddrphy_get_system_latency(void __iomem *phy_base, int width)
130 {
131 	void __iomem *dx_base = phy_base + DMPHY_DX_BASE;
132 	const int nr_dx = width / 8;
133 	int dx, rank;
134 	u32 gtr;
135 	int dgsl, dgsl_min = INT_MAX, dgsl_max = 0;
136 
137 	for (dx = 0; dx < nr_dx; dx++) {
138 		gtr = readl(dx_base + DMPHY_DX_GTR);
139 		for (rank = 0; rank < 4; rank++) {
140 			dgsl = gtr & 0x7;
141 			/* if dgsl is zero, this rank was not trained. skip. */
142 			if (dgsl) {
143 				dgsl_min = min(dgsl_min, dgsl);
144 				dgsl_max = max(dgsl_max, dgsl);
145 			}
146 			gtr >>= 3;
147 		}
148 		dx_base += DMPHY_DX_STRIDE;
149 	}
150 
151 	if (dgsl_min != dgsl_max)
152 		printf("DQS Gateing System Latencies are not all leveled.\n");
153 
154 	return dgsl_max;
155 }
156 
157 static void ddrphy_init(void __iomem *phy_base, enum dram_freq freq, int width,
158 			int ch)
159 {
160 	u32 tmp;
161 	void __iomem *zq_base, *dx_base;
162 	int zq, dx;
163 	int nr_dx;
164 
165 	nr_dx = width / 8;
166 
167 	writel(DMPHY_PIR_ZCALBYP,        phy_base + DMPHY_PIR);
168 	/*
169 	 * Disable RGLVT bit (Read DQS Gating LCDL Delay VT Compensation)
170 	 * to avoid read error issue.
171 	 */
172 	writel(0x07d81e37,         phy_base + DMPHY_PGCR0);
173 	writel(0x0200c4e0,         phy_base + DMPHY_PGCR1);
174 
175 	tmp = ddrphy_pgcr2[freq];
176 	if (width >= 32)
177 		tmp |= DMPHY_PGCR2_DUALCHN | DMPHY_PGCR2_ACPDDC;
178 	writel(tmp, phy_base + DMPHY_PGCR2);
179 
180 	writel(ddrphy_ptr0[freq],  phy_base + DMPHY_PTR0);
181 	writel(ddrphy_ptr1[freq],  phy_base + DMPHY_PTR1);
182 	writel(0x00083def,         phy_base + DMPHY_PTR2);
183 	writel(ddrphy_ptr3[freq],  phy_base + DMPHY_PTR3);
184 	writel(ddrphy_ptr4[freq],  phy_base + DMPHY_PTR4);
185 
186 	writel(ddrphy_acbdlr0[ch], phy_base + DMPHY_ACBDLR0);
187 
188 	writel(0x55555555, phy_base + DMPHY_ACIOCR1);
189 	writel(0x00000000, phy_base + DMPHY_ACIOCR2);
190 	writel(0x55555555, phy_base + DMPHY_ACIOCR3);
191 	writel(0x00000000, phy_base + DMPHY_ACIOCR4);
192 	writel(0x00000055, phy_base + DMPHY_ACIOCR5);
193 	writel(0x00181aa4, phy_base + DMPHY_DXCCR);
194 
195 	writel(0x0024641e, phy_base + DMPHY_DSGCR);
196 	writel(0x0000040b, phy_base + DMPHY_DCR);
197 	writel(ddrphy_dtpr0[freq], phy_base + DMPHY_DTPR0);
198 	writel(ddrphy_dtpr1[freq], phy_base + DMPHY_DTPR1);
199 	writel(ddrphy_dtpr2[freq], phy_base + DMPHY_DTPR2);
200 	writel(ddrphy_dtpr3[freq], phy_base + DMPHY_DTPR3);
201 	writel(ddrphy_mr0[freq], phy_base + DMPHY_MR0);
202 	writel(0x00000006,       phy_base + DMPHY_MR1);
203 	writel(ddrphy_mr2[freq], phy_base + DMPHY_MR2);
204 	writel(0x00000000,       phy_base + DMPHY_MR3);
205 
206 	tmp = 0;
207 	for (dx = 0; dx < nr_dx; dx++)
208 		tmp |= BIT(DMPHY_DTCR_RANKEN_SHIFT + ddrphy_get_rank(dx));
209 	writel(0x90003087 | tmp, phy_base + DMPHY_DTCR);
210 
211 	writel(0x00000000, phy_base + DMPHY_DTAR0);
212 	writel(0x00000008, phy_base + DMPHY_DTAR1);
213 	writel(0x00000010, phy_base + DMPHY_DTAR2);
214 	writel(0x00000018, phy_base + DMPHY_DTAR3);
215 	writel(0xdd22ee11, phy_base + DMPHY_DTDR0);
216 	writel(0x7788bb44, phy_base + DMPHY_DTDR1);
217 
218 	/* impedance control settings */
219 	writel(0x04048900, phy_base + DMPHY_ZQCR);
220 
221 	zq_base = phy_base + DMPHY_ZQ_BASE;
222 	for (zq = 0; zq < 4; zq++) {
223 		/*
224 		 * board-dependent
225 		 * PXS2: CH0ZQ0=0x5B, CH1ZQ0=0x5B, CH2ZQ0=0x59, others=0x5D
226 		 */
227 		writel(0x0007BB5D, zq_base + DMPHY_ZQ_PR);
228 		zq_base += DMPHY_ZQ_STRIDE;
229 	}
230 
231 	/* DATX8 settings */
232 	dx_base = phy_base + DMPHY_DX_BASE;
233 	for (dx = 0; dx < 4; dx++) {
234 		tmp = readl(dx_base + DMPHY_DX_GCR0);
235 		tmp &= ~DMPHY_DX_GCR0_WLRKEN_MASK;
236 		tmp |= BIT(DMPHY_DX_GCR0_WLRKEN_SHIFT + ddrphy_get_rank(dx)) &
237 						DMPHY_DX_GCR0_WLRKEN_MASK;
238 		writel(tmp, dx_base + DMPHY_DX_GCR0);
239 
240 		writel(0x00000000, dx_base + DMPHY_DX_GCR1);
241 		writel(0x00000000, dx_base + DMPHY_DX_GCR2);
242 		writel(0x00000000, dx_base + DMPHY_DX_GCR3);
243 		dx_base += DMPHY_DX_STRIDE;
244 	}
245 
246 	while (!(readl(phy_base + DMPHY_PGSR0) & DMPHY_PGSR0_IDONE))
247 		cpu_relax();
248 
249 	ddrphy_dqs_delay_fixup(phy_base, nr_dx, -4);
250 }
251 
252 struct ddrphy_init_sequence {
253 	char *description;
254 	u32 init_flag;
255 	u32 done_flag;
256 	u32 err_flag;
257 };
258 
259 static const struct ddrphy_init_sequence impedance_calibration_sequence[] = {
260 	{
261 		"Impedance Calibration",
262 		DMPHY_PIR_ZCAL,
263 		DMPHY_PGSR0_ZCDONE,
264 		DMPHY_PGSR0_ZCERR,
265 	},
266 	{ /* sentinel */ }
267 };
268 
269 static const struct ddrphy_init_sequence dram_init_sequence[] = {
270 	{
271 		"DRAM Initialization",
272 		DMPHY_PIR_DRAMRST | DMPHY_PIR_DRAMINIT,
273 		DMPHY_PGSR0_DIDONE,
274 		0,
275 	},
276 	{ /* sentinel */ }
277 };
278 
279 static const struct ddrphy_init_sequence training_sequence[] = {
280 	{
281 		"Write Leveling",
282 		DMPHY_PIR_WL,
283 		DMPHY_PGSR0_WLDONE,
284 		DMPHY_PGSR0_WLERR,
285 	},
286 	{
287 		"Read DQS Gate Training",
288 		DMPHY_PIR_QSGATE,
289 		DMPHY_PGSR0_QSGDONE,
290 		DMPHY_PGSR0_QSGERR,
291 	},
292 	{
293 		"Write Leveling Adjustment",
294 		DMPHY_PIR_WLADJ,
295 		DMPHY_PGSR0_WLADONE,
296 		DMPHY_PGSR0_WLAERR,
297 	},
298 	{
299 		"Read Bit Deskew",
300 		DMPHY_PIR_RDDSKW,
301 		DMPHY_PGSR0_RDDONE,
302 		DMPHY_PGSR0_RDERR,
303 	},
304 	{
305 		"Write Bit Deskew",
306 		DMPHY_PIR_WRDSKW,
307 		DMPHY_PGSR0_WDDONE,
308 		DMPHY_PGSR0_WDERR,
309 	},
310 	{
311 		"Read Eye Training",
312 		DMPHY_PIR_RDEYE,
313 		DMPHY_PGSR0_REDONE,
314 		DMPHY_PGSR0_REERR,
315 	},
316 	{
317 		"Write Eye Training",
318 		DMPHY_PIR_WREYE,
319 		DMPHY_PGSR0_WEDONE,
320 		DMPHY_PGSR0_WEERR,
321 	},
322 	{ /* sentinel */ }
323 };
324 
325 static int __ddrphy_training(void __iomem *phy_base,
326 			     const struct ddrphy_init_sequence *seq)
327 {
328 	const struct ddrphy_init_sequence *s;
329 	u32 pgsr0;
330 	u32 init_flag = DMPHY_PIR_INIT;
331 	u32 done_flag = DMPHY_PGSR0_IDONE;
332 	int timeout = 50000; /* 50 msec is long enough */
333 #ifdef DISPLAY_ELAPSED_TIME
334 	ulong start = get_timer(0);
335 #endif
336 
337 	for (s = seq; s->description; s++) {
338 		init_flag |= s->init_flag;
339 		done_flag |= s->done_flag;
340 	}
341 
342 	writel(init_flag, phy_base + DMPHY_PIR);
343 
344 	do {
345 		if (--timeout < 0) {
346 			pr_err("%s: error: timeout during DDR training\n",
347 			       __func__);
348 			return -ETIMEDOUT;
349 		}
350 		udelay(1);
351 		pgsr0 = readl(phy_base + DMPHY_PGSR0);
352 	} while ((pgsr0 & done_flag) != done_flag);
353 
354 	for (s = seq; s->description; s++) {
355 		if (pgsr0 & s->err_flag) {
356 			pr_err("%s: error: %s failed\n", __func__,
357 			       s->description);
358 			return -EIO;
359 		}
360 	}
361 
362 #ifdef DISPLAY_ELAPSED_TIME
363 	printf("%s: info: elapsed time %ld msec\n", get_timer(start));
364 #endif
365 
366 	return 0;
367 }
368 
369 static int ddrphy_impedance_calibration(void __iomem *phy_base)
370 {
371 	int ret;
372 	u32 tmp;
373 
374 	ret = __ddrphy_training(phy_base, impedance_calibration_sequence);
375 	if (ret)
376 		return ret;
377 
378 	/*
379 	 * Because of a hardware bug, IDONE flag is set when the first ZQ block
380 	 * is calibrated.  The flag does not guarantee the completion for all
381 	 * the ZQ blocks.  Wait a little more just in case.
382 	 */
383 	udelay(1);
384 
385 	/* reflect ZQ settings and enable average algorithm*/
386 	tmp = readl(phy_base + DMPHY_ZQCR);
387 	tmp |= DMPHY_ZQCR_FORCE_ZCAL_VT_UPDATE;
388 	writel(tmp, phy_base + DMPHY_ZQCR);
389 	tmp &= ~DMPHY_ZQCR_FORCE_ZCAL_VT_UPDATE;
390 	tmp |= DMPHY_ZQCR_AVGEN;
391 	writel(tmp, phy_base + DMPHY_ZQCR);
392 
393 	return 0;
394 }
395 
396 static int ddrphy_dram_init(void __iomem *phy_base)
397 {
398 	return __ddrphy_training(phy_base, dram_init_sequence);
399 }
400 
401 static int ddrphy_training(void __iomem *phy_base)
402 {
403 	return __ddrphy_training(phy_base, training_sequence);
404 }
405 
406 /* UMC */
407 static void umc_set_system_latency(void __iomem *dc_base, int phy_latency)
408 {
409 	u32 val;
410 	int latency;
411 
412 	val = readl(dc_base + UMC_RDATACTL_D0);
413 	latency = (val & UMC_RDATACTL_RADLTY_MASK) >> UMC_RDATACTL_RADLTY_SHIFT;
414 	latency += (val & UMC_RDATACTL_RAD2LTY_MASK) >>
415 						UMC_RDATACTL_RAD2LTY_SHIFT;
416 	/*
417 	 * UMC works at the half clock rate of the PHY.
418 	 * The LSB of latency is ignored
419 	 */
420 	latency += phy_latency & ~1;
421 
422 	val &= ~(UMC_RDATACTL_RADLTY_MASK | UMC_RDATACTL_RAD2LTY_MASK);
423 	if (latency > 0xf) {
424 		val |= 0xf << UMC_RDATACTL_RADLTY_SHIFT;
425 		val |= (latency - 0xf) << UMC_RDATACTL_RAD2LTY_SHIFT;
426 	} else {
427 		val |= latency << UMC_RDATACTL_RADLTY_SHIFT;
428 	}
429 
430 	writel(val, dc_base + UMC_RDATACTL_D0);
431 	writel(val, dc_base + UMC_RDATACTL_D1);
432 
433 	readl(dc_base + UMC_RDATACTL_D1); /* relax */
434 }
435 
436 /* enable/disable auto refresh */
437 void umc_refresh_ctrl(void __iomem *dc_base, int enable)
438 {
439 	u32 tmp;
440 
441 	tmp = readl(dc_base + UMC_SPCSETB);
442 	tmp &= ~UMC_SPCSETB_AREFMD_MASK;
443 
444 	if (enable)
445 		tmp |= UMC_SPCSETB_AREFMD_ARB;
446 	else
447 		tmp |= UMC_SPCSETB_AREFMD_REG;
448 
449 	writel(tmp, dc_base + UMC_SPCSETB);
450 	udelay(1);
451 }
452 
453 static void umc_ud_init(void __iomem *umc_base, int ch)
454 {
455 	writel(0x00000003, umc_base + UMC_BITPERPIXELMODE_D0);
456 
457 	if (ch == 2)
458 		writel(0x00000033, umc_base + UMC_PAIR1DOFF_D0);
459 }
460 
461 static int umc_dc_init(void __iomem *dc_base, enum dram_freq freq,
462 		       unsigned long size, int width, int ch)
463 {
464 	enum dram_size size_e;
465 	int latency;
466 	u32 val;
467 
468 	switch (size) {
469 	case 0:
470 		return 0;
471 	case SZ_256M:
472 		size_e = DRAM_SZ_256M;
473 		break;
474 	case SZ_512M:
475 		size_e = DRAM_SZ_512M;
476 		break;
477 	default:
478 		pr_err("unsupported DRAM size 0x%08lx (per 16bit) for ch%d\n",
479 		       size, ch);
480 		return -EINVAL;
481 	}
482 
483 	writel(umc_cmdctla[freq], dc_base + UMC_CMDCTLA);
484 
485 	writel(ch == 2 ? umc_cmdctlb_ch2[freq] : umc_cmdctlb_ch01[freq],
486 	       dc_base + UMC_CMDCTLB);
487 
488 	writel(umc_spcctla[freq][size_e], dc_base + UMC_SPCCTLA);
489 	writel(umc_spcctlb[freq], dc_base + UMC_SPCCTLB);
490 
491 	val = 0x000e000e;
492 	latency = 12;
493 	/* ES2 inserted one more FF to the logic. */
494 	if (uniphier_get_soc_model() >= 2)
495 		latency += 2;
496 
497 	if (latency > 0xf) {
498 		val |= 0xf << UMC_RDATACTL_RADLTY_SHIFT;
499 		val |= (latency - 0xf) << UMC_RDATACTL_RAD2LTY_SHIFT;
500 	} else {
501 		val |= latency << UMC_RDATACTL_RADLTY_SHIFT;
502 	}
503 
504 	writel(val, dc_base + UMC_RDATACTL_D0);
505 	if (width >= 32)
506 		writel(val, dc_base + UMC_RDATACTL_D1);
507 
508 	writel(0x04060A02, dc_base + UMC_WDATACTL_D0);
509 	if (width >= 32)
510 		writel(0x04060A02, dc_base + UMC_WDATACTL_D1);
511 	writel(0x04000000, dc_base + UMC_DATASET);
512 	writel(0x00400020, dc_base + UMC_DCCGCTL);
513 	writel(0x00000084, dc_base + UMC_FLOWCTLG);
514 	writel(0x00000000, dc_base + UMC_ACSSETA);
515 
516 	writel(ch == 2 ? umc_flowctla_ch2[freq] : umc_flowctla_ch01[freq],
517 	       dc_base + UMC_FLOWCTLA);
518 
519 	writel(0x00004400, dc_base + UMC_FLOWCTLC);
520 	writel(0x200A0A00, dc_base + UMC_SPCSETB);
521 	writel(0x00000520, dc_base + UMC_DFICUPDCTLA);
522 	writel(0x0000000D, dc_base + UMC_RESPCTL);
523 
524 	if (ch != 2) {
525 		writel(0x00202000, dc_base + UMC_FLOWCTLB);
526 		writel(0xFDBFFFFF, dc_base + UMC_FLOWCTLOB0);
527 		writel(0xFFFFFFFF, dc_base + UMC_FLOWCTLOB1);
528 		writel(0x00080700, dc_base + UMC_BSICMAPSET);
529 	} else {
530 		writel(0x00200000, dc_base + UMC_FLOWCTLB);
531 		writel(0x00000000, dc_base + UMC_BSICMAPSET);
532 	}
533 
534 	writel(0x00000000, dc_base + UMC_ERRMASKA);
535 	writel(0x00000000, dc_base + UMC_ERRMASKB);
536 
537 	return 0;
538 }
539 
540 static int umc_ch_init(void __iomem *umc_ch_base, enum dram_freq freq,
541 		       unsigned long size, unsigned int width, int ch)
542 {
543 	void __iomem *dc_base = umc_ch_base + 0x00011000;
544 	void __iomem *phy_base = umc_ch_base + 0x00030000;
545 	int ret;
546 
547 	writel(0x00000002, dc_base + UMC_INITSET);
548 	while (readl(dc_base + UMC_INITSTAT) & BIT(2))
549 		cpu_relax();
550 
551 	/* deassert PHY reset signals */
552 	writel(UMC_DIOCTLA_CTL_NRST | UMC_DIOCTLA_CFG_NRST,
553 	       dc_base + UMC_DIOCTLA);
554 
555 	ddrphy_init(phy_base, freq, width, ch);
556 
557 	ret = ddrphy_impedance_calibration(phy_base);
558 	if (ret)
559 		return ret;
560 
561 	ddrphy_dram_init(phy_base);
562 	if (ret)
563 		return ret;
564 
565 	ret = umc_dc_init(dc_base, freq, size, width, ch);
566 	if (ret)
567 		return ret;
568 
569 	umc_ud_init(umc_ch_base, ch);
570 
571 	ret = ddrphy_training(phy_base);
572 	if (ret)
573 		return ret;
574 
575 	udelay(1);
576 
577 	/* match the system latency between UMC and PHY */
578 	umc_set_system_latency(dc_base,
579 			       ddrphy_get_system_latency(phy_base, width));
580 
581 	udelay(1);
582 
583 	/* stop auto refresh before clearing FIFO in PHY */
584 	umc_refresh_ctrl(dc_base, 0);
585 	ddrphy_fifo_reset(phy_base);
586 	umc_refresh_ctrl(dc_base, 1);
587 
588 	udelay(10);
589 
590 	return 0;
591 }
592 
593 static void um_init(void __iomem *um_base)
594 {
595 	writel(0x000000ff, um_base + UMC_MBUS0);
596 	writel(0x000000ff, um_base + UMC_MBUS1);
597 	writel(0x000000ff, um_base + UMC_MBUS2);
598 	writel(0x000000ff, um_base + UMC_MBUS3);
599 }
600 
601 int uniphier_pxs2_umc_init(const struct uniphier_board_data *bd)
602 {
603 	void __iomem *um_base = (void __iomem *)0x5b600000;
604 	void __iomem *umc_ch_base = (void __iomem *)0x5b800000;
605 	enum dram_freq freq;
606 	int ch, ret;
607 
608 	switch (bd->dram_freq) {
609 	case 1866:
610 		freq = DRAM_FREQ_1866M;
611 		break;
612 	case 2133:
613 		freq = DRAM_FREQ_2133M;
614 		break;
615 	default:
616 		pr_err("unsupported DRAM frequency %d MHz\n", bd->dram_freq);
617 		return -EINVAL;
618 	}
619 
620 	for (ch = 0; ch < bd->dram_nr_ch; ch++) {
621 		unsigned long size = bd->dram_ch[ch].size;
622 		unsigned int width = bd->dram_ch[ch].width;
623 
624 		ret = umc_ch_init(umc_ch_base, freq, size / (width / 16),
625 				  width, ch);
626 		if (ret) {
627 			pr_err("failed to initialize UMC ch%d\n", ch);
628 			return ret;
629 		}
630 
631 		umc_ch_base += 0x00200000;
632 	}
633 
634 	um_init(um_base);
635 
636 	return 0;
637 }
638