xref: /openbmc/u-boot/arch/arm/mach-tegra/tegra210/clock.c (revision ae9996c806e15b68b97fe7a7242c44e713345269)
1 /*
2  * (C) Copyright 2013-2015
3  * NVIDIA Corporation <www.nvidia.com>
4  *
5  * SPDX-License-Identifier:     GPL-2.0+
6  */
7 
8 /* Tegra210 Clock control functions */
9 
10 #include <common.h>
11 #include <errno.h>
12 #include <asm/io.h>
13 #include <asm/arch/clock.h>
14 #include <asm/arch/sysctr.h>
15 #include <asm/arch/tegra.h>
16 #include <asm/arch-tegra/clk_rst.h>
17 #include <asm/arch-tegra/timer.h>
18 #include <div64.h>
19 #include <fdtdec.h>
20 
21 /*
22  * Clock types that we can use as a source. The Tegra210 has muxes for the
23  * peripheral clocks, and in most cases there are four options for the clock
24  * source. This gives us a clock 'type' and exploits what commonality exists
25  * in the device.
26  *
27  * Letters are obvious, except for T which means CLK_M, and S which means the
28  * clock derived from 32KHz. Beware that CLK_M (also called OSC in the
29  * datasheet) and PLL_M are different things. The former is the basic
30  * clock supplied to the SOC from an external oscillator. The latter is the
31  * memory clock PLL.
32  *
33  * See definitions in clock_id in the header file.
34  */
35 enum clock_type_id {
36 	CLOCK_TYPE_AXPT,	/* PLL_A, PLL_X, PLL_P, CLK_M */
37 	CLOCK_TYPE_MCPA,	/* and so on */
38 	CLOCK_TYPE_MCPT,
39 	CLOCK_TYPE_PCM,
40 	CLOCK_TYPE_PCMT,
41 	CLOCK_TYPE_PDCT,
42 	CLOCK_TYPE_ACPT,
43 	CLOCK_TYPE_ASPTE,
44 	CLOCK_TYPE_PMDACD2T,
45 	CLOCK_TYPE_PCST,
46 	CLOCK_TYPE_DP,
47 
48 	CLOCK_TYPE_PC2CC3M,
49 	CLOCK_TYPE_PC2CC3S_T,
50 	CLOCK_TYPE_PC2CC3M_T,
51 	CLOCK_TYPE_PC2CC3M_T16,	/* PC2CC3M_T, but w/16-bit divisor (I2C) */
52 	CLOCK_TYPE_MC2CC3P_A,
53 	CLOCK_TYPE_M,
54 	CLOCK_TYPE_MCPTM2C2C3,
55 	CLOCK_TYPE_PC2CC3T_S,
56 	CLOCK_TYPE_AC2CC3P_TS2,
57 	CLOCK_TYPE_PC01C00_C42C41TC40,
58 
59 	CLOCK_TYPE_COUNT,
60 	CLOCK_TYPE_NONE = -1,   /* invalid clock type */
61 };
62 
63 enum {
64 	CLOCK_MAX_MUX   = 8     /* number of source options for each clock */
65 };
66 
67 /*
68  * Clock source mux for each clock type. This just converts our enum into
69  * a list of mux sources for use by the code.
70  *
71  * Note:
72  *  The extra column in each clock source array is used to store the mask
73  *  bits in its register for the source.
74  */
75 #define CLK(x) CLOCK_ID_ ## x
76 static enum clock_id clock_source[CLOCK_TYPE_COUNT][CLOCK_MAX_MUX+1] = {
77 	{ CLK(AUDIO),	CLK(XCPU),	CLK(PERIPH),	CLK(OSC),
78 		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
79 		MASK_BITS_31_30},
80 	{ CLK(MEMORY),	CLK(CGENERAL),	CLK(PERIPH),	CLK(AUDIO),
81 		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
82 		MASK_BITS_31_30},
83 	{ CLK(MEMORY),	CLK(CGENERAL),	CLK(PERIPH),	CLK(OSC),
84 		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
85 		MASK_BITS_31_30},
86 	{ CLK(PERIPH),	CLK(CGENERAL),	CLK(MEMORY),	CLK(NONE),
87 		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
88 		MASK_BITS_31_30},
89 	{ CLK(PERIPH),	CLK(CGENERAL),	CLK(MEMORY),	CLK(OSC),
90 		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
91 		MASK_BITS_31_30},
92 	{ CLK(PERIPH),	CLK(DISPLAY),	CLK(CGENERAL),	CLK(OSC),
93 		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
94 		MASK_BITS_31_30},
95 	{ CLK(AUDIO),	CLK(CGENERAL),	CLK(PERIPH),	CLK(OSC),
96 		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
97 		MASK_BITS_31_30},
98 	{ CLK(AUDIO),	CLK(SFROM32KHZ),	CLK(PERIPH),	CLK(OSC),
99 		CLK(EPCI),	CLK(NONE),	CLK(NONE),	CLK(NONE),
100 		MASK_BITS_31_29},
101 	{ CLK(PERIPH),	CLK(MEMORY),	CLK(DISPLAY),	CLK(AUDIO),
102 		CLK(CGENERAL),	CLK(DISPLAY2),	CLK(OSC),	CLK(NONE),
103 		MASK_BITS_31_29},
104 	{ CLK(PERIPH),	CLK(CGENERAL),	CLK(SFROM32KHZ),	CLK(OSC),
105 		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
106 		MASK_BITS_31_28},
107 	/* CLOCK_TYPE_DP */
108 	{ CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
109 		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
110 		MASK_BITS_31_28},
111 
112 	/* Additional clock types on Tegra114+ */
113 	/* CLOCK_TYPE_PC2CC3M */
114 	{ CLK(PERIPH),	CLK(CGENERAL2),	CLK(CGENERAL),	CLK(CGENERAL3),
115 		CLK(MEMORY),	CLK(NONE),	CLK(NONE),	CLK(NONE),
116 		MASK_BITS_31_29},
117 	/* CLOCK_TYPE_PC2CC3S_T */
118 	{ CLK(PERIPH),	CLK(CGENERAL2),	CLK(CGENERAL),	CLK(CGENERAL3),
119 		CLK(SFROM32KHZ), CLK(NONE),	CLK(OSC),	CLK(NONE),
120 		MASK_BITS_31_29},
121 	/* CLOCK_TYPE_PC2CC3M_T */
122 	{ CLK(PERIPH),	CLK(CGENERAL2),	CLK(CGENERAL),	CLK(CGENERAL3),
123 		CLK(MEMORY),	CLK(NONE),	CLK(OSC),	CLK(NONE),
124 		MASK_BITS_31_29},
125 	/* CLOCK_TYPE_PC2CC3M_T, w/16-bit divisor (I2C) */
126 	{ CLK(PERIPH),	CLK(CGENERAL2),	CLK(CGENERAL),	CLK(CGENERAL3),
127 		CLK(MEMORY),	CLK(NONE),	CLK(OSC),	CLK(NONE),
128 		MASK_BITS_31_29},
129 	/* CLOCK_TYPE_MC2CC3P_A */
130 	{ CLK(MEMORY),	CLK(CGENERAL2),	CLK(CGENERAL),	CLK(CGENERAL3),
131 		CLK(PERIPH),	CLK(NONE),	CLK(AUDIO),	CLK(NONE),
132 		MASK_BITS_31_29},
133 	/* CLOCK_TYPE_M */
134 	{ CLK(MEMORY),		CLK(NONE),	CLK(NONE),	CLK(NONE),
135 		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
136 		MASK_BITS_31_30},
137 	/* CLOCK_TYPE_MCPTM2C2C3 */
138 	{ CLK(MEMORY),	CLK(CGENERAL),	CLK(PERIPH),	CLK(OSC),
139 		CLK(MEMORY2),	CLK(CGENERAL2),	CLK(CGENERAL3),	CLK(NONE),
140 		MASK_BITS_31_29},
141 	/* CLOCK_TYPE_PC2CC3T_S */
142 	{ CLK(PERIPH),	CLK(CGENERAL2),	CLK(CGENERAL),	CLK(CGENERAL3),
143 		CLK(OSC),	CLK(NONE),	CLK(SFROM32KHZ), CLK(NONE),
144 		MASK_BITS_31_29},
145 	/* CLOCK_TYPE_AC2CC3P_TS2 */
146 	{ CLK(AUDIO),	CLK(CGENERAL2),	CLK(CGENERAL),	CLK(CGENERAL3),
147 		CLK(PERIPH),	CLK(NONE),	CLK(OSC),	CLK(SRC2),
148 		MASK_BITS_31_29},
149 	/* CLOCK_TYPE_PC01C00_C42C41TC40 */
150 	{ CLK(PERIPH),	CLK(CGENERAL_1), CLK(CGENERAL_0), CLK(NONE),
151 		CLK(CGENERAL4_2), CLK(CGENERAL4_1), CLK(OSC), CLK(CGENERAL4_0),
152 		MASK_BITS_31_29},
153 };
154 
155 /*
156  * Clock type for each peripheral clock source. We put the name in each
157  * record just so it is easy to match things up
158  */
159 #define TYPE(name, type) type
160 static enum clock_type_id clock_periph_type[PERIPHC_COUNT] = {
161 	/* 0x00 */
162 	TYPE(PERIPHC_I2S2,	CLOCK_TYPE_AXPT),
163 	TYPE(PERIPHC_I2S3,	CLOCK_TYPE_AXPT),
164 	TYPE(PERIPHC_SPDIF_OUT,	CLOCK_TYPE_AXPT),
165 	TYPE(PERIPHC_SPDIF_IN,	CLOCK_TYPE_PC2CC3M),
166 	TYPE(PERIPHC_PWM,	CLOCK_TYPE_PC2CC3S_T),
167 	TYPE(PERIPHC_05h,	CLOCK_TYPE_NONE),
168 	TYPE(PERIPHC_SBC2,	CLOCK_TYPE_PC2CC3M_T),
169 	TYPE(PERIPHC_SBC3,	CLOCK_TYPE_PC2CC3M_T),
170 
171 	/* 0x08 */
172 	TYPE(PERIPHC_08h,	CLOCK_TYPE_NONE),
173 	TYPE(PERIPHC_I2C1,	CLOCK_TYPE_PC2CC3M_T16),
174 	TYPE(PERIPHC_I2C5,	CLOCK_TYPE_PC2CC3M_T16),
175 	TYPE(PERIPHC_0bh,	CLOCK_TYPE_NONE),
176 	TYPE(PERIPHC_0ch,	CLOCK_TYPE_NONE),
177 	TYPE(PERIPHC_SBC1,	CLOCK_TYPE_PC2CC3M_T),
178 	TYPE(PERIPHC_DISP1,	CLOCK_TYPE_PMDACD2T),
179 	TYPE(PERIPHC_DISP2,	CLOCK_TYPE_PMDACD2T),
180 
181 	/* 0x10 */
182 	TYPE(PERIPHC_10h,	CLOCK_TYPE_NONE),
183 	TYPE(PERIPHC_11h,	CLOCK_TYPE_NONE),
184 	TYPE(PERIPHC_VI,	CLOCK_TYPE_MC2CC3P_A),
185 	TYPE(PERIPHC_13h,	CLOCK_TYPE_NONE),
186 	TYPE(PERIPHC_SDMMC1,	CLOCK_TYPE_PC2CC3M_T),
187 	TYPE(PERIPHC_SDMMC2,	CLOCK_TYPE_PC2CC3M_T),
188 	TYPE(PERIPHC_16h,	CLOCK_TYPE_NONE),
189 	TYPE(PERIPHC_17h,	CLOCK_TYPE_NONE),
190 
191 	/* 0x18 */
192 	TYPE(PERIPHC_18h,	CLOCK_TYPE_NONE),
193 	TYPE(PERIPHC_SDMMC4,	CLOCK_TYPE_PC2CC3M_T),
194 	TYPE(PERIPHC_VFIR,	CLOCK_TYPE_PC2CC3M_T),
195 	TYPE(PERIPHC_1Bh,	CLOCK_TYPE_NONE),
196 	TYPE(PERIPHC_1Ch,	CLOCK_TYPE_NONE),
197 	TYPE(PERIPHC_HSI,	CLOCK_TYPE_PC2CC3M_T),
198 	TYPE(PERIPHC_UART1,	CLOCK_TYPE_PC2CC3M_T),
199 	TYPE(PERIPHC_UART2,	CLOCK_TYPE_PC2CC3M_T),
200 
201 	/* 0x20 */
202 	TYPE(PERIPHC_HOST1X,	CLOCK_TYPE_MC2CC3P_A),
203 	TYPE(PERIPHC_21h,	CLOCK_TYPE_NONE),
204 	TYPE(PERIPHC_22h,	CLOCK_TYPE_NONE),
205 	TYPE(PERIPHC_23h,	CLOCK_TYPE_NONE),
206 	TYPE(PERIPHC_24h,	CLOCK_TYPE_NONE),
207 	TYPE(PERIPHC_25h,	CLOCK_TYPE_NONE),
208 	TYPE(PERIPHC_I2C2,	CLOCK_TYPE_PC2CC3M_T16),
209 	TYPE(PERIPHC_EMC,	CLOCK_TYPE_MCPTM2C2C3),
210 
211 	/* 0x28 */
212 	TYPE(PERIPHC_UART3,	CLOCK_TYPE_PC2CC3M_T),
213 	TYPE(PERIPHC_29h,	CLOCK_TYPE_NONE),
214 	TYPE(PERIPHC_VI_SENSOR,	CLOCK_TYPE_MC2CC3P_A),
215 	TYPE(PERIPHC_2bh,	CLOCK_TYPE_NONE),
216 	TYPE(PERIPHC_2ch,	CLOCK_TYPE_NONE),
217 	TYPE(PERIPHC_SBC4,	CLOCK_TYPE_PC2CC3M_T),
218 	TYPE(PERIPHC_I2C3,	CLOCK_TYPE_PC2CC3M_T16),
219 	TYPE(PERIPHC_SDMMC3,	CLOCK_TYPE_PC2CC3M_T),
220 
221 	/* 0x30 */
222 	TYPE(PERIPHC_UART4,	CLOCK_TYPE_PC2CC3M_T),
223 	TYPE(PERIPHC_UART5,	CLOCK_TYPE_PC2CC3M_T),
224 	TYPE(PERIPHC_VDE,	CLOCK_TYPE_PC2CC3M_T),
225 	TYPE(PERIPHC_OWR,	CLOCK_TYPE_PC2CC3M_T),
226 	TYPE(PERIPHC_NOR,	CLOCK_TYPE_PC2CC3M_T),
227 	TYPE(PERIPHC_CSITE,	CLOCK_TYPE_PC2CC3M_T),
228 	TYPE(PERIPHC_I2S1,	CLOCK_TYPE_AXPT),
229 	TYPE(PERIPHC_DTV,	CLOCK_TYPE_NONE),
230 
231 	/* 0x38 */
232 	TYPE(PERIPHC_38h,	CLOCK_TYPE_NONE),
233 	TYPE(PERIPHC_39h,	CLOCK_TYPE_NONE),
234 	TYPE(PERIPHC_3ah,	CLOCK_TYPE_NONE),
235 	TYPE(PERIPHC_3bh,	CLOCK_TYPE_NONE),
236 	TYPE(PERIPHC_MSENC,	CLOCK_TYPE_MC2CC3P_A),
237 	TYPE(PERIPHC_TSEC,	CLOCK_TYPE_PC2CC3M_T),
238 	TYPE(PERIPHC_3eh,	CLOCK_TYPE_NONE),
239 	TYPE(PERIPHC_OSC,	CLOCK_TYPE_NONE),
240 
241 	/* 0x40 */
242 	TYPE(PERIPHC_40h,	CLOCK_TYPE_NONE),	/* start with 0x3b0 */
243 	TYPE(PERIPHC_MSELECT,	CLOCK_TYPE_PC2CC3M_T),
244 	TYPE(PERIPHC_TSENSOR,	CLOCK_TYPE_PC2CC3T_S),
245 	TYPE(PERIPHC_I2S4,	CLOCK_TYPE_AXPT),
246 	TYPE(PERIPHC_I2S5,	CLOCK_TYPE_AXPT),
247 	TYPE(PERIPHC_I2C4,	CLOCK_TYPE_PC2CC3M_T16),
248 	TYPE(PERIPHC_SBC5,	CLOCK_TYPE_PC2CC3M_T),
249 	TYPE(PERIPHC_SBC6,	CLOCK_TYPE_PC2CC3M_T),
250 
251 	/* 0x48 */
252 	TYPE(PERIPHC_AUDIO,	CLOCK_TYPE_AC2CC3P_TS2),
253 	TYPE(PERIPHC_49h,	CLOCK_TYPE_NONE),
254 	TYPE(PERIPHC_4ah,	CLOCK_TYPE_NONE),
255 	TYPE(PERIPHC_4bh,	CLOCK_TYPE_NONE),
256 	TYPE(PERIPHC_4ch,	CLOCK_TYPE_NONE),
257 	TYPE(PERIPHC_HDA2CODEC2X, CLOCK_TYPE_PC2CC3M_T),
258 	TYPE(PERIPHC_ACTMON,	CLOCK_TYPE_PC2CC3S_T),
259 	TYPE(PERIPHC_EXTPERIPH1, CLOCK_TYPE_ASPTE),
260 
261 	/* 0x50 */
262 	TYPE(PERIPHC_EXTPERIPH2, CLOCK_TYPE_ASPTE),
263 	TYPE(PERIPHC_EXTPERIPH3, CLOCK_TYPE_ASPTE),
264 	TYPE(PERIPHC_52h,	CLOCK_TYPE_NONE),
265 	TYPE(PERIPHC_I2CSLOW,	CLOCK_TYPE_PC2CC3S_T),
266 	TYPE(PERIPHC_SYS,	CLOCK_TYPE_NONE),
267 	TYPE(PERIPHC_55h,	CLOCK_TYPE_NONE),
268 	TYPE(PERIPHC_56h,	CLOCK_TYPE_NONE),
269 	TYPE(PERIPHC_57h,	CLOCK_TYPE_NONE),
270 
271 	/* 0x58 */
272 	TYPE(PERIPHC_58h,	CLOCK_TYPE_NONE),
273 	TYPE(PERIPHC_59h,	CLOCK_TYPE_NONE),
274 	TYPE(PERIPHC_5ah,	CLOCK_TYPE_NONE),
275 	TYPE(PERIPHC_5bh,	CLOCK_TYPE_NONE),
276 	TYPE(PERIPHC_SATAOOB,	CLOCK_TYPE_PCMT),
277 	TYPE(PERIPHC_SATA,	CLOCK_TYPE_PCMT),
278 	TYPE(PERIPHC_HDA,	CLOCK_TYPE_PC2CC3M_T),
279 	TYPE(PERIPHC_5fh,	CLOCK_TYPE_NONE),
280 
281 	/* 0x60 */
282 	TYPE(PERIPHC_XUSB_CORE_HOST, CLOCK_TYPE_NONE),
283 	TYPE(PERIPHC_XUSB_FALCON, CLOCK_TYPE_NONE),
284 	TYPE(PERIPHC_XUSB_FS,	CLOCK_TYPE_NONE),
285 	TYPE(PERIPHC_XUSB_CORE_DEV, CLOCK_TYPE_NONE),
286 	TYPE(PERIPHC_XUSB_SS,	CLOCK_TYPE_NONE),
287 	TYPE(PERIPHC_CILAB,	CLOCK_TYPE_NONE),
288 	TYPE(PERIPHC_CILCD,	CLOCK_TYPE_NONE),
289 	TYPE(PERIPHC_CILE,	CLOCK_TYPE_NONE),
290 
291 	/* 0x68 */
292 	TYPE(PERIPHC_DSIA_LP,	CLOCK_TYPE_NONE),
293 	TYPE(PERIPHC_DSIB_LP,	CLOCK_TYPE_NONE),
294 	TYPE(PERIPHC_ENTROPY,	CLOCK_TYPE_NONE),
295 	TYPE(PERIPHC_DVFS_REF,	CLOCK_TYPE_NONE),
296 	TYPE(PERIPHC_DVFS_SOC,	CLOCK_TYPE_NONE),
297 	TYPE(PERIPHC_TRACECLKIN, CLOCK_TYPE_NONE),
298 	TYPE(PERIPHC_6eh,	CLOCK_TYPE_NONE),
299 	TYPE(PERIPHC_6fh,	CLOCK_TYPE_NONE),
300 
301 	/* 0x70 */
302 	TYPE(PERIPHC_EMC_LATENCY, CLOCK_TYPE_NONE),
303 	TYPE(PERIPHC_SOC_THERM,	CLOCK_TYPE_NONE),
304 	TYPE(PERIPHC_72h,	CLOCK_TYPE_NONE),
305 	TYPE(PERIPHC_73h,	CLOCK_TYPE_NONE),
306 	TYPE(PERIPHC_74h,	CLOCK_TYPE_NONE),
307 	TYPE(PERIPHC_75h,	CLOCK_TYPE_NONE),
308 	TYPE(PERIPHC_VI_SENSOR2, CLOCK_TYPE_NONE),
309 	TYPE(PERIPHC_I2C6,	CLOCK_TYPE_PC2CC3M_T16),
310 
311 	/* 0x78 */
312 	TYPE(PERIPHC_78h,	CLOCK_TYPE_NONE),
313 	TYPE(PERIPHC_EMC_DLL,	CLOCK_TYPE_MCPTM2C2C3),
314 	TYPE(PERIPHC_7ah,	CLOCK_TYPE_NONE),
315 	TYPE(PERIPHC_CLK72MHZ,	CLOCK_TYPE_NONE),
316 	TYPE(PERIPHC_7ch,	CLOCK_TYPE_NONE),
317 	TYPE(PERIPHC_7dh,	CLOCK_TYPE_NONE),
318 	TYPE(PERIPHC_VIC,	CLOCK_TYPE_NONE),
319 	TYPE(PERIPHC_7Fh,	CLOCK_TYPE_NONE),
320 
321 	/* 0x80 */
322 	TYPE(PERIPHC_SDMMC_LEGACY_TM,	CLOCK_TYPE_NONE),
323 	TYPE(PERIPHC_NVDEC,	CLOCK_TYPE_NONE),
324 	TYPE(PERIPHC_NVJPG,	CLOCK_TYPE_NONE),
325 	TYPE(PERIPHC_NVENC,	CLOCK_TYPE_NONE),
326 	TYPE(PERIPHC_84h,	CLOCK_TYPE_NONE),
327 	TYPE(PERIPHC_85h,	CLOCK_TYPE_NONE),
328 	TYPE(PERIPHC_86h,	CLOCK_TYPE_NONE),
329 	TYPE(PERIPHC_87h,	CLOCK_TYPE_NONE),
330 
331 	/* 0x88 */
332 	TYPE(PERIPHC_88h,	CLOCK_TYPE_NONE),
333 	TYPE(PERIPHC_89h,	CLOCK_TYPE_NONE),
334 	TYPE(PERIPHC_DMIC3,	CLOCK_TYPE_NONE),
335 	TYPE(PERIPHC_APE,	CLOCK_TYPE_NONE),
336 	TYPE(PERIPHC_QSPI,	CLOCK_TYPE_PC01C00_C42C41TC40),
337 	TYPE(PERIPHC_VI_I2C,	CLOCK_TYPE_NONE),
338 	TYPE(PERIPHC_USB2_HSIC_TRK, CLOCK_TYPE_NONE),
339 	TYPE(PERIPHC_PEX_SATA_USB_RX_BYP, CLOCK_TYPE_NONE),
340 
341 	/* 0x90 */
342 	TYPE(PERIPHC_MAUD,	CLOCK_TYPE_NONE),
343 	TYPE(PERIPHC_TSECB,	CLOCK_TYPE_NONE),
344 };
345 
346 /*
347  * This array translates a periph_id to a periphc_internal_id
348  *
349  * Not present/matched up:
350  *	uint vi_sensor;	 _VI_SENSOR_0,		0x1A8
351  *	SPDIF - which is both 0x08 and 0x0c
352  *
353  */
354 #define NONE(name) (-1)
355 #define OFFSET(name, value) PERIPHC_ ## name
356 #define INTERNAL_ID(id) (id & 0x000000ff)
357 static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = {
358 	/* Low word: 31:0 */
359 	NONE(CPU),
360 	NONE(COP),
361 	NONE(TRIGSYS),
362 	NONE(ISPB),
363 	NONE(RESERVED4),
364 	NONE(TMR),
365 	PERIPHC_UART1,
366 	PERIPHC_UART2,	/* and vfir 0x68 */
367 
368 	/* 8 */
369 	NONE(GPIO),
370 	PERIPHC_SDMMC2,
371 	PERIPHC_SPDIF_IN,
372 	PERIPHC_I2S2,
373 	PERIPHC_I2C1,
374 	NONE(RESERVED13),
375 	PERIPHC_SDMMC1,
376 	PERIPHC_SDMMC4,
377 
378 	/* 16 */
379 	NONE(TCW),
380 	PERIPHC_PWM,
381 	PERIPHC_I2S3,
382 	NONE(RESERVED19),
383 	PERIPHC_VI,
384 	NONE(RESERVED21),
385 	NONE(USBD),
386 	NONE(ISP),
387 
388 	/* 24 */
389 	NONE(RESERVED24),
390 	NONE(RESERVED25),
391 	PERIPHC_DISP2,
392 	PERIPHC_DISP1,
393 	PERIPHC_HOST1X,
394 	NONE(VCP),
395 	PERIPHC_I2S1,
396 	NONE(CACHE2),
397 
398 	/* Middle word: 63:32 */
399 	NONE(MEM),
400 	NONE(AHBDMA),
401 	NONE(APBDMA),
402 	NONE(RESERVED35),
403 	NONE(RESERVED36),
404 	NONE(STAT_MON),
405 	NONE(RESERVED38),
406 	NONE(FUSE),
407 
408 	/* 40 */
409 	NONE(KFUSE),
410 	PERIPHC_SBC1,		/* SBCx = SPIx */
411 	PERIPHC_NOR,
412 	NONE(RESERVED43),
413 	PERIPHC_SBC2,
414 	NONE(XIO),
415 	PERIPHC_SBC3,
416 	PERIPHC_I2C5,
417 
418 	/* 48 */
419 	NONE(DSI),
420 	NONE(RESERVED49),
421 	PERIPHC_HSI,
422 	NONE(RESERVED51),
423 	NONE(CSI),
424 	NONE(RESERVED53),
425 	PERIPHC_I2C2,
426 	PERIPHC_UART3,
427 
428 	/* 56 */
429 	NONE(MIPI_CAL),
430 	PERIPHC_EMC,
431 	NONE(USB2),
432 	NONE(USB3),
433 	NONE(RESERVED60),
434 	PERIPHC_VDE,
435 	NONE(BSEA),
436 	NONE(BSEV),
437 
438 	/* Upper word 95:64 */
439 	NONE(RESERVED64),
440 	PERIPHC_UART4,
441 	PERIPHC_UART5,
442 	PERIPHC_I2C3,
443 	PERIPHC_SBC4,
444 	PERIPHC_SDMMC3,
445 	NONE(PCIE),
446 	PERIPHC_OWR,
447 
448 	/* 72 */
449 	NONE(AFI),
450 	PERIPHC_CSITE,
451 	NONE(PCIEXCLK),
452 	NONE(AVPUCQ),
453 	NONE(LA),
454 	NONE(TRACECLKIN),
455 	NONE(SOC_THERM),
456 	NONE(DTV),
457 
458 	/* 80 */
459 	NONE(RESERVED80),
460 	PERIPHC_I2CSLOW,
461 	NONE(DSIB),
462 	PERIPHC_TSEC,
463 	NONE(RESERVED84),
464 	NONE(RESERVED85),
465 	NONE(RESERVED86),
466 	NONE(EMUCIF),
467 
468 	/* 88 */
469 	NONE(RESERVED88),
470 	NONE(XUSB_HOST),
471 	NONE(RESERVED90),
472 	PERIPHC_MSENC,
473 	NONE(RESERVED92),
474 	NONE(RESERVED93),
475 	NONE(RESERVED94),
476 	NONE(XUSB_DEV),
477 
478 	/* V word: 31:0 */
479 	NONE(CPUG),
480 	NONE(CPULP),
481 	NONE(V_RESERVED2),
482 	PERIPHC_MSELECT,
483 	NONE(V_RESERVED4),
484 	PERIPHC_I2S4,
485 	PERIPHC_I2S5,
486 	PERIPHC_I2C4,
487 
488 	/* 104 */
489 	PERIPHC_SBC5,
490 	PERIPHC_SBC6,
491 	PERIPHC_AUDIO,
492 	NONE(APBIF),
493 	NONE(V_RESERVED12),
494 	NONE(V_RESERVED13),
495 	NONE(V_RESERVED14),
496 	PERIPHC_HDA2CODEC2X,
497 
498 	/* 112 */
499 	NONE(ATOMICS),
500 	NONE(V_RESERVED17),
501 	NONE(V_RESERVED18),
502 	NONE(V_RESERVED19),
503 	NONE(V_RESERVED20),
504 	NONE(V_RESERVED21),
505 	NONE(V_RESERVED22),
506 	PERIPHC_ACTMON,
507 
508 	/* 120 */
509 	NONE(EXTPERIPH1),
510 	NONE(EXTPERIPH2),
511 	NONE(EXTPERIPH3),
512 	NONE(OOB),
513 	PERIPHC_SATA,
514 	PERIPHC_HDA,
515 	NONE(TZRAM),
516 	NONE(SE),
517 
518 	/* W word: 31:0 */
519 	NONE(HDA2HDMICODEC),
520 	NONE(SATACOLD),
521 	NONE(W_RESERVED2),
522 	NONE(W_RESERVED3),
523 	NONE(W_RESERVED4),
524 	NONE(W_RESERVED5),
525 	NONE(W_RESERVED6),
526 	NONE(W_RESERVED7),
527 
528 	/* 136 */
529 	NONE(CEC),
530 	NONE(W_RESERVED9),
531 	NONE(W_RESERVED10),
532 	NONE(W_RESERVED11),
533 	NONE(W_RESERVED12),
534 	NONE(W_RESERVED13),
535 	NONE(XUSB_PADCTL),
536 	NONE(W_RESERVED15),
537 
538 	/* 144 */
539 	NONE(W_RESERVED16),
540 	NONE(W_RESERVED17),
541 	NONE(W_RESERVED18),
542 	NONE(W_RESERVED19),
543 	NONE(W_RESERVED20),
544 	NONE(ENTROPY),
545 	NONE(DDS),
546 	NONE(W_RESERVED23),
547 
548 	/* 152 */
549 	NONE(W_RESERVED24),
550 	NONE(W_RESERVED25),
551 	NONE(W_RESERVED26),
552 	NONE(DVFS),
553 	NONE(XUSB_SS),
554 	NONE(W_RESERVED29),
555 	NONE(W_RESERVED30),
556 	NONE(W_RESERVED31),
557 
558 	/* X word: 31:0 */
559 	NONE(SPARE),
560 	NONE(X_RESERVED1),
561 	NONE(X_RESERVED2),
562 	NONE(X_RESERVED3),
563 	NONE(CAM_MCLK),
564 	NONE(CAM_MCLK2),
565 	PERIPHC_I2C6,
566 	NONE(X_RESERVED7),
567 
568 	/* 168 */
569 	NONE(X_RESERVED8),
570 	NONE(X_RESERVED9),
571 	NONE(X_RESERVED10),
572 	NONE(VIM2_CLK),
573 	NONE(X_RESERVED12),
574 	NONE(X_RESERVED13),
575 	NONE(EMC_DLL),
576 	NONE(X_RESERVED15),
577 
578 	/* 176 */
579 	NONE(X_RESERVED16),
580 	NONE(CLK72MHZ),
581 	NONE(VIC),
582 	NONE(X_RESERVED19),
583 	NONE(X_RESERVED20),
584 	NONE(DPAUX),
585 	NONE(SOR0),
586 	NONE(X_RESERVED23),
587 
588 	/* 184 */
589 	NONE(GPU),
590 	NONE(X_RESERVED25),
591 	NONE(X_RESERVED26),
592 	NONE(X_RESERVED27),
593 	NONE(X_RESERVED28),
594 	NONE(X_RESERVED29),
595 	NONE(X_RESERVED30),
596 	NONE(X_RESERVED31),
597 
598 	/* Y: 192 (192 - 223) */
599 	NONE(Y_RESERVED0),
600 	PERIPHC_SDMMC_LEGACY_TM,
601 	PERIPHC_NVDEC,
602 	PERIPHC_NVJPG,
603 	NONE(Y_RESERVED4),
604 	PERIPHC_DMIC3,		/* 197 */
605 	PERIPHC_APE,		/* 198 */
606 	NONE(Y_RESERVED7),
607 
608 	/* 200 */
609 	NONE(Y_RESERVED8),
610 	NONE(Y_RESERVED9),
611 	NONE(Y_RESERVED10),
612 	NONE(Y_RESERVED11),
613 	NONE(Y_RESERVED12),
614 	NONE(Y_RESERVED13),
615 	NONE(Y_RESERVED14),
616 	NONE(Y_RESERVED15),
617 
618 	/* 208 */
619 	PERIPHC_VI_I2C,		/* 208 */
620 	NONE(Y_RESERVED17),
621 	NONE(Y_RESERVED18),
622 	PERIPHC_QSPI,		/* 211 */
623 	NONE(Y_RESERVED20),
624 	NONE(Y_RESERVED21),
625 	NONE(Y_RESERVED22),
626 	NONE(Y_RESERVED23),
627 
628 	/* 216 */
629 	NONE(Y_RESERVED24),
630 	NONE(Y_RESERVED25),
631 	NONE(Y_RESERVED26),
632 	PERIPHC_NVENC,		/* 219 */
633 	NONE(Y_RESERVED28),
634 	NONE(Y_RESERVED29),
635 	NONE(Y_RESERVED30),
636 	NONE(Y_RESERVED31),
637 };
638 
639 /*
640  * PLL divider shift/mask tables for all PLL IDs.
641  */
642 struct clk_pll_info tegra_pll_info_table[CLOCK_ID_PLL_COUNT] = {
643 	/*
644 	 * NOTE: If kcp_mask/kvco_mask == 0, they're not used in that PLL (PLLC, etc.)
645 	 *       If lock_ena or lock_det are >31, they're not used in that PLL (PLLC, etc.)
646 	 */
647 	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 10, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x1F,
648 	  .lock_ena = 32,  .lock_det = 27, .kcp_shift = 0, .kcp_mask = 0, .kvco_shift = 0, .kvco_mask = 0 },	/* PLLC */
649 	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8,  .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x1F,
650 	  .lock_ena = 4,  .lock_det = 27, .kcp_shift = 1, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 },	/* PLLM */
651 	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 10, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x1F,
652 	  .lock_ena = 18, .lock_det = 27, .kcp_shift = 0, .kcp_mask = 3, .kvco_shift = 2, .kvco_mask = 1 },	/* PLLP */
653 	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8,  .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x1F,
654 	  .lock_ena = 28, .lock_det = 27, .kcp_shift = 25, .kcp_mask = 3, .kvco_shift = 24, .kvco_mask = 1 },	/* PLLA */
655 	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8,  .n_mask = 0xFF, .p_shift = 16, .p_mask = 0x1F,
656 	  .lock_ena = 29, .lock_det = 27, .kcp_shift = 25, .kcp_mask = 3, .kvco_shift = 24, .kvco_mask = 1 },	/* PLLU */
657 	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 11, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x07,
658 	  .lock_ena = 18, .lock_det = 27, .kcp_shift = 23, .kcp_mask = 3, .kvco_shift = 22, .kvco_mask = 1 },	/* PLLD */
659 	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8,  .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x1F,
660 	  .lock_ena = 18, .lock_det = 27, .kcp_shift = 1, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 },	/* PLLX */
661 	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8,  .n_mask = 0xFF, .p_shift = 0,  .p_mask = 0,
662 	  .lock_ena = 9,  .lock_det = 11, .kcp_shift = 6, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 },	/* PLLE */
663 	{ .m_shift = 0, .m_mask = 0, .n_shift = 0, .n_mask = 0, .p_shift = 0, .p_mask = 0,
664 	  .lock_ena = 0, .lock_det = 0, .kcp_shift = 0, .kcp_mask = 0, .kvco_shift = 0, .kvco_mask = 0 },	/* PLLS (gone)*/
665 	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF,  .p_shift = 19,  .p_mask = 0x1F,
666 	  .lock_ena = 30, .lock_det = 27, .kcp_shift = 25, .kcp_mask = 3, .kvco_shift = 24, .kvco_mask = 1 },	/* PLLDP */
667 };
668 
669 /*
670  * Get the oscillator frequency, from the corresponding hardware configuration
671  * field. Note that Tegra30+ support 3 new higher freqs, but we map back
672  * to the old T20 freqs. Support for the higher oscillators is TBD.
673  */
674 enum clock_osc_freq clock_get_osc_freq(void)
675 {
676 	struct clk_rst_ctlr *clkrst =
677 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
678 	u32 reg;
679 
680 	reg = readl(&clkrst->crc_osc_ctrl);
681 	reg = (reg & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT;
682 	/*
683 	 * 0 = 13MHz, 1 = 16.8MHz, 4 = 19.2MHz, 5 = 38.4MHz,
684 	 * 8 = 12MHz, 9 = 48MHz,  12 = 26MHz
685 	 */
686 	if (reg == 5) {
687 		debug("OSC_FREQ is 38.4MHz (%d) ...\n", reg);
688 		/* Map it to the 5th CLOCK_OSC_ enum, i.e. 4 */
689 		return 4;
690 	}
691 
692 	/*
693 	 * Map to most common (T20) freqs (except 38.4, handled above):
694 	 *  13/16.8 = 0, 19.2 = 1, 12/48 = 2, 26 = 3
695 	 */
696 	return reg >> 2;
697 }
698 
699 /* Returns a pointer to the clock source register for a peripheral */
700 u32 *get_periph_source_reg(enum periph_id periph_id)
701 {
702 	struct clk_rst_ctlr *clkrst =
703 		(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
704 	enum periphc_internal_id internal_id;
705 
706 	/* Coresight is a special case */
707 	if (periph_id == PERIPH_ID_CSI)
708 		return &clkrst->crc_clk_src[PERIPH_ID_CSI+1];
709 
710 	assert(periph_id >= PERIPH_ID_FIRST && periph_id < PERIPH_ID_COUNT);
711 	internal_id = INTERNAL_ID(periph_id_to_internal_id[periph_id]);
712 	assert(internal_id != -1);
713 
714 	if (internal_id < PERIPHC_VW_FIRST)
715 		/* L, H, U */
716 		return &clkrst->crc_clk_src[internal_id];
717 
718 	if (internal_id < PERIPHC_X_FIRST) {
719 		/* VW */
720 		internal_id -= PERIPHC_VW_FIRST;
721 		return &clkrst->crc_clk_src_vw[internal_id];
722 	}
723 
724 	if (internal_id < PERIPHC_Y_FIRST) {
725 		/* X */
726 		internal_id -= PERIPHC_X_FIRST;
727 		return &clkrst->crc_clk_src_x[internal_id];
728 	}
729 
730 	/* Y */
731 	internal_id -= PERIPHC_Y_FIRST;
732 	return &clkrst->crc_clk_src_y[internal_id];
733 }
734 
735 /**
736  * Given a peripheral ID and the required source clock, this returns which
737  * value should be programmed into the source mux for that peripheral.
738  *
739  * There is special code here to handle the one source type with 5 sources.
740  *
741  * @param periph_id	peripheral to start
742  * @param source	PLL id of required parent clock
743  * @param mux_bits	Set to number of bits in mux register: 2 or 4
744  * @param divider_bits Set to number of divider bits (8 or 16)
745  * @return mux value (0-4, or -1 if not found)
746  */
747 int get_periph_clock_source(enum periph_id periph_id,
748 	enum clock_id parent, int *mux_bits, int *divider_bits)
749 {
750 	enum clock_type_id type;
751 	enum periphc_internal_id internal_id;
752 	int mux;
753 
754 	assert(clock_periph_id_isvalid(periph_id));
755 
756 	internal_id = INTERNAL_ID(periph_id_to_internal_id[periph_id]);
757 	assert(periphc_internal_id_isvalid(internal_id));
758 
759 	type = clock_periph_type[internal_id];
760 	assert(clock_type_id_isvalid(type));
761 
762 	*mux_bits = clock_source[type][CLOCK_MAX_MUX];
763 
764 	if (type == CLOCK_TYPE_PC2CC3M_T16)
765 		*divider_bits = 16;
766 	else
767 		*divider_bits = 8;
768 
769 	for (mux = 0; mux < CLOCK_MAX_MUX; mux++)
770 		if (clock_source[type][mux] == parent)
771 			return mux;
772 
773 	/* if we get here, either us or the caller has made a mistake */
774 	printf("Caller requested bad clock: periph=%d, parent=%d\n", periph_id,
775 	       parent);
776 	return -1;
777 }
778 
779 void clock_set_enable(enum periph_id periph_id, int enable)
780 {
781 	struct clk_rst_ctlr *clkrst =
782 		(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
783 	u32 *clk;
784 	u32 reg;
785 
786 	/* Enable/disable the clock to this peripheral */
787 	assert(clock_periph_id_isvalid(periph_id));
788 	if ((int)periph_id < (int)PERIPH_ID_VW_FIRST)
789 		clk = &clkrst->crc_clk_out_enb[PERIPH_REG(periph_id)];
790 	else if ((int)periph_id < (int)PERIPH_ID_X_FIRST)
791 		clk = &clkrst->crc_clk_out_enb_vw[PERIPH_REG(periph_id)];
792 	else if ((int)periph_id < (int)PERIPH_ID_Y_FIRST)
793 		clk = &clkrst->crc_clk_out_enb_x;
794 	else
795 		clk = &clkrst->crc_clk_out_enb_y;
796 
797 	reg = readl(clk);
798 	if (enable)
799 		reg |= PERIPH_MASK(periph_id);
800 	else
801 		reg &= ~PERIPH_MASK(periph_id);
802 	writel(reg, clk);
803 }
804 
805 void reset_set_enable(enum periph_id periph_id, int enable)
806 {
807 	struct clk_rst_ctlr *clkrst =
808 		(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
809 	u32 *reset;
810 	u32 reg;
811 
812 	/* Enable/disable reset to the peripheral */
813 	assert(clock_periph_id_isvalid(periph_id));
814 	if (periph_id < PERIPH_ID_VW_FIRST)
815 		reset = &clkrst->crc_rst_dev[PERIPH_REG(periph_id)];
816 	else if ((int)periph_id < (int)PERIPH_ID_X_FIRST)
817 		reset = &clkrst->crc_rst_dev_vw[PERIPH_REG(periph_id)];
818 	else if ((int)periph_id < (int)PERIPH_ID_Y_FIRST)
819 		reset = &clkrst->crc_rst_devices_x;
820 	else
821 		reset = &clkrst->crc_rst_devices_y;
822 
823 	reg = readl(reset);
824 	if (enable)
825 		reg |= PERIPH_MASK(periph_id);
826 	else
827 		reg &= ~PERIPH_MASK(periph_id);
828 	writel(reg, reset);
829 }
830 
831 #ifdef CONFIG_OF_CONTROL
832 /*
833  * Convert a device tree clock ID to our peripheral ID. They are mostly
834  * the same but we are very cautious so we check that a valid clock ID is
835  * provided.
836  *
837  * @param clk_id    Clock ID according to tegra210 device tree binding
838  * @return peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid
839  */
840 enum periph_id clk_id_to_periph_id(int clk_id)
841 {
842 	if (clk_id > PERIPH_ID_COUNT)
843 		return PERIPH_ID_NONE;
844 
845 	switch (clk_id) {
846 	case PERIPH_ID_RESERVED4:
847 	case PERIPH_ID_RESERVED25:
848 	case PERIPH_ID_RESERVED35:
849 	case PERIPH_ID_RESERVED36:
850 	case PERIPH_ID_RESERVED38:
851 	case PERIPH_ID_RESERVED43:
852 	case PERIPH_ID_RESERVED49:
853 	case PERIPH_ID_RESERVED53:
854 	case PERIPH_ID_RESERVED64:
855 	case PERIPH_ID_RESERVED84:
856 	case PERIPH_ID_RESERVED85:
857 	case PERIPH_ID_RESERVED86:
858 	case PERIPH_ID_RESERVED88:
859 	case PERIPH_ID_RESERVED90:
860 	case PERIPH_ID_RESERVED92:
861 	case PERIPH_ID_RESERVED93:
862 	case PERIPH_ID_RESERVED94:
863 	case PERIPH_ID_V_RESERVED2:
864 	case PERIPH_ID_V_RESERVED4:
865 	case PERIPH_ID_V_RESERVED17:
866 	case PERIPH_ID_V_RESERVED18:
867 	case PERIPH_ID_V_RESERVED19:
868 	case PERIPH_ID_V_RESERVED20:
869 	case PERIPH_ID_V_RESERVED21:
870 	case PERIPH_ID_V_RESERVED22:
871 	case PERIPH_ID_W_RESERVED2:
872 	case PERIPH_ID_W_RESERVED3:
873 	case PERIPH_ID_W_RESERVED4:
874 	case PERIPH_ID_W_RESERVED5:
875 	case PERIPH_ID_W_RESERVED6:
876 	case PERIPH_ID_W_RESERVED7:
877 	case PERIPH_ID_W_RESERVED9:
878 	case PERIPH_ID_W_RESERVED10:
879 	case PERIPH_ID_W_RESERVED11:
880 	case PERIPH_ID_W_RESERVED12:
881 	case PERIPH_ID_W_RESERVED13:
882 	case PERIPH_ID_W_RESERVED15:
883 	case PERIPH_ID_W_RESERVED16:
884 	case PERIPH_ID_W_RESERVED17:
885 	case PERIPH_ID_W_RESERVED18:
886 	case PERIPH_ID_W_RESERVED19:
887 	case PERIPH_ID_W_RESERVED20:
888 	case PERIPH_ID_W_RESERVED23:
889 	case PERIPH_ID_W_RESERVED29:
890 	case PERIPH_ID_W_RESERVED30:
891 	case PERIPH_ID_W_RESERVED31:
892 		return PERIPH_ID_NONE;
893 	default:
894 		return clk_id;
895 	}
896 }
897 #endif /* CONFIG_OF_CONTROL */
898 
899 /*
900  * T210 redefines PLLP_OUT2 as PLLP_VCO/DIVP, so do different OUT1-4 setup here.
901  * PLLP_BASE/MISC/etc. is already set up for 408MHz in the BootROM.
902  */
903 void tegra210_setup_pllp(void)
904 {
905 	struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
906 	u32 reg;
907 
908 	/* Set PLLP_OUT1, 3 & 4 freqs to 9.6, 102 & 204MHz */
909 
910 	/* OUT1 */
911 	/* Assert RSTN before enable */
912 	reg = PLLP_OUT1_RSTN_EN;
913 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
914 	/* Set divisor and reenable */
915 	reg = (IN_408_OUT_9_6_DIVISOR << PLLP_OUT1_RATIO)
916 		| PLLP_OUT1_OVR | PLLP_OUT1_CLKEN | PLLP_OUT1_RSTN_DIS;
917 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
918 
919 	/* OUT3, 4 */
920 	/* Assert RSTN before enable */
921 	reg = PLLP_OUT4_RSTN_EN | PLLP_OUT3_RSTN_EN;
922 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
923 	/* Set divisor and reenable */
924 	reg = (IN_408_OUT_204_DIVISOR << PLLP_OUT4_RATIO)
925 		| PLLP_OUT4_OVR | PLLP_OUT4_CLKEN | PLLP_OUT4_RSTN_DIS
926 		| (IN_408_OUT_102_DIVISOR << PLLP_OUT3_RATIO)
927 		| PLLP_OUT3_OVR | PLLP_OUT3_CLKEN | PLLP_OUT3_RSTN_DIS;
928 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
929 
930 	/*
931 	 * NOTE: If you want to change PLLP_OUT2 away from 204MHz,
932 	 * you can change PLLP_BASE DIVP here. Currently defaults
933 	 * to 1, which is 2^1, or 2, so PLLP_OUT2 is 204MHz.
934 	 * See Table 13 in section 5.1.4 in T210 TRM for more info.
935 	 */
936 }
937 
938 void clock_early_init(void)
939 {
940 	struct clk_rst_ctlr *clkrst =
941 		(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
942 	struct clk_pll_info *pllinfo = &tegra_pll_info_table[CLOCK_ID_DISPLAY];
943 	u32 data;
944 
945 	tegra210_setup_pllp();
946 
947 	/*
948 	 * PLLC output frequency set to 600Mhz
949 	 * PLLD output frequency set to 925Mhz
950 	 */
951 	switch (clock_get_osc_freq()) {
952 	case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
953 		clock_set_rate(CLOCK_ID_CGENERAL, 600, 12, 0, 8);
954 		clock_set_rate(CLOCK_ID_DISPLAY, 925, 12, 0, 12);
955 		break;
956 
957 	case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
958 		clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
959 		clock_set_rate(CLOCK_ID_DISPLAY, 925, 26, 0, 12);
960 		break;
961 
962 	case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
963 		clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
964 		clock_set_rate(CLOCK_ID_DISPLAY, 925, 13, 0, 12);
965 		break;
966 	case CLOCK_OSC_FREQ_19_2:
967 		clock_set_rate(CLOCK_ID_CGENERAL, 125, 4, 0, 0);
968 		clock_set_rate(CLOCK_ID_DISPLAY, 96, 2, 0, 12);
969 		break;
970 	case CLOCK_OSC_FREQ_38_4:
971 		clock_set_rate(CLOCK_ID_CGENERAL, 125, 8, 0, 0);
972 		clock_set_rate(CLOCK_ID_DISPLAY, 96, 4, 0, 0);
973 		break;
974 	default:
975 		/*
976 		 * These are not supported. It is too early to print a
977 		 * message and the UART likely won't work anyway due to the
978 		 * oscillator being wrong.
979 		 */
980 		break;
981 	}
982 
983 	/* PLLC_MISC1: Turn IDDQ off. NOTE: T210 PLLC_MISC_1 maps to pll_misc */
984 	clrbits_le32(&clkrst->crc_pll[CLOCK_ID_CGENERAL].pll_misc,
985 		     (1 << PLLC_IDDQ));
986 	udelay(2);
987 
988 	/*
989 	 * PLLC_MISC: Take PLLC out of reset. NOTE: T210 PLLC_MISC maps
990 	 * to pll_out[1]
991 	 */
992 	clrbits_le32(&clkrst->crc_pll[CLOCK_ID_CGENERAL].pll_out[1],
993 		     (1 << PLLC_RESET));
994 	udelay(2);
995 
996 	/* PLLD_MISC: Set CLKENABLE and LOCK_DETECT bits */
997 	data = (1 << PLLD_ENABLE_CLK) | (1 << pllinfo->lock_ena);
998 	writel(data, &clkrst->crc_pll[CLOCK_ID_DISPLAY].pll_misc);
999 	udelay(2);
1000 }
1001 
1002 unsigned int clk_m_get_rate(unsigned parent_rate)
1003 {
1004 	struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
1005 	u32 value, div;
1006 
1007 	value = readl(&clkrst->crc_spare_reg0);
1008 	div = ((value >> 2) & 0x3) + 1;
1009 
1010 	return parent_rate / div;
1011 }
1012 
1013 void arch_timer_init(void)
1014 {
1015 	struct sysctr_ctlr *sysctr = (struct sysctr_ctlr *)NV_PA_TSC_BASE;
1016 	u32 freq, val;
1017 
1018 	freq = clock_get_rate(CLOCK_ID_CLK_M);
1019 	debug("%s: clk_m freq is %dHz [0x%08X]\n", __func__, freq, freq);
1020 
1021 	if (current_el() == 3)
1022 		asm("msr cntfrq_el0, %0\n" : : "r" (freq));
1023 
1024 	/* Only Tegra114+ has the System Counter regs */
1025 	debug("%s: setting CNTFID0 to 0x%08X\n", __func__, freq);
1026 	writel(freq, &sysctr->cntfid0);
1027 
1028 	val = readl(&sysctr->cntcr);
1029 	val |= TSC_CNTCR_ENABLE | TSC_CNTCR_HDBG;
1030 	writel(val, &sysctr->cntcr);
1031 	debug("%s: TSC CNTCR = 0x%08X\n", __func__, val);
1032 }
1033 
1034 #define PLLREFE_MISC			0x4c8
1035 #define  PLLREFE_MISC_LOCK		BIT(27)
1036 #define  PLLREFE_MISC_IDDQ		BIT(24)
1037 
1038 #define PLLREFE_BASE			0x4c4
1039 #define  PLLREFE_BASE_BYPASS		BIT(31)
1040 #define  PLLREFE_BASE_ENABLE		BIT(30)
1041 #define  PLLREFE_BASE_REF_DIS		BIT(29)
1042 #define  PLLREFE_BASE_KCP(kcp)		(((kcp) & 0x3) << 27)
1043 #define  PLLREFE_BASE_KVCO		BIT(26)
1044 #define  PLLREFE_BASE_DIVP(p)		(((p) & 0x1f) << 16)
1045 #define  PLLREFE_BASE_DIVN(n)		(((n) & 0xff) << 8)
1046 #define  PLLREFE_BASE_DIVM(m)		(((m) & 0xff) << 0)
1047 
1048 static int tegra_pllref_enable(void)
1049 {
1050 	u32 value;
1051 	unsigned long start;
1052 
1053 	/*
1054 	 * This sequence comes from Tegra X1 TRM section "Cold Boot, with no
1055 	 * Recovery Mode or Boot from USB", sub-section "PLLREFE".
1056 	 */
1057 
1058 	value = readl(NV_PA_CLK_RST_BASE + PLLREFE_MISC);
1059 	value &= ~PLLREFE_MISC_IDDQ;
1060 	writel(value, NV_PA_CLK_RST_BASE + PLLREFE_MISC);
1061 
1062 	udelay(5);
1063 
1064 	value = PLLREFE_BASE_ENABLE |
1065 		PLLREFE_BASE_KCP(0) |
1066 		PLLREFE_BASE_DIVP(0) |
1067 		PLLREFE_BASE_DIVN(0x41) |
1068 		PLLREFE_BASE_DIVM(4);
1069 	writel(value, NV_PA_CLK_RST_BASE + PLLREFE_BASE);
1070 
1071 	debug("waiting for pllrefe lock\n");
1072 	start = get_timer(0);
1073 	while (get_timer(start) < 250) {
1074 		value = readl(NV_PA_CLK_RST_BASE + PLLREFE_MISC);
1075 		if (value & PLLREFE_MISC_LOCK)
1076 			break;
1077 	}
1078 	if (!(value & PLLREFE_MISC_LOCK)) {
1079 		debug("  timeout\n");
1080 		return -ETIMEDOUT;
1081 	}
1082 	debug("  done\n");
1083 
1084 	return 0;
1085 }
1086 
1087 #define PLLE_SS_CNTL 0x68
1088 #define  PLLE_SS_CNTL_SSCINCINTR(x) (((x) & 0x3f) << 24)
1089 #define  PLLE_SS_CNTL_SSCINC(x) (((x) & 0xff) << 16)
1090 #define  PLLE_SS_CNTL_SSCINVERT (1 << 15)
1091 #define  PLLE_SS_CNTL_SSCCENTER (1 << 14)
1092 #define  PLLE_SS_CNTL_SSCBYP (1 << 12)
1093 #define  PLLE_SS_CNTL_INTERP_RESET (1 << 11)
1094 #define  PLLE_SS_CNTL_BYPASS_SS (1 << 10)
1095 #define  PLLE_SS_CNTL_SSCMAX(x) (((x) & 0x1ff) << 0)
1096 
1097 #define PLLE_BASE 0x0e8
1098 #define  PLLE_BASE_ENABLE (1 << 31)
1099 #define  PLLE_BASE_PLDIV_CML(x) (((x) & 0x1f) << 24)
1100 #define  PLLE_BASE_NDIV(x) (((x) & 0xff) << 8)
1101 #define  PLLE_BASE_MDIV(x) (((x) & 0xff) << 0)
1102 
1103 #define PLLE_MISC 0x0ec
1104 #define  PLLE_MISC_IDDQ_SWCTL (1 << 14)
1105 #define  PLLE_MISC_IDDQ_OVERRIDE_VALUE (1 << 13)
1106 #define  PLLE_MISC_LOCK (1 << 11)
1107 #define  PLLE_MISC_KCP(x) (((x) & 0x3) << 6)
1108 #define  PLLE_MISC_VREG_CTRL(x) (((x) & 0x3) << 2)
1109 #define  PLLE_MISC_KVCO (1 << 0)
1110 
1111 #define PLLE_AUX 0x48c
1112 #define  PLLE_AUX_SS_SEQ_INCLUDE (1 << 31)
1113 #define  PLLE_AUX_REF_SEL_PLLREFE (1 << 28)
1114 #define  PLLE_AUX_SEQ_ENABLE (1 << 24)
1115 #define  PLLE_AUX_SS_SWCTL (1 << 6)
1116 #define  PLLE_AUX_ENABLE_SWCTL (1 << 4)
1117 #define  PLLE_AUX_USE_LOCKDET (1 << 3)
1118 
1119 int tegra_plle_enable(void)
1120 {
1121 	u32 value;
1122 	unsigned long start;
1123 
1124 	/* PLLREF feeds PLLE */
1125 	tegra_pllref_enable();
1126 
1127 	/*
1128 	 * This sequence comes from Tegra X1 TRM section "Cold Boot, with no
1129 	 * Recovery Mode or Boot from USB", sub-section "PLLEs".
1130 	 */
1131 
1132 	/* 1. Select XTAL as the source */
1133 
1134 	value = readl(NV_PA_CLK_RST_BASE + PLLE_AUX);
1135 	value &= ~PLLE_AUX_REF_SEL_PLLREFE;
1136 	writel(value, NV_PA_CLK_RST_BASE + PLLE_AUX);
1137 
1138 	value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
1139 	value &= ~PLLE_MISC_IDDQ_OVERRIDE_VALUE;
1140 	writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
1141 
1142 	/* 2. Wait 5 us */
1143 	udelay(5);
1144 
1145 	/*
1146 	 * 3. Program the following registers to generate a low jitter 100MHz
1147 	 * clock.
1148 	 */
1149 
1150 	value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
1151 	value &= ~PLLE_BASE_PLDIV_CML(0x1f);
1152 	value &= ~PLLE_BASE_NDIV(0xff);
1153 	value &= ~PLLE_BASE_MDIV(0xff);
1154 	value |= PLLE_BASE_PLDIV_CML(0xe);
1155 	value |= PLLE_BASE_NDIV(0x7d);
1156 	value |= PLLE_BASE_MDIV(2);
1157 	writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
1158 
1159 	value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
1160 	value &= ~PLLE_MISC_KCP(3);
1161 	value &= ~PLLE_MISC_VREG_CTRL(3);
1162 	value &= ~PLLE_MISC_KVCO;
1163 	writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
1164 
1165 	value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
1166 	value |= PLLE_BASE_ENABLE;
1167 	writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
1168 
1169 	/* 4. Wait for LOCK */
1170 
1171 	debug("waiting for plle lock\n");
1172 	start = get_timer(0);
1173 	while (get_timer(start) < 250) {
1174 		value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
1175 		if (value & PLLE_MISC_LOCK)
1176 			break;
1177 	}
1178 	if (!(value & PLLE_MISC_LOCK)) {
1179 		debug("  timeout\n");
1180 		return -ETIMEDOUT;
1181 	}
1182 	debug("  done\n");
1183 
1184 	/* 5. Enable SSA */
1185 
1186 	value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1187 	value &= ~PLLE_SS_CNTL_SSCINC(0xff);
1188 	value |= PLLE_SS_CNTL_SSCINC(1);
1189 	value &= ~PLLE_SS_CNTL_SSCINCINTR(0x3f);
1190 	value |= PLLE_SS_CNTL_SSCINCINTR(0x23);
1191 	value &= ~PLLE_SS_CNTL_SSCMAX(0x1fff);
1192 	value |= PLLE_SS_CNTL_SSCMAX(0x21);
1193 	value &= ~PLLE_SS_CNTL_SSCINVERT;
1194 	value &= ~PLLE_SS_CNTL_SSCCENTER;
1195 	value &= ~PLLE_SS_CNTL_BYPASS_SS;
1196 	value &= ~PLLE_SS_CNTL_SSCBYP;
1197 	writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1198 
1199 	/* 6. Wait 300 ns */
1200 
1201 	udelay(1);
1202 	value &= ~PLLE_SS_CNTL_INTERP_RESET;
1203 	writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1204 
1205 	/* 7. Enable HW power sequencer for PLLE */
1206 
1207 	value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
1208 	value &= ~PLLE_MISC_IDDQ_SWCTL;
1209 	writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
1210 
1211 	value = readl(NV_PA_CLK_RST_BASE + PLLE_AUX);
1212 	value &= ~PLLE_AUX_SS_SWCTL;
1213 	value &= ~PLLE_AUX_ENABLE_SWCTL;
1214 	value |= PLLE_AUX_SS_SEQ_INCLUDE;
1215 	value |= PLLE_AUX_USE_LOCKDET;
1216 	writel(value, NV_PA_CLK_RST_BASE + PLLE_AUX);
1217 
1218 	/* 8. Wait 1 us */
1219 
1220 	udelay(1);
1221 	value |= PLLE_AUX_SEQ_ENABLE;
1222 	writel(value, NV_PA_CLK_RST_BASE + PLLE_AUX);
1223 
1224 	return 0;
1225 }
1226