xref: /openbmc/u-boot/arch/arm/mach-tegra/clock.c (revision 2d2811c230be23d4cc810e60b0582f0b13d70d63)
1 /*
2  * Copyright (c) 2010-2015, NVIDIA CORPORATION.  All rights reserved.
3  *
4  * SPDX-License-Identifier:	GPL-2.0
5  */
6 
7 /* Tegra SoC common clock control functions */
8 
9 #include <common.h>
10 #include <errno.h>
11 #include <asm/io.h>
12 #include <asm/arch/clock.h>
13 #include <asm/arch/tegra.h>
14 #include <asm/arch-tegra/ap.h>
15 #include <asm/arch-tegra/clk_rst.h>
16 #include <asm/arch-tegra/pmc.h>
17 #include <asm/arch-tegra/timer.h>
18 #include <div64.h>
19 #include <fdtdec.h>
20 
21 /*
22  * This is our record of the current clock rate of each clock. We don't
23  * fill all of these in since we are only really interested in clocks which
24  * we use as parents.
25  */
26 static unsigned pll_rate[CLOCK_ID_COUNT];
27 
28 /*
29  * The oscillator frequency is fixed to one of four set values. Based on this
30  * the other clocks are set up appropriately.
31  */
32 static unsigned osc_freq[CLOCK_OSC_FREQ_COUNT] = {
33 	13000000,
34 	19200000,
35 	12000000,
36 	26000000,
37 	38400000,
38 	48000000,
39 };
40 
41 /* return 1 if a peripheral ID is in range */
42 #define clock_type_id_isvalid(id) ((id) >= 0 && \
43 		(id) < CLOCK_TYPE_COUNT)
44 
45 char pllp_valid = 1;	/* PLLP is set up correctly */
46 
47 /* return 1 if a periphc_internal_id is in range */
48 #define periphc_internal_id_isvalid(id) ((id) >= 0 && \
49 		(id) < PERIPHC_COUNT)
50 
51 /* number of clock outputs of a PLL */
52 static const u8 pll_num_clkouts[] = {
53 	1,	/* PLLC */
54 	1,	/* PLLM */
55 	4,	/* PLLP */
56 	1,	/* PLLA */
57 	0,	/* PLLU */
58 	0,	/* PLLD */
59 };
60 
61 int clock_get_osc_bypass(void)
62 {
63 	struct clk_rst_ctlr *clkrst =
64 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
65 	u32 reg;
66 
67 	reg = readl(&clkrst->crc_osc_ctrl);
68 	return (reg & OSC_XOBP_MASK) >> OSC_XOBP_SHIFT;
69 }
70 
71 /* Returns a pointer to the registers of the given pll */
72 static struct clk_pll *get_pll(enum clock_id clkid)
73 {
74 	struct clk_rst_ctlr *clkrst =
75 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
76 
77 	assert(clock_id_is_pll(clkid));
78 	if (clkid >= (enum clock_id)TEGRA_CLK_PLLS) {
79 		debug("%s: Invalid PLL %d\n", __func__, clkid);
80 		return NULL;
81 	}
82 	return &clkrst->crc_pll[clkid];
83 }
84 
85 __weak struct clk_pll_simple *clock_get_simple_pll(enum clock_id clkid)
86 {
87 	return NULL;
88 }
89 
90 int clock_ll_read_pll(enum clock_id clkid, u32 *divm, u32 *divn,
91 		u32 *divp, u32 *cpcon, u32 *lfcon)
92 {
93 	struct clk_pll *pll = get_pll(clkid);
94 	struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
95 	u32 data;
96 
97 	assert(clkid != CLOCK_ID_USB);
98 
99 	/* Safety check, adds to code size but is small */
100 	if (!clock_id_is_pll(clkid) || clkid == CLOCK_ID_USB)
101 		return -1;
102 	data = readl(&pll->pll_base);
103 	*divm = (data >> pllinfo->m_shift) & pllinfo->m_mask;
104 	*divn = (data >> pllinfo->n_shift) & pllinfo->n_mask;
105 	*divp = (data >> pllinfo->p_shift) & pllinfo->p_mask;
106 	data = readl(&pll->pll_misc);
107 	/* NOTE: On T210, cpcon/lfcon no longer exist, moved to KCP/KVCO */
108 	*cpcon = (data >> pllinfo->kcp_shift) & pllinfo->kcp_mask;
109 	*lfcon = (data >> pllinfo->kvco_shift) & pllinfo->kvco_mask;
110 
111 	return 0;
112 }
113 
114 unsigned long clock_start_pll(enum clock_id clkid, u32 divm, u32 divn,
115 		u32 divp, u32 cpcon, u32 lfcon)
116 {
117 	struct clk_pll *pll = NULL;
118 	struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
119 	struct clk_pll_simple *simple_pll = NULL;
120 	u32 misc_data, data;
121 
122 	if (clkid < (enum clock_id)TEGRA_CLK_PLLS) {
123 		pll = get_pll(clkid);
124 	} else {
125 		simple_pll = clock_get_simple_pll(clkid);
126 		if (!simple_pll) {
127 			debug("%s: Uknown simple PLL %d\n", __func__, clkid);
128 			return 0;
129 		}
130 	}
131 
132 	/*
133 	 * pllinfo has the m/n/p and kcp/kvco mask and shift
134 	 * values for all of the PLLs used in U-Boot, with any
135 	 * SoC differences accounted for.
136 	 *
137 	 * Preserve EN_LOCKDET, etc.
138 	 */
139 	if (pll)
140 		misc_data = readl(&pll->pll_misc);
141 	else
142 		misc_data = readl(&simple_pll->pll_misc);
143 	misc_data &= ~(pllinfo->kcp_mask << pllinfo->kcp_shift);
144 	misc_data |= cpcon << pllinfo->kcp_shift;
145 	misc_data &= ~(pllinfo->kvco_mask << pllinfo->kvco_shift);
146 	misc_data |= lfcon << pllinfo->kvco_shift;
147 
148 	data = (divm << pllinfo->m_shift) | (divn << pllinfo->n_shift);
149 	data |= divp << pllinfo->p_shift;
150 	data |= (1 << PLL_ENABLE_SHIFT);	/* BYPASS s/b 0 already */
151 
152 	if (pll) {
153 		writel(misc_data, &pll->pll_misc);
154 		writel(data, &pll->pll_base);
155 	} else {
156 		writel(misc_data, &simple_pll->pll_misc);
157 		writel(data, &simple_pll->pll_base);
158 	}
159 
160 	/* calculate the stable time */
161 	return timer_get_us() + CLOCK_PLL_STABLE_DELAY_US;
162 }
163 
164 void clock_ll_set_source_divisor(enum periph_id periph_id, unsigned source,
165 			unsigned divisor)
166 {
167 	u32 *reg = get_periph_source_reg(periph_id);
168 	u32 value;
169 
170 	value = readl(reg);
171 
172 	value &= ~OUT_CLK_SOURCE_31_30_MASK;
173 	value |= source << OUT_CLK_SOURCE_31_30_SHIFT;
174 
175 	value &= ~OUT_CLK_DIVISOR_MASK;
176 	value |= divisor << OUT_CLK_DIVISOR_SHIFT;
177 
178 	writel(value, reg);
179 }
180 
181 int clock_ll_set_source_bits(enum periph_id periph_id, int mux_bits,
182 			     unsigned source)
183 {
184 	u32 *reg = get_periph_source_reg(periph_id);
185 
186 	switch (mux_bits) {
187 	case MASK_BITS_31_30:
188 		clrsetbits_le32(reg, OUT_CLK_SOURCE_31_30_MASK,
189 				source << OUT_CLK_SOURCE_31_30_SHIFT);
190 		break;
191 
192 	case MASK_BITS_31_29:
193 		clrsetbits_le32(reg, OUT_CLK_SOURCE_31_29_MASK,
194 				source << OUT_CLK_SOURCE_31_29_SHIFT);
195 		break;
196 
197 	case MASK_BITS_31_28:
198 		clrsetbits_le32(reg, OUT_CLK_SOURCE_31_28_MASK,
199 				source << OUT_CLK_SOURCE_31_28_SHIFT);
200 		break;
201 
202 	default:
203 		return -1;
204 	}
205 
206 	return 0;
207 }
208 
209 void clock_ll_set_source(enum periph_id periph_id, unsigned source)
210 {
211 	clock_ll_set_source_bits(periph_id, MASK_BITS_31_30, source);
212 }
213 
214 /**
215  * Given the parent's rate and the required rate for the children, this works
216  * out the peripheral clock divider to use, in 7.1 binary format.
217  *
218  * @param divider_bits	number of divider bits (8 or 16)
219  * @param parent_rate	clock rate of parent clock in Hz
220  * @param rate		required clock rate for this clock
221  * @return divider which should be used
222  */
223 static int clk_get_divider(unsigned divider_bits, unsigned long parent_rate,
224 			   unsigned long rate)
225 {
226 	u64 divider = parent_rate * 2;
227 	unsigned max_divider = 1 << divider_bits;
228 
229 	divider += rate - 1;
230 	do_div(divider, rate);
231 
232 	if ((s64)divider - 2 < 0)
233 		return 0;
234 
235 	if ((s64)divider - 2 >= max_divider)
236 		return -1;
237 
238 	return divider - 2;
239 }
240 
241 int clock_set_pllout(enum clock_id clkid, enum pll_out_id pllout, unsigned rate)
242 {
243 	struct clk_pll *pll = get_pll(clkid);
244 	int data = 0, div = 0, offset = 0;
245 
246 	if (!clock_id_is_pll(clkid))
247 		return -1;
248 
249 	if (pllout + 1 > pll_num_clkouts[clkid])
250 		return -1;
251 
252 	div = clk_get_divider(8, pll_rate[clkid], rate);
253 
254 	if (div < 0)
255 		return -1;
256 
257 	/* out2 and out4 are in the high part of the register */
258 	if (pllout == PLL_OUT2 || pllout == PLL_OUT4)
259 		offset = 16;
260 
261 	data = (div << PLL_OUT_RATIO_SHIFT) |
262 			PLL_OUT_OVRRIDE | PLL_OUT_CLKEN | PLL_OUT_RSTN;
263 	clrsetbits_le32(&pll->pll_out[pllout >> 1],
264 			PLL_OUT_RATIO_MASK << offset, data << offset);
265 
266 	return 0;
267 }
268 
269 /**
270  * Given the parent's rate and the divider in 7.1 format, this works out the
271  * resulting peripheral clock rate.
272  *
273  * @param parent_rate	clock rate of parent clock in Hz
274  * @param divider which should be used in 7.1 format
275  * @return effective clock rate of peripheral
276  */
277 static unsigned long get_rate_from_divider(unsigned long parent_rate,
278 					   int divider)
279 {
280 	u64 rate;
281 
282 	rate = (u64)parent_rate * 2;
283 	do_div(rate, divider + 2);
284 	return rate;
285 }
286 
287 unsigned long clock_get_periph_rate(enum periph_id periph_id,
288 		enum clock_id parent)
289 {
290 	u32 *reg = get_periph_source_reg(periph_id);
291 
292 	return get_rate_from_divider(pll_rate[parent],
293 		(readl(reg) & OUT_CLK_DIVISOR_MASK) >> OUT_CLK_DIVISOR_SHIFT);
294 }
295 
296 /**
297  * Find the best available 7.1 format divisor given a parent clock rate and
298  * required child clock rate. This function assumes that a second-stage
299  * divisor is available which can divide by powers of 2 from 1 to 256.
300  *
301  * @param divider_bits	number of divider bits (8 or 16)
302  * @param parent_rate	clock rate of parent clock in Hz
303  * @param rate		required clock rate for this clock
304  * @param extra_div	value for the second-stage divisor (not set if this
305  *			function returns -1.
306  * @return divider which should be used, or -1 if nothing is valid
307  *
308  */
309 static int find_best_divider(unsigned divider_bits, unsigned long parent_rate,
310 				unsigned long rate, int *extra_div)
311 {
312 	int shift;
313 	int best_divider = -1;
314 	int best_error = rate;
315 
316 	/* try dividers from 1 to 256 and find closest match */
317 	for (shift = 0; shift <= 8 && best_error > 0; shift++) {
318 		unsigned divided_parent = parent_rate >> shift;
319 		int divider = clk_get_divider(divider_bits, divided_parent,
320 						rate);
321 		unsigned effective_rate = get_rate_from_divider(divided_parent,
322 						divider);
323 		int error = rate - effective_rate;
324 
325 		/* Given a valid divider, look for the lowest error */
326 		if (divider != -1 && error < best_error) {
327 			best_error = error;
328 			*extra_div = 1 << shift;
329 			best_divider = divider;
330 		}
331 	}
332 
333 	/* return what we found - *extra_div will already be set */
334 	return best_divider;
335 }
336 
337 /**
338  * Adjust peripheral PLL to use the given divider and source.
339  *
340  * @param periph_id	peripheral to adjust
341  * @param source	Source number (0-3 or 0-7)
342  * @param mux_bits	Number of mux bits (2 or 4)
343  * @param divider	Required divider in 7.1 or 15.1 format
344  * @return 0 if ok, -1 on error (requesting a parent clock which is not valid
345  *		for this peripheral)
346  */
347 static int adjust_periph_pll(enum periph_id periph_id, int source,
348 				int mux_bits, unsigned divider)
349 {
350 	u32 *reg = get_periph_source_reg(periph_id);
351 
352 	clrsetbits_le32(reg, OUT_CLK_DIVISOR_MASK,
353 			divider << OUT_CLK_DIVISOR_SHIFT);
354 	udelay(1);
355 
356 	/* work out the source clock and set it */
357 	if (source < 0)
358 		return -1;
359 
360 	clock_ll_set_source_bits(periph_id, mux_bits, source);
361 
362 	udelay(2);
363 	return 0;
364 }
365 
366 unsigned clock_adjust_periph_pll_div(enum periph_id periph_id,
367 		enum clock_id parent, unsigned rate, int *extra_div)
368 {
369 	unsigned effective_rate;
370 	int mux_bits, divider_bits, source;
371 	int divider;
372 	int xdiv = 0;
373 
374 	/* work out the source clock and set it */
375 	source = get_periph_clock_source(periph_id, parent, &mux_bits,
376 					 &divider_bits);
377 
378 	divider = find_best_divider(divider_bits, pll_rate[parent],
379 				    rate, &xdiv);
380 	if (extra_div)
381 		*extra_div = xdiv;
382 
383 	assert(divider >= 0);
384 	if (adjust_periph_pll(periph_id, source, mux_bits, divider))
385 		return -1U;
386 	debug("periph %d, rate=%d, reg=%p = %x\n", periph_id, rate,
387 		get_periph_source_reg(periph_id),
388 		readl(get_periph_source_reg(periph_id)));
389 
390 	/* Check what we ended up with. This shouldn't matter though */
391 	effective_rate = clock_get_periph_rate(periph_id, parent);
392 	if (extra_div)
393 		effective_rate /= *extra_div;
394 	if (rate != effective_rate)
395 		debug("Requested clock rate %u not honored (got %u)\n",
396 			rate, effective_rate);
397 	return effective_rate;
398 }
399 
400 unsigned clock_start_periph_pll(enum periph_id periph_id,
401 		enum clock_id parent, unsigned rate)
402 {
403 	unsigned effective_rate;
404 
405 	reset_set_enable(periph_id, 1);
406 	clock_enable(periph_id);
407 
408 	effective_rate = clock_adjust_periph_pll_div(periph_id, parent, rate,
409 						 NULL);
410 
411 	reset_set_enable(periph_id, 0);
412 	return effective_rate;
413 }
414 
415 void clock_enable(enum periph_id clkid)
416 {
417 	clock_set_enable(clkid, 1);
418 }
419 
420 void clock_disable(enum periph_id clkid)
421 {
422 	clock_set_enable(clkid, 0);
423 }
424 
425 void reset_periph(enum periph_id periph_id, int us_delay)
426 {
427 	/* Put peripheral into reset */
428 	reset_set_enable(periph_id, 1);
429 	udelay(us_delay);
430 
431 	/* Remove reset */
432 	reset_set_enable(periph_id, 0);
433 
434 	udelay(us_delay);
435 }
436 
437 void reset_cmplx_set_enable(int cpu, int which, int reset)
438 {
439 	struct clk_rst_ctlr *clkrst =
440 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
441 	u32 mask;
442 
443 	/* Form the mask, which depends on the cpu chosen (2 or 4) */
444 	assert(cpu >= 0 && cpu < MAX_NUM_CPU);
445 	mask = which << cpu;
446 
447 	/* either enable or disable those reset for that CPU */
448 	if (reset)
449 		writel(mask, &clkrst->crc_cpu_cmplx_set);
450 	else
451 		writel(mask, &clkrst->crc_cpu_cmplx_clr);
452 }
453 
454 unsigned int __weak clk_m_get_rate(unsigned int parent_rate)
455 {
456 	return parent_rate;
457 }
458 
459 unsigned clock_get_rate(enum clock_id clkid)
460 {
461 	struct clk_pll *pll;
462 	u32 base, divm;
463 	u64 parent_rate, rate;
464 	struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
465 
466 	parent_rate = osc_freq[clock_get_osc_freq()];
467 	if (clkid == CLOCK_ID_OSC)
468 		return parent_rate;
469 
470 	if (clkid == CLOCK_ID_CLK_M)
471 		return clk_m_get_rate(parent_rate);
472 
473 	pll = get_pll(clkid);
474 	if (!pll)
475 		return 0;
476 	base = readl(&pll->pll_base);
477 
478 	rate = parent_rate * ((base >> pllinfo->n_shift) & pllinfo->n_mask);
479 	divm = (base >> pllinfo->m_shift) & pllinfo->m_mask;
480 	/*
481 	 * PLLU uses p_mask/p_shift for VCO on all but T210,
482 	 * T210 uses normal DIVP. Handled in pllinfo table.
483 	 */
484 #ifdef CONFIG_TEGRA210
485 	/*
486 	 * PLLP's primary output (pllP_out0) on T210 is the VCO, and divp is
487 	 * not applied. pllP_out2 does have divp applied. All other pllP_outN
488 	 * are divided down from pllP_out0. We only support pllP_out0 in
489 	 * U-Boot at the time of writing this comment.
490 	 */
491 	if (clkid != CLOCK_ID_PERIPH)
492 #endif
493 		divm <<= (base >> pllinfo->p_shift) & pllinfo->p_mask;
494 	do_div(rate, divm);
495 	return rate;
496 }
497 
498 /**
499  * Set the output frequency you want for each PLL clock.
500  * PLL output frequencies are programmed by setting their N, M and P values.
501  * The governing equations are:
502  *     VCO = (Fi / m) * n, Fo = VCO / (2^p)
503  *     where Fo is the output frequency from the PLL.
504  * Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi)
505  *     216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1
506  * Please see Tegra TRM section 5.3 to get the detail for PLL Programming
507  *
508  * @param n PLL feedback divider(DIVN)
509  * @param m PLL input divider(DIVN)
510  * @param p post divider(DIVP)
511  * @param cpcon base PLL charge pump(CPCON)
512  * @return 0 if ok, -1 on error (the requested PLL is incorrect and cannot
513  *		be overridden), 1 if PLL is already correct
514  */
515 int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon)
516 {
517 	u32 base_reg, misc_reg;
518 	struct clk_pll *pll;
519 	struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
520 
521 	pll = get_pll(clkid);
522 
523 	base_reg = readl(&pll->pll_base);
524 
525 	/* Set BYPASS, m, n and p to PLL_BASE */
526 	base_reg &= ~(pllinfo->m_mask << pllinfo->m_shift);
527 	base_reg |= m << pllinfo->m_shift;
528 
529 	base_reg &= ~(pllinfo->n_mask << pllinfo->n_shift);
530 	base_reg |= n << pllinfo->n_shift;
531 
532 	base_reg &= ~(pllinfo->p_mask << pllinfo->p_shift);
533 	base_reg |= p << pllinfo->p_shift;
534 
535 	if (clkid == CLOCK_ID_PERIPH) {
536 		/*
537 		 * If the PLL is already set up, check that it is correct
538 		 * and record this info for clock_verify() to check.
539 		 */
540 		if (base_reg & PLL_BASE_OVRRIDE_MASK) {
541 			base_reg |= PLL_ENABLE_MASK;
542 			if (base_reg != readl(&pll->pll_base))
543 				pllp_valid = 0;
544 			return pllp_valid ? 1 : -1;
545 		}
546 		base_reg |= PLL_BASE_OVRRIDE_MASK;
547 	}
548 
549 	base_reg |= PLL_BYPASS_MASK;
550 	writel(base_reg, &pll->pll_base);
551 
552 	/* Set cpcon (KCP) to PLL_MISC */
553 	misc_reg = readl(&pll->pll_misc);
554 	misc_reg &= ~(pllinfo->kcp_mask << pllinfo->kcp_shift);
555 	misc_reg |= cpcon << pllinfo->kcp_shift;
556 	writel(misc_reg, &pll->pll_misc);
557 
558 	/* Enable PLL */
559 	base_reg |= PLL_ENABLE_MASK;
560 	writel(base_reg, &pll->pll_base);
561 
562 	/* Disable BYPASS */
563 	base_reg &= ~PLL_BYPASS_MASK;
564 	writel(base_reg, &pll->pll_base);
565 
566 	return 0;
567 }
568 
569 void clock_ll_start_uart(enum periph_id periph_id)
570 {
571 	/* Assert UART reset and enable clock */
572 	reset_set_enable(periph_id, 1);
573 	clock_enable(periph_id);
574 	clock_ll_set_source(periph_id, 0); /* UARTx_CLK_SRC = 00, PLLP_OUT0 */
575 
576 	/* wait for 2us */
577 	udelay(2);
578 
579 	/* De-assert reset to UART */
580 	reset_set_enable(periph_id, 0);
581 }
582 
583 #if CONFIG_IS_ENABLED(OF_CONTROL)
584 int clock_decode_periph_id(const void *blob, int node)
585 {
586 	enum periph_id id;
587 	u32 cell[2];
588 	int err;
589 
590 	err = fdtdec_get_int_array(blob, node, "clocks", cell,
591 				   ARRAY_SIZE(cell));
592 	if (err)
593 		return -1;
594 	id = clk_id_to_periph_id(cell[1]);
595 	assert(clock_periph_id_isvalid(id));
596 	return id;
597 }
598 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
599 
600 int clock_verify(void)
601 {
602 	struct clk_pll *pll = get_pll(CLOCK_ID_PERIPH);
603 	u32 reg = readl(&pll->pll_base);
604 
605 	if (!pllp_valid) {
606 		printf("Warning: PLLP %x is not correct\n", reg);
607 		return -1;
608 	}
609 	debug("PLLP %x is correct\n", reg);
610 	return 0;
611 }
612 
613 void clock_init(void)
614 {
615 	pll_rate[CLOCK_ID_CGENERAL] = clock_get_rate(CLOCK_ID_CGENERAL);
616 	pll_rate[CLOCK_ID_MEMORY] = clock_get_rate(CLOCK_ID_MEMORY);
617 	pll_rate[CLOCK_ID_PERIPH] = clock_get_rate(CLOCK_ID_PERIPH);
618 	pll_rate[CLOCK_ID_USB] = clock_get_rate(CLOCK_ID_USB);
619 	pll_rate[CLOCK_ID_DISPLAY] = clock_get_rate(CLOCK_ID_DISPLAY);
620 	pll_rate[CLOCK_ID_XCPU] = clock_get_rate(CLOCK_ID_XCPU);
621 	pll_rate[CLOCK_ID_SFROM32KHZ] = 32768;
622 	pll_rate[CLOCK_ID_OSC] = clock_get_rate(CLOCK_ID_OSC);
623 	pll_rate[CLOCK_ID_CLK_M] = clock_get_rate(CLOCK_ID_CLK_M);
624 
625 	debug("Osc = %d\n", pll_rate[CLOCK_ID_OSC]);
626 	debug("CLKM = %d\n", pll_rate[CLOCK_ID_CLK_M]);
627 	debug("PLLC = %d\n", pll_rate[CLOCK_ID_CGENERAL]);
628 	debug("PLLM = %d\n", pll_rate[CLOCK_ID_MEMORY]);
629 	debug("PLLP = %d\n", pll_rate[CLOCK_ID_PERIPH]);
630 	debug("PLLU = %d\n", pll_rate[CLOCK_ID_USB]);
631 	debug("PLLD = %d\n", pll_rate[CLOCK_ID_DISPLAY]);
632 	debug("PLLX = %d\n", pll_rate[CLOCK_ID_XCPU]);
633 }
634 
635 static void set_avp_clock_source(u32 src)
636 {
637 	struct clk_rst_ctlr *clkrst =
638 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
639 	u32 val;
640 
641 	val = (src << SCLK_SWAKEUP_FIQ_SOURCE_SHIFT) |
642 		(src << SCLK_SWAKEUP_IRQ_SOURCE_SHIFT) |
643 		(src << SCLK_SWAKEUP_RUN_SOURCE_SHIFT) |
644 		(src << SCLK_SWAKEUP_IDLE_SOURCE_SHIFT) |
645 		(SCLK_SYS_STATE_RUN << SCLK_SYS_STATE_SHIFT);
646 	writel(val, &clkrst->crc_sclk_brst_pol);
647 	udelay(3);
648 }
649 
650 /*
651  * This function is useful on Tegra30, and any later SoCs that have compatible
652  * PLLP configuration registers.
653  * NOTE: Not used on Tegra210 - see tegra210_setup_pllp in T210 clock.c
654  */
655 void tegra30_set_up_pllp(void)
656 {
657 	struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
658 	u32 reg;
659 
660 	/*
661 	 * Based on the Tegra TRM, the system clock (which is the AVP clock) can
662 	 * run up to 275MHz. On power on, the default sytem clock source is set
663 	 * to PLLP_OUT0. This function sets PLLP's (hence PLLP_OUT0's) rate to
664 	 * 408MHz which is beyond system clock's upper limit.
665 	 *
666 	 * The fix is to set the system clock to CLK_M before initializing PLLP,
667 	 * and then switch back to PLLP_OUT4, which has an appropriate divider
668 	 * configured, after PLLP has been configured
669 	 */
670 	set_avp_clock_source(SCLK_SOURCE_CLKM);
671 
672 	/*
673 	 * PLLP output frequency set to 408Mhz
674 	 * PLLC output frequency set to 228Mhz
675 	 */
676 	switch (clock_get_osc_freq()) {
677 	case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
678 		clock_set_rate(CLOCK_ID_PERIPH, 408, 12, 0, 8);
679 		clock_set_rate(CLOCK_ID_CGENERAL, 456, 12, 1, 8);
680 		break;
681 
682 	case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
683 		clock_set_rate(CLOCK_ID_PERIPH, 408, 26, 0, 8);
684 		clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
685 		break;
686 
687 	case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
688 		clock_set_rate(CLOCK_ID_PERIPH, 408, 13, 0, 8);
689 		clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
690 		break;
691 	case CLOCK_OSC_FREQ_19_2:
692 	default:
693 		/*
694 		 * These are not supported. It is too early to print a
695 		 * message and the UART likely won't work anyway due to the
696 		 * oscillator being wrong.
697 		 */
698 		break;
699 	}
700 
701 	/* Set PLLP_OUT1, 2, 3 & 4 freqs to 9.6, 48, 102 & 204MHz */
702 
703 	/* OUT1, 2 */
704 	/* Assert RSTN before enable */
705 	reg = PLLP_OUT2_RSTN_EN | PLLP_OUT1_RSTN_EN;
706 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
707 	/* Set divisor and reenable */
708 	reg = (IN_408_OUT_48_DIVISOR << PLLP_OUT2_RATIO)
709 		| PLLP_OUT2_OVR | PLLP_OUT2_CLKEN | PLLP_OUT2_RSTN_DIS
710 		| (IN_408_OUT_9_6_DIVISOR << PLLP_OUT1_RATIO)
711 		| PLLP_OUT1_OVR | PLLP_OUT1_CLKEN | PLLP_OUT1_RSTN_DIS;
712 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
713 
714 	/* OUT3, 4 */
715 	/* Assert RSTN before enable */
716 	reg = PLLP_OUT4_RSTN_EN | PLLP_OUT3_RSTN_EN;
717 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
718 	/* Set divisor and reenable */
719 	reg = (IN_408_OUT_204_DIVISOR << PLLP_OUT4_RATIO)
720 		| PLLP_OUT4_OVR | PLLP_OUT4_CLKEN | PLLP_OUT4_RSTN_DIS
721 		| (IN_408_OUT_102_DIVISOR << PLLP_OUT3_RATIO)
722 		| PLLP_OUT3_OVR | PLLP_OUT3_CLKEN | PLLP_OUT3_RSTN_DIS;
723 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
724 
725 	set_avp_clock_source(SCLK_SOURCE_PLLP_OUT4);
726 }
727 
728 int clock_external_output(int clk_id)
729 {
730 	struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
731 
732 	if (clk_id >= 1 && clk_id <= 3) {
733 		setbits_le32(&pmc->pmc_clk_out_cntrl,
734 			     1 << (2 + (clk_id - 1) * 8));
735 	} else {
736 		printf("%s: Unknown output clock id %d\n", __func__, clk_id);
737 		return -EINVAL;
738 	}
739 
740 	return 0;
741 }
742