xref: /openbmc/u-boot/arch/arm/mach-omap2/am33xx/clock_am33xx.c (revision e5ec48152ad13ada83c541cdf7f47d5867c506db)
1 /*
2  * clock_am33xx.c
3  *
4  * clocks for AM33XX based boards
5  *
6  * Copyright (C) 2013, Texas Instruments, Incorporated - http://www.ti.com/
7  *
8  * SPDX-License-Identifier:	GPL-2.0+
9  */
10 
11 #include <common.h>
12 #include <asm/arch/cpu.h>
13 #include <asm/arch/clock.h>
14 #include <asm/arch/hardware.h>
15 #include <asm/io.h>
16 
17 #define OSC	(V_OSCK/1000000)
18 
19 struct cm_perpll *const cmper = (struct cm_perpll *)CM_PER;
20 struct cm_wkuppll *const cmwkup = (struct cm_wkuppll *)CM_WKUP;
21 struct cm_dpll *const cmdpll = (struct cm_dpll *)CM_DPLL;
22 struct cm_rtc *const cmrtc = (struct cm_rtc *)CM_RTC;
23 
24 const struct dpll_regs dpll_mpu_regs = {
25 	.cm_clkmode_dpll	= CM_WKUP + 0x88,
26 	.cm_idlest_dpll		= CM_WKUP + 0x20,
27 	.cm_clksel_dpll		= CM_WKUP + 0x2C,
28 	.cm_div_m2_dpll		= CM_WKUP + 0xA8,
29 };
30 
31 const struct dpll_regs dpll_core_regs = {
32 	.cm_clkmode_dpll	= CM_WKUP + 0x90,
33 	.cm_idlest_dpll		= CM_WKUP + 0x5C,
34 	.cm_clksel_dpll		= CM_WKUP + 0x68,
35 	.cm_div_m4_dpll		= CM_WKUP + 0x80,
36 	.cm_div_m5_dpll		= CM_WKUP + 0x84,
37 	.cm_div_m6_dpll		= CM_WKUP + 0xD8,
38 };
39 
40 const struct dpll_regs dpll_per_regs = {
41 	.cm_clkmode_dpll	= CM_WKUP + 0x8C,
42 	.cm_idlest_dpll		= CM_WKUP + 0x70,
43 	.cm_clksel_dpll		= CM_WKUP + 0x9C,
44 	.cm_div_m2_dpll		= CM_WKUP + 0xAC,
45 };
46 
47 const struct dpll_regs dpll_ddr_regs = {
48 	.cm_clkmode_dpll	= CM_WKUP + 0x94,
49 	.cm_idlest_dpll		= CM_WKUP + 0x34,
50 	.cm_clksel_dpll		= CM_WKUP + 0x40,
51 	.cm_div_m2_dpll		= CM_WKUP + 0xA0,
52 };
53 
54 struct dpll_params dpll_mpu_opp100 = {
55 		CONFIG_SYS_MPUCLK, OSC-1, 1, -1, -1, -1, -1};
56 const struct dpll_params dpll_core_opp100 = {
57 		1000, OSC-1, -1, -1, 10, 8, 4};
58 const struct dpll_params dpll_mpu = {
59 		MPUPLL_M_300, OSC-1, 1, -1, -1, -1, -1};
60 const struct dpll_params dpll_core = {
61 		50, OSC-1, -1, -1, 1, 1, 1};
62 const struct dpll_params dpll_per = {
63 		960, OSC-1, 5, -1, -1, -1, -1};
64 
65 const struct dpll_params *get_dpll_mpu_params(void)
66 {
67 	return &dpll_mpu;
68 }
69 
70 const struct dpll_params *get_dpll_core_params(void)
71 {
72 	return &dpll_core;
73 }
74 
75 const struct dpll_params *get_dpll_per_params(void)
76 {
77 	return &dpll_per;
78 }
79 
80 void setup_clocks_for_console(void)
81 {
82 	clrsetbits_le32(&cmwkup->wkclkstctrl, CD_CLKCTRL_CLKTRCTRL_MASK,
83 			CD_CLKCTRL_CLKTRCTRL_SW_WKUP <<
84 			CD_CLKCTRL_CLKTRCTRL_SHIFT);
85 
86 	clrsetbits_le32(&cmper->l4hsclkstctrl, CD_CLKCTRL_CLKTRCTRL_MASK,
87 			CD_CLKCTRL_CLKTRCTRL_SW_WKUP <<
88 			CD_CLKCTRL_CLKTRCTRL_SHIFT);
89 
90 	clrsetbits_le32(&cmwkup->wkup_uart0ctrl,
91 			MODULE_CLKCTRL_MODULEMODE_MASK,
92 			MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
93 			MODULE_CLKCTRL_MODULEMODE_SHIFT);
94 	clrsetbits_le32(&cmper->uart1clkctrl,
95 			MODULE_CLKCTRL_MODULEMODE_MASK,
96 			MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
97 			MODULE_CLKCTRL_MODULEMODE_SHIFT);
98 	clrsetbits_le32(&cmper->uart2clkctrl,
99 			MODULE_CLKCTRL_MODULEMODE_MASK,
100 			MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
101 			MODULE_CLKCTRL_MODULEMODE_SHIFT);
102 	clrsetbits_le32(&cmper->uart3clkctrl,
103 			MODULE_CLKCTRL_MODULEMODE_MASK,
104 			MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
105 			MODULE_CLKCTRL_MODULEMODE_SHIFT);
106 	clrsetbits_le32(&cmper->uart4clkctrl,
107 			MODULE_CLKCTRL_MODULEMODE_MASK,
108 			MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
109 			MODULE_CLKCTRL_MODULEMODE_SHIFT);
110 	clrsetbits_le32(&cmper->uart5clkctrl,
111 			MODULE_CLKCTRL_MODULEMODE_MASK,
112 			MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
113 			MODULE_CLKCTRL_MODULEMODE_SHIFT);
114 }
115 
116 void enable_basic_clocks(void)
117 {
118 	u32 *const clk_domains[] = {
119 		&cmper->l3clkstctrl,
120 		&cmper->l4fwclkstctrl,
121 		&cmper->l3sclkstctrl,
122 		&cmper->l4lsclkstctrl,
123 		&cmwkup->wkclkstctrl,
124 		&cmper->emiffwclkctrl,
125 		&cmrtc->clkstctrl,
126 		0
127 	};
128 
129 	u32 *const clk_modules_explicit_en[] = {
130 		&cmper->l3clkctrl,
131 		&cmper->l4lsclkctrl,
132 		&cmper->l4fwclkctrl,
133 		&cmwkup->wkl4wkclkctrl,
134 		&cmper->l3instrclkctrl,
135 		&cmper->l4hsclkctrl,
136 		&cmwkup->wkgpio0clkctrl,
137 		&cmwkup->wkctrlclkctrl,
138 		&cmper->timer2clkctrl,
139 		&cmper->gpmcclkctrl,
140 		&cmper->elmclkctrl,
141 		&cmper->mmc0clkctrl,
142 		&cmper->mmc1clkctrl,
143 		&cmwkup->wkup_i2c0ctrl,
144 		&cmper->gpio1clkctrl,
145 		&cmper->gpio2clkctrl,
146 		&cmper->gpio3clkctrl,
147 		&cmper->i2c1clkctrl,
148 		&cmper->cpgmac0clkctrl,
149 		&cmper->spi0clkctrl,
150 		&cmrtc->rtcclkctrl,
151 		&cmper->usb0clkctrl,
152 		&cmper->emiffwclkctrl,
153 		&cmper->emifclkctrl,
154 		0
155 	};
156 
157 	do_enable_clocks(clk_domains, clk_modules_explicit_en, 1);
158 
159 	/* Select the Master osc 24 MHZ as Timer2 clock source */
160 	writel(0x1, &cmdpll->clktimer2clk);
161 }
162 
163 /*
164  * Enable Spread Spectrum for the MPU by calculating the required
165  * values and setting the registers accordingly.
166  * @param permille The spreading in permille (10th of a percent)
167  */
168 void set_mpu_spreadspectrum(int permille)
169 {
170 	u32 multiplier_m;
171 	u32 predivider_n;
172 	u32 cm_clksel_dpll_mpu;
173 	u32 cm_clkmode_dpll_mpu;
174 	u32 ref_clock;
175 	u32 pll_bandwidth;
176 	u32 mod_freq_divider;
177 	u32 exponent;
178 	u32 mantissa;
179 	u32 delta_m_step;
180 
181 	printf("Enabling Spread Spectrum of %d permille for MPU\n",
182 	       permille);
183 
184 	/* Read PLL parameter m and n */
185 	cm_clksel_dpll_mpu = readl(&cmwkup->clkseldpllmpu);
186 	multiplier_m = (cm_clksel_dpll_mpu >> 8) & 0x3FF;
187 	predivider_n = cm_clksel_dpll_mpu & 0x7F;
188 
189 	/*
190 	 * Calculate reference clock (clock after pre-divider),
191 	 * its max. PLL bandwidth,
192 	 * and resulting mod_freq_divider
193 	 */
194 	ref_clock = V_OSCK / (predivider_n + 1);
195 	pll_bandwidth = ref_clock / 70;
196 	mod_freq_divider = ref_clock / (4 * pll_bandwidth);
197 
198 	/* Calculate Mantissa/Exponent */
199 	exponent = 0;
200 	mantissa = mod_freq_divider;
201 	while ((mantissa > 127) && (exponent < 7)) {
202 		exponent++;
203 		mantissa /= 2;
204 	}
205 	if (mantissa > 127)
206 		mantissa = 127;
207 
208 	mod_freq_divider = mantissa << exponent;
209 
210 	/*
211 	 * Calculate Modulation steps
212 	 * As we use Downspread only, the spread is twice the value of
213 	 * permille, so Div2!
214 	 * As it takes the value in percent, divide by ten!
215 	 */
216 	delta_m_step = ((u32)((multiplier_m * permille) / 10 / 2)) << 18;
217 	delta_m_step /= 100;
218 	delta_m_step /= mod_freq_divider;
219 	if (delta_m_step > 0xFFFFF)
220 		delta_m_step = 0xFFFFF;
221 
222 	/* Setup Spread Spectrum */
223 	writel(delta_m_step, &cmwkup->sscdeltamstepdllmpu);
224 	writel((exponent << 8) | mantissa, &cmwkup->sscmodfreqdivdpllmpu);
225 	cm_clkmode_dpll_mpu = readl(&cmwkup->clkmoddpllmpu);
226 	/* clear all SSC flags */
227 	cm_clkmode_dpll_mpu &= ~(0xF << CM_CLKMODE_DPLL_SSC_EN_SHIFT);
228 	/* enable SSC with Downspread only */
229 	cm_clkmode_dpll_mpu |=  CM_CLKMODE_DPLL_SSC_EN_MASK |
230 				CM_CLKMODE_DPLL_SSC_DOWNSPREAD_MASK;
231 	writel(cm_clkmode_dpll_mpu, &cmwkup->clkmoddpllmpu);
232 	while (!(readl(&cmwkup->clkmoddpllmpu) & 0x2000))
233 		;
234 }
235