xref: /openbmc/u-boot/arch/arm/mach-omap2/am33xx/clock_am33xx.c (revision 382bee57f19b4454e2015bc19a010bc2d0ab9337)
1 /*
2  * clock_am33xx.c
3  *
4  * clocks for AM33XX based boards
5  *
6  * Copyright (C) 2013, Texas Instruments, Incorporated - http://www.ti.com/
7  *
8  * SPDX-License-Identifier:	GPL-2.0+
9  */
10 
11 #include <common.h>
12 #include <asm/arch/cpu.h>
13 #include <asm/arch/sys_proto.h>
14 #include <asm/arch/clock.h>
15 #include <asm/arch/hardware.h>
16 #include <asm/io.h>
17 
18 #define OSC	(V_OSCK/1000000)
19 
20 struct cm_perpll *const cmper = (struct cm_perpll *)CM_PER;
21 struct cm_wkuppll *const cmwkup = (struct cm_wkuppll *)CM_WKUP;
22 struct cm_dpll *const cmdpll = (struct cm_dpll *)CM_DPLL;
23 struct cm_rtc *const cmrtc = (struct cm_rtc *)CM_RTC;
24 
25 const struct dpll_regs dpll_mpu_regs = {
26 	.cm_clkmode_dpll	= CM_WKUP + 0x88,
27 	.cm_idlest_dpll		= CM_WKUP + 0x20,
28 	.cm_clksel_dpll		= CM_WKUP + 0x2C,
29 	.cm_div_m2_dpll		= CM_WKUP + 0xA8,
30 };
31 
32 const struct dpll_regs dpll_core_regs = {
33 	.cm_clkmode_dpll	= CM_WKUP + 0x90,
34 	.cm_idlest_dpll		= CM_WKUP + 0x5C,
35 	.cm_clksel_dpll		= CM_WKUP + 0x68,
36 	.cm_div_m4_dpll		= CM_WKUP + 0x80,
37 	.cm_div_m5_dpll		= CM_WKUP + 0x84,
38 	.cm_div_m6_dpll		= CM_WKUP + 0xD8,
39 };
40 
41 const struct dpll_regs dpll_per_regs = {
42 	.cm_clkmode_dpll	= CM_WKUP + 0x8C,
43 	.cm_idlest_dpll		= CM_WKUP + 0x70,
44 	.cm_clksel_dpll		= CM_WKUP + 0x9C,
45 	.cm_div_m2_dpll		= CM_WKUP + 0xAC,
46 };
47 
48 const struct dpll_regs dpll_ddr_regs = {
49 	.cm_clkmode_dpll	= CM_WKUP + 0x94,
50 	.cm_idlest_dpll		= CM_WKUP + 0x34,
51 	.cm_clksel_dpll		= CM_WKUP + 0x40,
52 	.cm_div_m2_dpll		= CM_WKUP + 0xA0,
53 };
54 
55 struct dpll_params dpll_mpu_opp100 = {
56 		CONFIG_SYS_MPUCLK, OSC-1, 1, -1, -1, -1, -1};
57 const struct dpll_params dpll_core_opp100 = {
58 		1000, OSC-1, -1, -1, 10, 8, 4};
59 
60 const struct dpll_params dpll_mpu_opp[NUM_CRYSTAL_FREQ][NUM_OPPS] = {
61 	{	/* 19.2 MHz */
62 		{125, 3, 2, -1, -1, -1, -1},	/* OPP 50 */
63 		{-1, -1, -1, -1, -1, -1, -1},	/* OPP RESERVED	*/
64 		{125, 3, 1, -1, -1, -1, -1},	/* OPP 100 */
65 		{150, 3, 1, -1, -1, -1, -1},	/* OPP 120 */
66 		{125, 2, 1, -1, -1, -1, -1},	/* OPP TB */
67 		{625, 11, 1, -1, -1, -1, -1}	/* OPP NT */
68 	},
69 	{	/* 24 MHz */
70 		{25, 0, 2, -1, -1, -1, -1},	/* OPP 50 */
71 		{-1, -1, -1, -1, -1, -1, -1},	/* OPP RESERVED	*/
72 		{25, 0, 1, -1, -1, -1, -1},	/* OPP 100 */
73 		{30, 0, 1, -1, -1, -1, -1},	/* OPP 120 */
74 		{100, 3, 1, -1, -1, -1, -1},	/* OPP TB */
75 		{125, 2, 1, -1, -1, -1, -1}	/* OPP NT */
76 	},
77 	{	/* 25 MHz */
78 		{24, 0, 2, -1, -1, -1, -1},	/* OPP 50 */
79 		{-1, -1, -1, -1, -1, -1, -1},	/* OPP RESERVED	*/
80 		{24, 0, 1, -1, -1, -1, -1},	/* OPP 100 */
81 		{144, 4, 1, -1, -1, -1, -1},	/* OPP 120 */
82 		{32, 0, 1, -1, -1, -1, -1},	/* OPP TB */
83 		{40, 0, 1, -1, -1, -1, -1}	/* OPP NT */
84 	},
85 	{	/* 26 MHz */
86 		{300, 12, 2, -1, -1, -1, -1},	/* OPP 50 */
87 		{-1, -1, -1, -1, -1, -1, -1},	/* OPP RESERVED	*/
88 		{300, 12, 1, -1, -1, -1, -1},	/* OPP 100 */
89 		{360, 12, 1, -1, -1, -1, -1},	/* OPP 120 */
90 		{400, 12, 1, -1, -1, -1, -1},	/* OPP TB */
91 		{500, 12, 1, -1, -1, -1, -1}	/* OPP NT */
92 	},
93 };
94 
95 const struct dpll_params dpll_core_1000MHz[NUM_CRYSTAL_FREQ] = {
96 		{625, 11, -1, -1, 10, 8, 4},	/* 19.2 MHz */
97 		{125, 2, -1, -1, 10, 8, 4},	/* 24 MHz */
98 		{40, 0, -1, -1, 10, 8, 4},	/* 25 MHz */
99 		{500, 12, -1, -1, 10, 8, 4}	/* 26 MHz */
100 };
101 
102 const struct dpll_params dpll_per_192MHz[NUM_CRYSTAL_FREQ] = {
103 		{400, 7, 5, -1, -1, -1, -1},	/* 19.2 MHz */
104 		{400, 9, 5, -1, -1, -1, -1},	/* 24 MHz */
105 		{384, 9, 5, -1, -1, -1, -1},	/* 25 MHz */
106 		{480, 12, 5, -1, -1, -1, -1}	/* 26 MHz */
107 };
108 
109 const struct dpll_params dpll_ddr3_303MHz[NUM_CRYSTAL_FREQ] = {
110 		{505, 15, 2, -1, -1, -1, -1}, /*19.2*/
111 		{101, 3, 2, -1, -1, -1, -1}, /* 24 MHz */
112 		{303, 24, 1, -1, 4, -1, -1}, /* 25 MHz */
113 		{303, 12, 2, -1, 4, -1, -1}  /* 26 MHz */
114 };
115 
116 const struct dpll_params dpll_ddr3_400MHz[NUM_CRYSTAL_FREQ] = {
117 		{125, 5, 1, -1, -1, -1, -1}, /*19.2*/
118 		{50, 2, 1, -1, -1, -1, -1}, /* 24 MHz */
119 		{16, 0, 1, -1, 4, -1, -1}, /* 25 MHz */
120 		{200, 12, 1, -1, 4, -1, -1}  /* 26 MHz */
121 };
122 
123 const struct dpll_params dpll_ddr2_266MHz[NUM_CRYSTAL_FREQ] = {
124 		{665, 47, 1, -1, -1, -1, -1}, /*19.2*/
125 		{133, 11, 1, -1, -1, -1, -1}, /* 24 MHz */
126 		{266, 24, 1, -1, 4, -1, -1}, /* 25 MHz */
127 		{133, 12, 1, -1, 4, -1, -1}  /* 26 MHz */
128 };
129 
130 __weak const struct dpll_params *get_dpll_mpu_params(void)
131 {
132 	return &dpll_mpu_opp100;
133 }
134 
135 const struct dpll_params *get_dpll_core_params(void)
136 {
137 	int ind = get_sys_clk_index();
138 
139 	return &dpll_core_1000MHz[ind];
140 }
141 
142 const struct dpll_params *get_dpll_per_params(void)
143 {
144 	int ind = get_sys_clk_index();
145 
146 	return &dpll_per_192MHz[ind];
147 }
148 
149 void setup_clocks_for_console(void)
150 {
151 	clrsetbits_le32(&cmwkup->wkclkstctrl, CD_CLKCTRL_CLKTRCTRL_MASK,
152 			CD_CLKCTRL_CLKTRCTRL_SW_WKUP <<
153 			CD_CLKCTRL_CLKTRCTRL_SHIFT);
154 
155 	clrsetbits_le32(&cmper->l4hsclkstctrl, CD_CLKCTRL_CLKTRCTRL_MASK,
156 			CD_CLKCTRL_CLKTRCTRL_SW_WKUP <<
157 			CD_CLKCTRL_CLKTRCTRL_SHIFT);
158 
159 	clrsetbits_le32(&cmwkup->wkup_uart0ctrl,
160 			MODULE_CLKCTRL_MODULEMODE_MASK,
161 			MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
162 			MODULE_CLKCTRL_MODULEMODE_SHIFT);
163 	clrsetbits_le32(&cmper->uart1clkctrl,
164 			MODULE_CLKCTRL_MODULEMODE_MASK,
165 			MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
166 			MODULE_CLKCTRL_MODULEMODE_SHIFT);
167 	clrsetbits_le32(&cmper->uart2clkctrl,
168 			MODULE_CLKCTRL_MODULEMODE_MASK,
169 			MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
170 			MODULE_CLKCTRL_MODULEMODE_SHIFT);
171 	clrsetbits_le32(&cmper->uart3clkctrl,
172 			MODULE_CLKCTRL_MODULEMODE_MASK,
173 			MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
174 			MODULE_CLKCTRL_MODULEMODE_SHIFT);
175 	clrsetbits_le32(&cmper->uart4clkctrl,
176 			MODULE_CLKCTRL_MODULEMODE_MASK,
177 			MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
178 			MODULE_CLKCTRL_MODULEMODE_SHIFT);
179 	clrsetbits_le32(&cmper->uart5clkctrl,
180 			MODULE_CLKCTRL_MODULEMODE_MASK,
181 			MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
182 			MODULE_CLKCTRL_MODULEMODE_SHIFT);
183 }
184 
185 void enable_basic_clocks(void)
186 {
187 	u32 *const clk_domains[] = {
188 		&cmper->l3clkstctrl,
189 		&cmper->l4fwclkstctrl,
190 		&cmper->l3sclkstctrl,
191 		&cmper->l4lsclkstctrl,
192 		&cmwkup->wkclkstctrl,
193 		&cmper->emiffwclkctrl,
194 		&cmrtc->clkstctrl,
195 		0
196 	};
197 
198 	u32 *const clk_modules_explicit_en[] = {
199 		&cmper->l3clkctrl,
200 		&cmper->l4lsclkctrl,
201 		&cmper->l4fwclkctrl,
202 		&cmwkup->wkl4wkclkctrl,
203 		&cmper->l3instrclkctrl,
204 		&cmper->l4hsclkctrl,
205 		&cmwkup->wkgpio0clkctrl,
206 		&cmwkup->wkctrlclkctrl,
207 		&cmper->timer2clkctrl,
208 		&cmper->gpmcclkctrl,
209 		&cmper->elmclkctrl,
210 		&cmper->mmc0clkctrl,
211 		&cmper->mmc1clkctrl,
212 		&cmwkup->wkup_i2c0ctrl,
213 		&cmper->gpio1clkctrl,
214 		&cmper->gpio2clkctrl,
215 		&cmper->gpio3clkctrl,
216 		&cmper->i2c1clkctrl,
217 		&cmper->cpgmac0clkctrl,
218 		&cmper->spi0clkctrl,
219 		&cmrtc->rtcclkctrl,
220 		&cmper->usb0clkctrl,
221 		&cmper->emiffwclkctrl,
222 		&cmper->emifclkctrl,
223 		0
224 	};
225 
226 	do_enable_clocks(clk_domains, clk_modules_explicit_en, 1);
227 
228 	/* Select the Master osc 24 MHZ as Timer2 clock source */
229 	writel(0x1, &cmdpll->clktimer2clk);
230 }
231 
232 /*
233  * Enable Spread Spectrum for the MPU by calculating the required
234  * values and setting the registers accordingly.
235  * @param permille The spreading in permille (10th of a percent)
236  */
237 void set_mpu_spreadspectrum(int permille)
238 {
239 	u32 multiplier_m;
240 	u32 predivider_n;
241 	u32 cm_clksel_dpll_mpu;
242 	u32 cm_clkmode_dpll_mpu;
243 	u32 ref_clock;
244 	u32 pll_bandwidth;
245 	u32 mod_freq_divider;
246 	u32 exponent;
247 	u32 mantissa;
248 	u32 delta_m_step;
249 
250 	printf("Enabling Spread Spectrum of %d permille for MPU\n",
251 	       permille);
252 
253 	/* Read PLL parameter m and n */
254 	cm_clksel_dpll_mpu = readl(&cmwkup->clkseldpllmpu);
255 	multiplier_m = (cm_clksel_dpll_mpu >> 8) & 0x3FF;
256 	predivider_n = cm_clksel_dpll_mpu & 0x7F;
257 
258 	/*
259 	 * Calculate reference clock (clock after pre-divider),
260 	 * its max. PLL bandwidth,
261 	 * and resulting mod_freq_divider
262 	 */
263 	ref_clock = V_OSCK / (predivider_n + 1);
264 	pll_bandwidth = ref_clock / 70;
265 	mod_freq_divider = ref_clock / (4 * pll_bandwidth);
266 
267 	/* Calculate Mantissa/Exponent */
268 	exponent = 0;
269 	mantissa = mod_freq_divider;
270 	while ((mantissa > 127) && (exponent < 7)) {
271 		exponent++;
272 		mantissa /= 2;
273 	}
274 	if (mantissa > 127)
275 		mantissa = 127;
276 
277 	mod_freq_divider = mantissa << exponent;
278 
279 	/*
280 	 * Calculate Modulation steps
281 	 * As we use Downspread only, the spread is twice the value of
282 	 * permille, so Div2!
283 	 * As it takes the value in percent, divide by ten!
284 	 */
285 	delta_m_step = ((u32)((multiplier_m * permille) / 10 / 2)) << 18;
286 	delta_m_step /= 100;
287 	delta_m_step /= mod_freq_divider;
288 	if (delta_m_step > 0xFFFFF)
289 		delta_m_step = 0xFFFFF;
290 
291 	/* Setup Spread Spectrum */
292 	writel(delta_m_step, &cmwkup->sscdeltamstepdllmpu);
293 	writel((exponent << 8) | mantissa, &cmwkup->sscmodfreqdivdpllmpu);
294 	cm_clkmode_dpll_mpu = readl(&cmwkup->clkmoddpllmpu);
295 	/* clear all SSC flags */
296 	cm_clkmode_dpll_mpu &= ~(0xF << CM_CLKMODE_DPLL_SSC_EN_SHIFT);
297 	/* enable SSC with Downspread only */
298 	cm_clkmode_dpll_mpu |=  CM_CLKMODE_DPLL_SSC_EN_MASK |
299 				CM_CLKMODE_DPLL_SSC_DOWNSPREAD_MASK;
300 	writel(cm_clkmode_dpll_mpu, &cmwkup->clkmoddpllmpu);
301 	while (!(readl(&cmwkup->clkmoddpllmpu) & 0x2000))
302 		;
303 }
304