xref: /openbmc/u-boot/arch/arm/mach-mvebu/cpu.c (revision b322c83aa47f2fcf1af73a4f686ce4478fca19e3)
1 /*
2  * Copyright (C) 2014-2015 Stefan Roese <sr@denx.de>
3  *
4  * SPDX-License-Identifier:	GPL-2.0+
5  */
6 
7 #include <common.h>
8 #include <ahci.h>
9 #include <linux/mbus.h>
10 #include <asm/io.h>
11 #include <asm/pl310.h>
12 #include <asm/arch/cpu.h>
13 #include <asm/arch/soc.h>
14 #include <sdhci.h>
15 
16 #define DDR_BASE_CS_OFF(n)	(0x0000 + ((n) << 3))
17 #define DDR_SIZE_CS_OFF(n)	(0x0004 + ((n) << 3))
18 
19 static struct mbus_win windows[] = {
20 	/* SPI */
21 	{ MBUS_SPI_BASE, MBUS_SPI_SIZE,
22 	  CPU_TARGET_DEVICEBUS_BOOTROM_SPI, CPU_ATTR_SPIFLASH },
23 
24 	/* NOR */
25 	{ MBUS_BOOTROM_BASE, MBUS_BOOTROM_SIZE,
26 	  CPU_TARGET_DEVICEBUS_BOOTROM_SPI, CPU_ATTR_BOOTROM },
27 };
28 
29 void lowlevel_init(void)
30 {
31 	/*
32 	 * Dummy implementation, we only need LOWLEVEL_INIT
33 	 * on Armada to configure CP15 in start.S / cpu_init_cp15()
34 	 */
35 }
36 
37 void reset_cpu(unsigned long ignored)
38 {
39 	struct mvebu_system_registers *reg =
40 		(struct mvebu_system_registers *)MVEBU_SYSTEM_REG_BASE;
41 
42 	writel(readl(&reg->rstoutn_mask) | 1, &reg->rstoutn_mask);
43 	writel(readl(&reg->sys_soft_rst) | 1, &reg->sys_soft_rst);
44 	while (1)
45 		;
46 }
47 
48 int mvebu_soc_family(void)
49 {
50 	u16 devid = (readl(MVEBU_REG_PCIE_DEVID) >> 16) & 0xffff;
51 
52 	if ((devid == SOC_MV78260_ID) || (devid == SOC_MV78460_ID))
53 		return MVEBU_SOC_AXP;
54 
55 	if (devid == SOC_88F6810_ID || devid == SOC_88F6820_ID ||
56 	    devid == SOC_88F6828_ID)
57 		return MVEBU_SOC_A38X;
58 
59 	return MVEBU_SOC_UNKNOWN;
60 }
61 
62 #if defined(CONFIG_DISPLAY_CPUINFO)
63 
64 #if defined(CONFIG_ARMADA_38X)
65 /* SAR values for Armada 38x */
66 #define CONFIG_SAR_REG		(MVEBU_REGISTER(0x18600))
67 #define SAR_CPU_FREQ_OFFS	10
68 #define SAR_CPU_FREQ_MASK	(0x1f << SAR_CPU_FREQ_OFFS)
69 
70 struct sar_freq_modes sar_freq_tab[] = {
71 	{  0x0,  0x0,  666, 333, 333 },
72 	{  0x2,  0x0,  800, 400, 400 },
73 	{  0x4,  0x0, 1066, 533, 533 },
74 	{  0x6,  0x0, 1200, 600, 600 },
75 	{  0x8,  0x0, 1332, 666, 666 },
76 	{  0xc,  0x0, 1600, 800, 800 },
77 	{ 0xff, 0xff,    0,   0,   0 }	/* 0xff marks end of array */
78 };
79 #else
80 /* SAR values for Armada XP */
81 #define CONFIG_SAR_REG		(MVEBU_REGISTER(0x18230))
82 #define CONFIG_SAR2_REG		(MVEBU_REGISTER(0x18234))
83 #define SAR_CPU_FREQ_OFFS	21
84 #define SAR_CPU_FREQ_MASK	(0x7 << SAR_CPU_FREQ_OFFS)
85 #define SAR_FFC_FREQ_OFFS	24
86 #define SAR_FFC_FREQ_MASK	(0xf << SAR_FFC_FREQ_OFFS)
87 #define SAR2_CPU_FREQ_OFFS	20
88 #define SAR2_CPU_FREQ_MASK	(0x1 << SAR2_CPU_FREQ_OFFS)
89 
90 struct sar_freq_modes sar_freq_tab[] = {
91 	{  0xa,  0x5,  800, 400, 400 },
92 	{  0x1,  0x5, 1066, 533, 533 },
93 	{  0x2,  0x5, 1200, 600, 600 },
94 	{  0x2,  0x9, 1200, 600, 400 },
95 	{  0x3,  0x5, 1333, 667, 667 },
96 	{  0x4,  0x5, 1500, 750, 750 },
97 	{  0x4,  0x9, 1500, 750, 500 },
98 	{  0xb,  0x9, 1600, 800, 533 },
99 	{  0xb,  0xa, 1600, 800, 640 },
100 	{  0xb,  0x5, 1600, 800, 800 },
101 	{ 0xff, 0xff,    0,   0,   0 }	/* 0xff marks end of array */
102 };
103 #endif
104 
105 void get_sar_freq(struct sar_freq_modes *sar_freq)
106 {
107 	u32 val;
108 	u32 freq;
109 	int i;
110 
111 	val = readl(CONFIG_SAR_REG);	/* SAR - Sample At Reset */
112 	freq = (val & SAR_CPU_FREQ_MASK) >> SAR_CPU_FREQ_OFFS;
113 #if !defined(CONFIG_ARMADA_38X)
114 	/*
115 	 * Shift CPU0 clock frequency select bit from SAR2 register
116 	 * into correct position
117 	 */
118 	freq |= ((readl(CONFIG_SAR2_REG) & SAR2_CPU_FREQ_MASK)
119 		 >> SAR2_CPU_FREQ_OFFS) << 3;
120 #endif
121 	for (i = 0; sar_freq_tab[i].val != 0xff; i++) {
122 		if (sar_freq_tab[i].val == freq) {
123 #if defined(CONFIG_ARMADA_38X)
124 			*sar_freq = sar_freq_tab[i];
125 			return;
126 #else
127 			int k;
128 			u8 ffc;
129 
130 			ffc = (val & SAR_FFC_FREQ_MASK) >>
131 				SAR_FFC_FREQ_OFFS;
132 			for (k = i; sar_freq_tab[k].ffc != 0xff; k++) {
133 				if (sar_freq_tab[k].ffc == ffc) {
134 					*sar_freq = sar_freq_tab[k];
135 					return;
136 				}
137 			}
138 			i = k;
139 #endif
140 		}
141 	}
142 
143 	/* SAR value not found, return 0 for frequencies */
144 	*sar_freq = sar_freq_tab[i - 1];
145 }
146 
147 int print_cpuinfo(void)
148 {
149 	u16 devid = (readl(MVEBU_REG_PCIE_DEVID) >> 16) & 0xffff;
150 	u8 revid = readl(MVEBU_REG_PCIE_REVID) & 0xff;
151 	struct sar_freq_modes sar_freq;
152 
153 	puts("SoC:   ");
154 
155 	switch (devid) {
156 	case SOC_MV78260_ID:
157 		puts("MV78260-");
158 		break;
159 	case SOC_MV78460_ID:
160 		puts("MV78460-");
161 		break;
162 	case SOC_88F6810_ID:
163 		puts("MV88F6810-");
164 		break;
165 	case SOC_88F6820_ID:
166 		puts("MV88F6820-");
167 		break;
168 	case SOC_88F6828_ID:
169 		puts("MV88F6828-");
170 		break;
171 	default:
172 		puts("Unknown-");
173 		break;
174 	}
175 
176 	if (mvebu_soc_family() == MVEBU_SOC_AXP) {
177 		switch (revid) {
178 		case 1:
179 			puts("A0");
180 			break;
181 		case 2:
182 			puts("B0");
183 			break;
184 		default:
185 			printf("?? (%x)", revid);
186 			break;
187 		}
188 	}
189 
190 	if (mvebu_soc_family() == MVEBU_SOC_A38X) {
191 		switch (revid) {
192 		case MV_88F68XX_Z1_ID:
193 			puts("Z1");
194 			break;
195 		case MV_88F68XX_A0_ID:
196 			puts("A0");
197 			break;
198 		default:
199 			printf("?? (%x)", revid);
200 			break;
201 		}
202 	}
203 
204 	get_sar_freq(&sar_freq);
205 	printf(" at %d MHz\n", sar_freq.p_clk);
206 
207 	return 0;
208 }
209 #endif /* CONFIG_DISPLAY_CPUINFO */
210 
211 /*
212  * This function initialize Controller DRAM Fastpath windows.
213  * It takes the CS size information from the 0x1500 scratch registers
214  * and sets the correct windows sizes and base addresses accordingly.
215  *
216  * These values are set in the scratch registers by the Marvell
217  * DDR3 training code, which is executed by the BootROM before the
218  * main payload (U-Boot) is executed. This training code is currently
219  * only available in the Marvell U-Boot version. It needs to be
220  * ported to mainline U-Boot SPL at some point.
221  */
222 static void update_sdram_window_sizes(void)
223 {
224 	u64 base = 0;
225 	u32 size, temp;
226 	int i;
227 
228 	for (i = 0; i < SDRAM_MAX_CS; i++) {
229 		size = readl((MVEBU_SDRAM_SCRATCH + (i * 8))) & SDRAM_ADDR_MASK;
230 		if (size != 0) {
231 			size |= ~(SDRAM_ADDR_MASK);
232 
233 			/* Set Base Address */
234 			temp = (base & 0xFF000000ll) | ((base >> 32) & 0xF);
235 			writel(temp, MVEBU_SDRAM_BASE + DDR_BASE_CS_OFF(i));
236 
237 			/*
238 			 * Check if out of max window size and resize
239 			 * the window
240 			 */
241 			temp = (readl(MVEBU_SDRAM_BASE + DDR_SIZE_CS_OFF(i)) &
242 				~(SDRAM_ADDR_MASK)) | 1;
243 			temp |= (size & SDRAM_ADDR_MASK);
244 			writel(temp, MVEBU_SDRAM_BASE + DDR_SIZE_CS_OFF(i));
245 
246 			base += ((u64)size + 1);
247 		} else {
248 			/*
249 			 * Disable window if not used, otherwise this
250 			 * leads to overlapping enabled windows with
251 			 * pretty strange results
252 			 */
253 			clrbits_le32(MVEBU_SDRAM_BASE + DDR_SIZE_CS_OFF(i), 1);
254 		}
255 	}
256 }
257 
258 void mmu_disable(void)
259 {
260 	asm volatile(
261 		"mrc p15, 0, r0, c1, c0, 0\n"
262 		"bic r0, #1\n"
263 		"mcr p15, 0, r0, c1, c0, 0\n");
264 }
265 
266 #ifdef CONFIG_ARCH_CPU_INIT
267 static void set_cbar(u32 addr)
268 {
269 	asm("mcr p15, 4, %0, c15, c0" : : "r" (addr));
270 }
271 
272 #define MV_USB_PHY_BASE			(MVEBU_AXP_USB_BASE + 0x800)
273 #define MV_USB_PHY_PLL_REG(reg)		(MV_USB_PHY_BASE | (((reg) & 0xF) << 2))
274 #define MV_USB_X3_BASE(addr)		(MVEBU_AXP_USB_BASE | BIT(11) | \
275 					 (((addr) & 0xF) << 6))
276 #define MV_USB_X3_PHY_CHANNEL(dev, reg)	(MV_USB_X3_BASE((dev) + 1) |	\
277 					 (((reg) & 0xF) << 2))
278 
279 static void setup_usb_phys(void)
280 {
281 	int dev;
282 
283 	/*
284 	 * USB PLL init
285 	 */
286 
287 	/* Setup PLL frequency */
288 	/* USB REF frequency = 25 MHz */
289 	clrsetbits_le32(MV_USB_PHY_PLL_REG(1), 0x3ff, 0x605);
290 
291 	/* Power up PLL and PHY channel */
292 	setbits_le32(MV_USB_PHY_PLL_REG(2), BIT(9));
293 
294 	/* Assert VCOCAL_START */
295 	setbits_le32(MV_USB_PHY_PLL_REG(1), BIT(21));
296 
297 	mdelay(1);
298 
299 	/*
300 	 * USB PHY init (change from defaults) specific for 40nm (78X30 78X60)
301 	 */
302 
303 	for (dev = 0; dev < 3; dev++) {
304 		setbits_le32(MV_USB_X3_PHY_CHANNEL(dev, 3), BIT(15));
305 
306 		/* Assert REG_RCAL_START in channel REG 1 */
307 		setbits_le32(MV_USB_X3_PHY_CHANNEL(dev, 1), BIT(12));
308 		udelay(40);
309 		clrbits_le32(MV_USB_X3_PHY_CHANNEL(dev, 1), BIT(12));
310 	}
311 }
312 
313 /*
314  * This function is not called from the SPL U-Boot version
315  */
316 int arch_cpu_init(void)
317 {
318 	struct pl310_regs *const pl310 =
319 		(struct pl310_regs *)CONFIG_SYS_PL310_BASE;
320 
321 	/*
322 	 * Only with disabled MMU its possible to switch the base
323 	 * register address on Armada 38x. Without this the SDRAM
324 	 * located at >= 0x4000.0000 is also not accessible, as its
325 	 * still locked to cache.
326 	 */
327 	mmu_disable();
328 
329 	/* Linux expects the internal registers to be at 0xf1000000 */
330 	writel(SOC_REGS_PHY_BASE, INTREG_BASE_ADDR_REG);
331 	set_cbar(SOC_REGS_PHY_BASE + 0xC000);
332 
333 	/*
334 	 * From this stage on, the SoC detection is working. As we have
335 	 * configured the internal register base to the value used
336 	 * in the macros / defines in the U-Boot header (soc.h).
337 	 */
338 
339 	if (mvebu_soc_family() == MVEBU_SOC_A38X) {
340 		/*
341 		 * To fully release / unlock this area from cache, we need
342 		 * to flush all caches and disable the L2 cache.
343 		 */
344 		icache_disable();
345 		dcache_disable();
346 		clrbits_le32(&pl310->pl310_ctrl, L2X0_CTRL_EN);
347 	}
348 
349 	/*
350 	 * We need to call mvebu_mbus_probe() before calling
351 	 * update_sdram_window_sizes() as it disables all previously
352 	 * configured mbus windows and then configures them as
353 	 * required for U-Boot. Calling update_sdram_window_sizes()
354 	 * without this configuration will not work, as the internal
355 	 * registers can't be accessed reliably because of potenial
356 	 * double mapping.
357 	 * After updating the SDRAM access windows we need to call
358 	 * mvebu_mbus_probe() again, as this now correctly configures
359 	 * the SDRAM areas that are later used by the MVEBU drivers
360 	 * (e.g. USB, NETA).
361 	 */
362 
363 	/*
364 	 * First disable all windows
365 	 */
366 	mvebu_mbus_probe(NULL, 0);
367 
368 	if (mvebu_soc_family() == MVEBU_SOC_AXP) {
369 		/*
370 		 * Now the SDRAM access windows can be reconfigured using
371 		 * the information in the SDRAM scratch pad registers
372 		 */
373 		update_sdram_window_sizes();
374 	}
375 
376 	/*
377 	 * Finally the mbus windows can be configured with the
378 	 * updated SDRAM sizes
379 	 */
380 	mvebu_mbus_probe(windows, ARRAY_SIZE(windows));
381 
382 	if (mvebu_soc_family() == MVEBU_SOC_AXP) {
383 		/* Enable GBE0, GBE1, LCD and NFC PUP */
384 		clrsetbits_le32(ARMADA_XP_PUP_ENABLE, 0,
385 				GE0_PUP_EN | GE1_PUP_EN | LCD_PUP_EN |
386 				NAND_PUP_EN | SPI_PUP_EN);
387 
388 		/* Configure USB PLL and PHYs on AXP */
389 		setup_usb_phys();
390 	}
391 
392 	/* Enable NAND and NAND arbiter */
393 	clrsetbits_le32(MVEBU_SOC_DEV_MUX_REG, 0, NAND_EN | NAND_ARBITER_EN);
394 
395 	/* Disable MBUS error propagation */
396 	clrsetbits_le32(SOC_COHERENCY_FABRIC_CTRL_REG, MBUS_ERR_PROP_EN, 0);
397 
398 	return 0;
399 }
400 #endif /* CONFIG_ARCH_CPU_INIT */
401 
402 u32 mvebu_get_nand_clock(void)
403 {
404 	return CONFIG_SYS_MVEBU_PLL_CLOCK /
405 		((readl(MVEBU_CORE_DIV_CLK_CTRL(1)) &
406 		  NAND_ECC_DIVCKL_RATIO_MASK) >> NAND_ECC_DIVCKL_RATIO_OFFS);
407 }
408 
409 /*
410  * SOC specific misc init
411  */
412 #if defined(CONFIG_ARCH_MISC_INIT)
413 int arch_misc_init(void)
414 {
415 	/* Nothing yet, perhaps we need something here later */
416 	return 0;
417 }
418 #endif /* CONFIG_ARCH_MISC_INIT */
419 
420 #ifdef CONFIG_MV_SDHCI
421 int board_mmc_init(bd_t *bis)
422 {
423 	mv_sdh_init(MVEBU_SDIO_BASE, 0, 0,
424 		    SDHCI_QUIRK_32BIT_DMA_ADDR | SDHCI_QUIRK_WAIT_SEND_CMD);
425 
426 	return 0;
427 }
428 #endif
429 
430 #ifdef CONFIG_SCSI_AHCI_PLAT
431 #define AHCI_VENDOR_SPECIFIC_0_ADDR	0xa0
432 #define AHCI_VENDOR_SPECIFIC_0_DATA	0xa4
433 
434 #define AHCI_WINDOW_CTRL(win)		(0x60 + ((win) << 4))
435 #define AHCI_WINDOW_BASE(win)		(0x64 + ((win) << 4))
436 #define AHCI_WINDOW_SIZE(win)		(0x68 + ((win) << 4))
437 
438 static void ahci_mvebu_mbus_config(void __iomem *base)
439 {
440 	const struct mbus_dram_target_info *dram;
441 	int i;
442 
443 	dram = mvebu_mbus_dram_info();
444 
445 	for (i = 0; i < 4; i++) {
446 		writel(0, base + AHCI_WINDOW_CTRL(i));
447 		writel(0, base + AHCI_WINDOW_BASE(i));
448 		writel(0, base + AHCI_WINDOW_SIZE(i));
449 	}
450 
451 	for (i = 0; i < dram->num_cs; i++) {
452 		const struct mbus_dram_window *cs = dram->cs + i;
453 
454 		writel((cs->mbus_attr << 8) |
455 		       (dram->mbus_dram_target_id << 4) | 1,
456 		       base + AHCI_WINDOW_CTRL(i));
457 		writel(cs->base >> 16, base + AHCI_WINDOW_BASE(i));
458 		writel(((cs->size - 1) & 0xffff0000),
459 		       base + AHCI_WINDOW_SIZE(i));
460 	}
461 }
462 
463 static void ahci_mvebu_regret_option(void __iomem *base)
464 {
465 	/*
466 	 * Enable the regret bit to allow the SATA unit to regret a
467 	 * request that didn't receive an acknowlegde and avoid a
468 	 * deadlock
469 	 */
470 	writel(0x4, base + AHCI_VENDOR_SPECIFIC_0_ADDR);
471 	writel(0x80, base + AHCI_VENDOR_SPECIFIC_0_DATA);
472 }
473 
474 void scsi_init(void)
475 {
476 	printf("MVEBU SATA INIT\n");
477 	ahci_mvebu_mbus_config((void __iomem *)MVEBU_SATA0_BASE);
478 	ahci_mvebu_regret_option((void __iomem *)MVEBU_SATA0_BASE);
479 	ahci_init((void __iomem *)MVEBU_SATA0_BASE);
480 }
481 #endif
482 
483 void enable_caches(void)
484 {
485 	/* Avoid problem with e.g. neta ethernet driver */
486 	invalidate_dcache_all();
487 
488 	/* Enable D-cache. I-cache is already enabled in start.S */
489 	dcache_enable();
490 }
491 
492 void v7_outer_cache_enable(void)
493 {
494 	if (mvebu_soc_family() == MVEBU_SOC_AXP) {
495 		struct pl310_regs *const pl310 =
496 			(struct pl310_regs *)CONFIG_SYS_PL310_BASE;
497 		u32 u;
498 
499 		/* The L2 cache is already disabled at this point */
500 
501 		/*
502 		 * For Aurora cache in no outer mode, enable via the CP15
503 		 * coprocessor broadcasting of cache commands to L2.
504 		 */
505 		asm volatile("mrc p15, 1, %0, c15, c2, 0" : "=r" (u));
506 		u |= BIT(8);		/* Set the FW bit */
507 		asm volatile("mcr p15, 1, %0, c15, c2, 0" : : "r" (u));
508 
509 		isb();
510 
511 		/* Enable the L2 cache */
512 		setbits_le32(&pl310->pl310_ctrl, L2X0_CTRL_EN);
513 	}
514 }
515 
516 void v7_outer_cache_disable(void)
517 {
518 	struct pl310_regs *const pl310 =
519 		(struct pl310_regs *)CONFIG_SYS_PL310_BASE;
520 
521 	clrbits_le32(&pl310->pl310_ctrl, L2X0_CTRL_EN);
522 }
523