xref: /openbmc/u-boot/arch/arm/cpu/arm926ejs/mxs/spl_power_init.c (revision 64bd89e43778b488763f67fbb6bf79fc973e2892)
1 /*
2  * Freescale i.MX28 Boot PMIC init
3  *
4  * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
5  * on behalf of DENX Software Engineering GmbH
6  *
7  * SPDX-License-Identifier:	GPL-2.0+
8  */
9 
10 #include <common.h>
11 #include <config.h>
12 #include <asm/io.h>
13 #include <asm/arch/imx-regs.h>
14 
15 #include "mxs_init.h"
16 
17 /**
18  * mxs_power_clock2xtal() - Switch CPU core clock source to 24MHz XTAL
19  *
20  * This function switches the CPU core clock from PLL to 24MHz XTAL
21  * oscilator. This is necessary if the PLL is being reconfigured to
22  * prevent crash of the CPU core.
23  */
24 static void mxs_power_clock2xtal(void)
25 {
26 	struct mxs_clkctrl_regs *clkctrl_regs =
27 		(struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
28 
29 	/* Set XTAL as CPU reference clock */
30 	writel(CLKCTRL_CLKSEQ_BYPASS_CPU,
31 		&clkctrl_regs->hw_clkctrl_clkseq_set);
32 }
33 
34 /**
35  * mxs_power_clock2pll() - Switch CPU core clock source to PLL
36  *
37  * This function switches the CPU core clock from 24MHz XTAL oscilator
38  * to PLL. This can only be called once the PLL has re-locked and once
39  * the PLL is stable after reconfiguration.
40  */
41 static void mxs_power_clock2pll(void)
42 {
43 	struct mxs_clkctrl_regs *clkctrl_regs =
44 		(struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
45 
46 	setbits_le32(&clkctrl_regs->hw_clkctrl_pll0ctrl0,
47 			CLKCTRL_PLL0CTRL0_POWER);
48 	early_delay(100);
49 	setbits_le32(&clkctrl_regs->hw_clkctrl_clkseq,
50 			CLKCTRL_CLKSEQ_BYPASS_CPU);
51 }
52 
53 /**
54  * mxs_power_set_auto_restart() - Set the auto-restart bit
55  *
56  * This function ungates the RTC block and sets the AUTO_RESTART
57  * bit to work around a design bug on MX28EVK Rev. A .
58  */
59 
60 static void mxs_power_set_auto_restart(void)
61 {
62 	struct mxs_rtc_regs *rtc_regs =
63 		(struct mxs_rtc_regs *)MXS_RTC_BASE;
64 
65 	writel(RTC_CTRL_SFTRST, &rtc_regs->hw_rtc_ctrl_clr);
66 	while (readl(&rtc_regs->hw_rtc_ctrl) & RTC_CTRL_SFTRST)
67 		;
68 
69 	writel(RTC_CTRL_CLKGATE, &rtc_regs->hw_rtc_ctrl_clr);
70 	while (readl(&rtc_regs->hw_rtc_ctrl) & RTC_CTRL_CLKGATE)
71 		;
72 
73 	/* Do nothing if flag already set */
74 	if (readl(&rtc_regs->hw_rtc_persistent0) & RTC_PERSISTENT0_AUTO_RESTART)
75 		return;
76 
77 	while (readl(&rtc_regs->hw_rtc_stat) & RTC_STAT_NEW_REGS_MASK)
78 		;
79 
80 	setbits_le32(&rtc_regs->hw_rtc_persistent0,
81 			RTC_PERSISTENT0_AUTO_RESTART);
82 	writel(RTC_CTRL_FORCE_UPDATE, &rtc_regs->hw_rtc_ctrl_set);
83 	writel(RTC_CTRL_FORCE_UPDATE, &rtc_regs->hw_rtc_ctrl_clr);
84 	while (readl(&rtc_regs->hw_rtc_stat) & RTC_STAT_NEW_REGS_MASK)
85 		;
86 	while (readl(&rtc_regs->hw_rtc_stat) & RTC_STAT_STALE_REGS_MASK)
87 		;
88 }
89 
90 /**
91  * mxs_power_set_linreg() - Set linear regulators 25mV below DC-DC converter
92  *
93  * This function configures the VDDIO, VDDA and VDDD linear regulators output
94  * to be 25mV below the VDDIO, VDDA and VDDD output from the DC-DC switching
95  * converter. This is the recommended setting for the case where we use both
96  * linear regulators and DC-DC converter to power the VDDIO rail.
97  */
98 static void mxs_power_set_linreg(void)
99 {
100 	struct mxs_power_regs *power_regs =
101 		(struct mxs_power_regs *)MXS_POWER_BASE;
102 
103 	/* Set linear regulator 25mV below switching converter */
104 	clrsetbits_le32(&power_regs->hw_power_vdddctrl,
105 			POWER_VDDDCTRL_LINREG_OFFSET_MASK,
106 			POWER_VDDDCTRL_LINREG_OFFSET_1STEPS_BELOW);
107 
108 	clrsetbits_le32(&power_regs->hw_power_vddactrl,
109 			POWER_VDDACTRL_LINREG_OFFSET_MASK,
110 			POWER_VDDACTRL_LINREG_OFFSET_1STEPS_BELOW);
111 
112 	clrsetbits_le32(&power_regs->hw_power_vddioctrl,
113 			POWER_VDDIOCTRL_LINREG_OFFSET_MASK,
114 			POWER_VDDIOCTRL_LINREG_OFFSET_1STEPS_BELOW);
115 }
116 
117 /**
118  * mxs_get_batt_volt() - Measure battery input voltage
119  *
120  * This function retrieves the battery input voltage and returns it.
121  */
122 static int mxs_get_batt_volt(void)
123 {
124 	struct mxs_power_regs *power_regs =
125 		(struct mxs_power_regs *)MXS_POWER_BASE;
126 	uint32_t volt = readl(&power_regs->hw_power_battmonitor);
127 	volt &= POWER_BATTMONITOR_BATT_VAL_MASK;
128 	volt >>= POWER_BATTMONITOR_BATT_VAL_OFFSET;
129 	volt *= 8;
130 	return volt;
131 }
132 
133 /**
134  * mxs_is_batt_ready() - Test if the battery provides enough voltage to boot
135  *
136  * This function checks if the battery input voltage is higher than 3.6V and
137  * therefore allows the system to successfully boot using this power source.
138  */
139 static int mxs_is_batt_ready(void)
140 {
141 	return (mxs_get_batt_volt() >= 3600);
142 }
143 
144 /**
145  * mxs_is_batt_good() - Test if battery is operational at all
146  *
147  * This function starts recharging the battery and tests if the input current
148  * provided by the 5V input recharging the battery is also sufficient to power
149  * the DC-DC converter.
150  */
151 static int mxs_is_batt_good(void)
152 {
153 	struct mxs_power_regs *power_regs =
154 		(struct mxs_power_regs *)MXS_POWER_BASE;
155 	uint32_t volt = mxs_get_batt_volt();
156 
157 	if ((volt >= 2400) && (volt <= 4300))
158 		return 1;
159 
160 	clrsetbits_le32(&power_regs->hw_power_5vctrl,
161 		POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK,
162 		0x3 << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET);
163 	writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK,
164 		&power_regs->hw_power_5vctrl_clr);
165 
166 	clrsetbits_le32(&power_regs->hw_power_charge,
167 		POWER_CHARGE_STOP_ILIMIT_MASK | POWER_CHARGE_BATTCHRG_I_MASK,
168 		POWER_CHARGE_STOP_ILIMIT_10MA | 0x3);
169 
170 	writel(POWER_CHARGE_PWD_BATTCHRG, &power_regs->hw_power_charge_clr);
171 	writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK,
172 		&power_regs->hw_power_5vctrl_clr);
173 
174 	early_delay(500000);
175 
176 	volt = mxs_get_batt_volt();
177 
178 	if (volt >= 3500)
179 		return 0;
180 
181 	if (volt >= 2400)
182 		return 1;
183 
184 	writel(POWER_CHARGE_STOP_ILIMIT_MASK | POWER_CHARGE_BATTCHRG_I_MASK,
185 		&power_regs->hw_power_charge_clr);
186 	writel(POWER_CHARGE_PWD_BATTCHRG, &power_regs->hw_power_charge_set);
187 
188 	return 0;
189 }
190 
191 /**
192  * mxs_power_setup_5v_detect() - Start the 5V input detection comparator
193  *
194  * This function enables the 5V detection comparator and sets the 5V valid
195  * threshold to 4.4V . We use 4.4V threshold here to make sure that even
196  * under high load, the voltage drop on the 5V input won't be so critical
197  * to cause undervolt on the 4P2 linear regulator supplying the DC-DC
198  * converter and thus making the system crash.
199  */
200 static void mxs_power_setup_5v_detect(void)
201 {
202 	struct mxs_power_regs *power_regs =
203 		(struct mxs_power_regs *)MXS_POWER_BASE;
204 
205 	/* Start 5V detection */
206 	clrsetbits_le32(&power_regs->hw_power_5vctrl,
207 			POWER_5VCTRL_VBUSVALID_TRSH_MASK,
208 			POWER_5VCTRL_VBUSVALID_TRSH_4V4 |
209 			POWER_5VCTRL_PWRUP_VBUS_CMPS);
210 }
211 
212 /**
213  * mxs_src_power_init() - Preconfigure the power block
214  *
215  * This function configures reasonable values for the DC-DC control loop
216  * and battery monitor.
217  */
218 static void mxs_src_power_init(void)
219 {
220 	struct mxs_power_regs *power_regs =
221 		(struct mxs_power_regs *)MXS_POWER_BASE;
222 
223 	/* Improve efficieny and reduce transient ripple */
224 	writel(POWER_LOOPCTRL_TOGGLE_DIF | POWER_LOOPCTRL_EN_CM_HYST |
225 		POWER_LOOPCTRL_EN_DF_HYST, &power_regs->hw_power_loopctrl_set);
226 
227 	clrsetbits_le32(&power_regs->hw_power_dclimits,
228 			POWER_DCLIMITS_POSLIMIT_BUCK_MASK,
229 			0x30 << POWER_DCLIMITS_POSLIMIT_BUCK_OFFSET);
230 
231 	setbits_le32(&power_regs->hw_power_battmonitor,
232 			POWER_BATTMONITOR_EN_BATADJ);
233 
234 	/* Increase the RCSCALE level for quick DCDC response to dynamic load */
235 	clrsetbits_le32(&power_regs->hw_power_loopctrl,
236 			POWER_LOOPCTRL_EN_RCSCALE_MASK,
237 			POWER_LOOPCTRL_RCSCALE_THRESH |
238 			POWER_LOOPCTRL_EN_RCSCALE_8X);
239 
240 	clrsetbits_le32(&power_regs->hw_power_minpwr,
241 			POWER_MINPWR_HALFFETS, POWER_MINPWR_DOUBLE_FETS);
242 
243 	/* 5V to battery handoff ... FIXME */
244 	setbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER);
245 	early_delay(30);
246 	clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER);
247 }
248 
249 /**
250  * mxs_power_init_4p2_params() - Configure the parameters of the 4P2 regulator
251  *
252  * This function configures the necessary parameters for the 4P2 linear
253  * regulator to supply the DC-DC converter from 5V input.
254  */
255 static void mxs_power_init_4p2_params(void)
256 {
257 	struct mxs_power_regs *power_regs =
258 		(struct mxs_power_regs *)MXS_POWER_BASE;
259 
260 	/* Setup 4P2 parameters */
261 	clrsetbits_le32(&power_regs->hw_power_dcdc4p2,
262 		POWER_DCDC4P2_CMPTRIP_MASK | POWER_DCDC4P2_TRG_MASK,
263 		POWER_DCDC4P2_TRG_4V2 | (31 << POWER_DCDC4P2_CMPTRIP_OFFSET));
264 
265 	clrsetbits_le32(&power_regs->hw_power_5vctrl,
266 		POWER_5VCTRL_HEADROOM_ADJ_MASK,
267 		0x4 << POWER_5VCTRL_HEADROOM_ADJ_OFFSET);
268 
269 	clrsetbits_le32(&power_regs->hw_power_dcdc4p2,
270 		POWER_DCDC4P2_DROPOUT_CTRL_MASK,
271 		POWER_DCDC4P2_DROPOUT_CTRL_100MV |
272 		POWER_DCDC4P2_DROPOUT_CTRL_SRC_SEL);
273 
274 	clrsetbits_le32(&power_regs->hw_power_5vctrl,
275 		POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK,
276 		0x3f << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET);
277 }
278 
279 /**
280  * mxs_enable_4p2_dcdc_input() - Enable or disable the DCDC input from 4P2
281  * @xfer:	Select if the input shall be enabled or disabled
282  *
283  * This function enables or disables the 4P2 input into the DC-DC converter.
284  */
285 static void mxs_enable_4p2_dcdc_input(int xfer)
286 {
287 	struct mxs_power_regs *power_regs =
288 		(struct mxs_power_regs *)MXS_POWER_BASE;
289 	uint32_t tmp, vbus_thresh, vbus_5vdetect, pwd_bo;
290 	uint32_t prev_5v_brnout, prev_5v_droop;
291 
292 	prev_5v_brnout = readl(&power_regs->hw_power_5vctrl) &
293 				POWER_5VCTRL_PWDN_5VBRNOUT;
294 	prev_5v_droop = readl(&power_regs->hw_power_ctrl) &
295 				POWER_CTRL_ENIRQ_VDD5V_DROOP;
296 
297 	clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_PWDN_5VBRNOUT);
298 	writel(POWER_RESET_UNLOCK_KEY | POWER_RESET_PWD_OFF,
299 		&power_regs->hw_power_reset);
300 
301 	clrbits_le32(&power_regs->hw_power_ctrl, POWER_CTRL_ENIRQ_VDD5V_DROOP);
302 
303 	if (xfer && (readl(&power_regs->hw_power_5vctrl) &
304 			POWER_5VCTRL_ENABLE_DCDC)) {
305 		return;
306 	}
307 
308 	/*
309 	 * Recording orignal values that will be modified temporarlily
310 	 * to handle a chip bug. See chip errata for CQ ENGR00115837
311 	 */
312 	tmp = readl(&power_regs->hw_power_5vctrl);
313 	vbus_thresh = tmp & POWER_5VCTRL_VBUSVALID_TRSH_MASK;
314 	vbus_5vdetect = tmp & POWER_5VCTRL_VBUSVALID_5VDETECT;
315 
316 	pwd_bo = readl(&power_regs->hw_power_minpwr) & POWER_MINPWR_PWD_BO;
317 
318 	/*
319 	 * Disable mechanisms that get erroneously tripped by when setting
320 	 * the DCDC4P2 EN_DCDC
321 	 */
322 	clrbits_le32(&power_regs->hw_power_5vctrl,
323 		POWER_5VCTRL_VBUSVALID_5VDETECT |
324 		POWER_5VCTRL_VBUSVALID_TRSH_MASK);
325 
326 	writel(POWER_MINPWR_PWD_BO, &power_regs->hw_power_minpwr_set);
327 
328 	if (xfer) {
329 		setbits_le32(&power_regs->hw_power_5vctrl,
330 				POWER_5VCTRL_DCDC_XFER);
331 		early_delay(20);
332 		clrbits_le32(&power_regs->hw_power_5vctrl,
333 				POWER_5VCTRL_DCDC_XFER);
334 
335 		setbits_le32(&power_regs->hw_power_5vctrl,
336 				POWER_5VCTRL_ENABLE_DCDC);
337 	} else {
338 		setbits_le32(&power_regs->hw_power_dcdc4p2,
339 				POWER_DCDC4P2_ENABLE_DCDC);
340 	}
341 
342 	early_delay(25);
343 
344 	clrsetbits_le32(&power_regs->hw_power_5vctrl,
345 			POWER_5VCTRL_VBUSVALID_TRSH_MASK, vbus_thresh);
346 
347 	if (vbus_5vdetect)
348 		writel(vbus_5vdetect, &power_regs->hw_power_5vctrl_set);
349 
350 	if (!pwd_bo)
351 		clrbits_le32(&power_regs->hw_power_minpwr, POWER_MINPWR_PWD_BO);
352 
353 	while (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VBUS_VALID_IRQ)
354 		writel(POWER_CTRL_VBUS_VALID_IRQ,
355 			&power_regs->hw_power_ctrl_clr);
356 
357 	if (prev_5v_brnout) {
358 		writel(POWER_5VCTRL_PWDN_5VBRNOUT,
359 			&power_regs->hw_power_5vctrl_set);
360 		writel(POWER_RESET_UNLOCK_KEY,
361 			&power_regs->hw_power_reset);
362 	} else {
363 		writel(POWER_5VCTRL_PWDN_5VBRNOUT,
364 			&power_regs->hw_power_5vctrl_clr);
365 		writel(POWER_RESET_UNLOCK_KEY | POWER_RESET_PWD_OFF,
366 			&power_regs->hw_power_reset);
367 	}
368 
369 	while (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VDD5V_DROOP_IRQ)
370 		writel(POWER_CTRL_VDD5V_DROOP_IRQ,
371 			&power_regs->hw_power_ctrl_clr);
372 
373 	if (prev_5v_droop)
374 		clrbits_le32(&power_regs->hw_power_ctrl,
375 				POWER_CTRL_ENIRQ_VDD5V_DROOP);
376 	else
377 		setbits_le32(&power_regs->hw_power_ctrl,
378 				POWER_CTRL_ENIRQ_VDD5V_DROOP);
379 }
380 
381 /**
382  * mxs_power_init_4p2_regulator() - Start the 4P2 regulator
383  *
384  * This function enables the 4P2 regulator and switches the DC-DC converter
385  * to use the 4P2 input.
386  */
387 static void mxs_power_init_4p2_regulator(void)
388 {
389 	struct mxs_power_regs *power_regs =
390 		(struct mxs_power_regs *)MXS_POWER_BASE;
391 	uint32_t tmp, tmp2;
392 
393 	setbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_ENABLE_4P2);
394 
395 	writel(POWER_CHARGE_ENABLE_LOAD, &power_regs->hw_power_charge_set);
396 
397 	writel(POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK,
398 		&power_regs->hw_power_5vctrl_clr);
399 	clrbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_TRG_MASK);
400 
401 	/* Power up the 4p2 rail and logic/control */
402 	writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK,
403 		&power_regs->hw_power_5vctrl_clr);
404 
405 	/*
406 	 * Start charging up the 4p2 capacitor. We ramp of this charge
407 	 * gradually to avoid large inrush current from the 5V cable which can
408 	 * cause transients/problems
409 	 */
410 	mxs_enable_4p2_dcdc_input(0);
411 
412 	if (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VBUS_VALID_IRQ) {
413 		/*
414 		 * If we arrived here, we were unable to recover from mx23 chip
415 		 * errata 5837. 4P2 is disabled and sufficient battery power is
416 		 * not present. Exiting to not enable DCDC power during 5V
417 		 * connected state.
418 		 */
419 		clrbits_le32(&power_regs->hw_power_dcdc4p2,
420 			POWER_DCDC4P2_ENABLE_DCDC);
421 		writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK,
422 			&power_regs->hw_power_5vctrl_set);
423 		hang();
424 	}
425 
426 	/*
427 	 * Here we set the 4p2 brownout level to something very close to 4.2V.
428 	 * We then check the brownout status. If the brownout status is false,
429 	 * the voltage is already close to the target voltage of 4.2V so we
430 	 * can go ahead and set the 4P2 current limit to our max target limit.
431 	 * If the brownout status is true, we need to ramp us the current limit
432 	 * so that we don't cause large inrush current issues. We step up the
433 	 * current limit until the brownout status is false or until we've
434 	 * reached our maximum defined 4p2 current limit.
435 	 */
436 	clrsetbits_le32(&power_regs->hw_power_dcdc4p2,
437 			POWER_DCDC4P2_BO_MASK,
438 			22 << POWER_DCDC4P2_BO_OFFSET);	/* 4.15V */
439 
440 	if (!(readl(&power_regs->hw_power_sts) & POWER_STS_DCDC_4P2_BO)) {
441 		setbits_le32(&power_regs->hw_power_5vctrl,
442 			0x3f << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET);
443 	} else {
444 		tmp = (readl(&power_regs->hw_power_5vctrl) &
445 			POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK) >>
446 			POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET;
447 		while (tmp < 0x3f) {
448 			if (!(readl(&power_regs->hw_power_sts) &
449 					POWER_STS_DCDC_4P2_BO)) {
450 				tmp = readl(&power_regs->hw_power_5vctrl);
451 				tmp |= POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK;
452 				early_delay(100);
453 				writel(tmp, &power_regs->hw_power_5vctrl);
454 				break;
455 			} else {
456 				tmp++;
457 				tmp2 = readl(&power_regs->hw_power_5vctrl);
458 				tmp2 &= ~POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK;
459 				tmp2 |= tmp <<
460 					POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET;
461 				writel(tmp2, &power_regs->hw_power_5vctrl);
462 				early_delay(100);
463 			}
464 		}
465 	}
466 
467 	clrbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_BO_MASK);
468 	writel(POWER_CTRL_DCDC4P2_BO_IRQ, &power_regs->hw_power_ctrl_clr);
469 }
470 
471 /**
472  * mxs_power_init_dcdc_4p2_source() - Switch DC-DC converter to 4P2 source
473  *
474  * This function configures the DC-DC converter to be supplied from the 4P2
475  * linear regulator.
476  */
477 static void mxs_power_init_dcdc_4p2_source(void)
478 {
479 	struct mxs_power_regs *power_regs =
480 		(struct mxs_power_regs *)MXS_POWER_BASE;
481 
482 	if (!(readl(&power_regs->hw_power_dcdc4p2) &
483 		POWER_DCDC4P2_ENABLE_DCDC)) {
484 		hang();
485 	}
486 
487 	mxs_enable_4p2_dcdc_input(1);
488 
489 	if (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VBUS_VALID_IRQ) {
490 		clrbits_le32(&power_regs->hw_power_dcdc4p2,
491 			POWER_DCDC4P2_ENABLE_DCDC);
492 		writel(POWER_5VCTRL_ENABLE_DCDC,
493 			&power_regs->hw_power_5vctrl_clr);
494 		writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK,
495 			&power_regs->hw_power_5vctrl_set);
496 	}
497 }
498 
499 /**
500  * mxs_power_enable_4p2() - Power up the 4P2 regulator
501  *
502  * This function drives the process of powering up the 4P2 linear regulator
503  * and switching the DC-DC converter input over to the 4P2 linear regulator.
504  */
505 static void mxs_power_enable_4p2(void)
506 {
507 	struct mxs_power_regs *power_regs =
508 		(struct mxs_power_regs *)MXS_POWER_BASE;
509 	uint32_t vdddctrl, vddactrl, vddioctrl;
510 	uint32_t tmp;
511 
512 	vdddctrl = readl(&power_regs->hw_power_vdddctrl);
513 	vddactrl = readl(&power_regs->hw_power_vddactrl);
514 	vddioctrl = readl(&power_regs->hw_power_vddioctrl);
515 
516 	setbits_le32(&power_regs->hw_power_vdddctrl,
517 		POWER_VDDDCTRL_DISABLE_FET | POWER_VDDDCTRL_ENABLE_LINREG |
518 		POWER_VDDDCTRL_PWDN_BRNOUT);
519 
520 	setbits_le32(&power_regs->hw_power_vddactrl,
521 		POWER_VDDACTRL_DISABLE_FET | POWER_VDDACTRL_ENABLE_LINREG |
522 		POWER_VDDACTRL_PWDN_BRNOUT);
523 
524 	setbits_le32(&power_regs->hw_power_vddioctrl,
525 		POWER_VDDIOCTRL_DISABLE_FET | POWER_VDDIOCTRL_PWDN_BRNOUT);
526 
527 	mxs_power_init_4p2_params();
528 	mxs_power_init_4p2_regulator();
529 
530 	/* Shutdown battery (none present) */
531 	if (!mxs_is_batt_ready()) {
532 		clrbits_le32(&power_regs->hw_power_dcdc4p2,
533 				POWER_DCDC4P2_BO_MASK);
534 		writel(POWER_CTRL_DCDC4P2_BO_IRQ,
535 				&power_regs->hw_power_ctrl_clr);
536 		writel(POWER_CTRL_ENIRQ_DCDC4P2_BO,
537 				&power_regs->hw_power_ctrl_clr);
538 	}
539 
540 	mxs_power_init_dcdc_4p2_source();
541 
542 	writel(vdddctrl, &power_regs->hw_power_vdddctrl);
543 	early_delay(20);
544 	writel(vddactrl, &power_regs->hw_power_vddactrl);
545 	early_delay(20);
546 	writel(vddioctrl, &power_regs->hw_power_vddioctrl);
547 
548 	/*
549 	 * Check if FET is enabled on either powerout and if so,
550 	 * disable load.
551 	 */
552 	tmp = 0;
553 	tmp |= !(readl(&power_regs->hw_power_vdddctrl) &
554 			POWER_VDDDCTRL_DISABLE_FET);
555 	tmp |= !(readl(&power_regs->hw_power_vddactrl) &
556 			POWER_VDDACTRL_DISABLE_FET);
557 	tmp |= !(readl(&power_regs->hw_power_vddioctrl) &
558 			POWER_VDDIOCTRL_DISABLE_FET);
559 	if (tmp)
560 		writel(POWER_CHARGE_ENABLE_LOAD,
561 			&power_regs->hw_power_charge_clr);
562 }
563 
564 /**
565  * mxs_boot_valid_5v() - Boot from 5V supply
566  *
567  * This function configures the power block to boot from valid 5V input.
568  * This is called only if the 5V is reliable and can properly supply the
569  * CPU. This function proceeds to configure the 4P2 converter to be supplied
570  * from the 5V input.
571  */
572 static void mxs_boot_valid_5v(void)
573 {
574 	struct mxs_power_regs *power_regs =
575 		(struct mxs_power_regs *)MXS_POWER_BASE;
576 
577 	/*
578 	 * Use VBUSVALID level instead of VDD5V_GT_VDDIO level to trigger a 5V
579 	 * disconnect event. FIXME
580 	 */
581 	writel(POWER_5VCTRL_VBUSVALID_5VDETECT,
582 		&power_regs->hw_power_5vctrl_set);
583 
584 	/* Configure polarity to check for 5V disconnection. */
585 	writel(POWER_CTRL_POLARITY_VBUSVALID |
586 		POWER_CTRL_POLARITY_VDD5V_GT_VDDIO,
587 		&power_regs->hw_power_ctrl_clr);
588 
589 	writel(POWER_CTRL_VBUS_VALID_IRQ | POWER_CTRL_VDD5V_GT_VDDIO_IRQ,
590 		&power_regs->hw_power_ctrl_clr);
591 
592 	mxs_power_enable_4p2();
593 }
594 
595 /**
596  * mxs_powerdown() - Shut down the system
597  *
598  * This function powers down the CPU completely.
599  */
600 static void mxs_powerdown(void)
601 {
602 	struct mxs_power_regs *power_regs =
603 		(struct mxs_power_regs *)MXS_POWER_BASE;
604 	writel(POWER_RESET_UNLOCK_KEY, &power_regs->hw_power_reset);
605 	writel(POWER_RESET_UNLOCK_KEY | POWER_RESET_PWD_OFF,
606 		&power_regs->hw_power_reset);
607 }
608 
609 /**
610  * mxs_batt_boot() - Configure the power block to boot from battery input
611  *
612  * This function configures the power block to boot from the battery voltage
613  * supply.
614  */
615 static void mxs_batt_boot(void)
616 {
617 	struct mxs_power_regs *power_regs =
618 		(struct mxs_power_regs *)MXS_POWER_BASE;
619 
620 	clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_PWDN_5VBRNOUT);
621 	clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_ENABLE_DCDC);
622 
623 	clrbits_le32(&power_regs->hw_power_dcdc4p2,
624 			POWER_DCDC4P2_ENABLE_DCDC | POWER_DCDC4P2_ENABLE_4P2);
625 	writel(POWER_CHARGE_ENABLE_LOAD, &power_regs->hw_power_charge_clr);
626 
627 	/* 5V to battery handoff. */
628 	setbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER);
629 	early_delay(30);
630 	clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER);
631 
632 	writel(POWER_CTRL_ENIRQ_DCDC4P2_BO, &power_regs->hw_power_ctrl_clr);
633 
634 	clrsetbits_le32(&power_regs->hw_power_minpwr,
635 			POWER_MINPWR_HALFFETS, POWER_MINPWR_DOUBLE_FETS);
636 
637 	mxs_power_set_linreg();
638 
639 	clrbits_le32(&power_regs->hw_power_vdddctrl,
640 		POWER_VDDDCTRL_DISABLE_FET | POWER_VDDDCTRL_ENABLE_LINREG);
641 
642 	clrbits_le32(&power_regs->hw_power_vddactrl,
643 		POWER_VDDACTRL_DISABLE_FET | POWER_VDDACTRL_ENABLE_LINREG);
644 
645 	clrbits_le32(&power_regs->hw_power_vddioctrl,
646 		POWER_VDDIOCTRL_DISABLE_FET);
647 
648 	setbits_le32(&power_regs->hw_power_5vctrl,
649 		POWER_5VCTRL_PWD_CHARGE_4P2_MASK);
650 
651 	setbits_le32(&power_regs->hw_power_5vctrl,
652 		POWER_5VCTRL_ENABLE_DCDC);
653 
654 	clrsetbits_le32(&power_regs->hw_power_5vctrl,
655 		POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK,
656 		0x8 << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET);
657 }
658 
659 /**
660  * mxs_handle_5v_conflict() - Test if the 5V input is reliable
661  *
662  * This function tests if the 5V input can reliably supply the system. If it
663  * can, then proceed to configuring the system to boot from 5V source, otherwise
664  * try booting from battery supply. If we can not boot from battery supply
665  * either, shut down the system.
666  */
667 static void mxs_handle_5v_conflict(void)
668 {
669 	struct mxs_power_regs *power_regs =
670 		(struct mxs_power_regs *)MXS_POWER_BASE;
671 	uint32_t tmp;
672 
673 	setbits_le32(&power_regs->hw_power_vddioctrl,
674 			POWER_VDDIOCTRL_BO_OFFSET_MASK);
675 
676 	for (;;) {
677 		tmp = readl(&power_regs->hw_power_sts);
678 
679 		if (tmp & POWER_STS_VDDIO_BO) {
680 			/*
681 			 * VDDIO has a brownout, then the VDD5V_GT_VDDIO becomes
682 			 * unreliable
683 			 */
684 			mxs_powerdown();
685 			break;
686 		}
687 
688 		if (tmp & POWER_STS_VDD5V_GT_VDDIO) {
689 			mxs_boot_valid_5v();
690 			break;
691 		} else {
692 			mxs_powerdown();
693 			break;
694 		}
695 
696 		if (tmp & POWER_STS_PSWITCH_MASK) {
697 			mxs_batt_boot();
698 			break;
699 		}
700 	}
701 }
702 
703 /**
704  * mxs_5v_boot() - Configure the power block to boot from 5V input
705  *
706  * This function handles configuration of the power block when supplied by
707  * a 5V input.
708  */
709 static void mxs_5v_boot(void)
710 {
711 	struct mxs_power_regs *power_regs =
712 		(struct mxs_power_regs *)MXS_POWER_BASE;
713 
714 	/*
715 	 * NOTE: In original IMX-Bootlets, this also checks for VBUSVALID,
716 	 * but their implementation always returns 1 so we omit it here.
717 	 */
718 	if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) {
719 		mxs_boot_valid_5v();
720 		return;
721 	}
722 
723 	early_delay(1000);
724 	if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) {
725 		mxs_boot_valid_5v();
726 		return;
727 	}
728 
729 	mxs_handle_5v_conflict();
730 }
731 
732 /**
733  * mxs_init_batt_bo() - Configure battery brownout threshold
734  *
735  * This function configures the battery input brownout threshold. The value
736  * at which the battery brownout happens is configured to 3.0V in the code.
737  */
738 static void mxs_init_batt_bo(void)
739 {
740 	struct mxs_power_regs *power_regs =
741 		(struct mxs_power_regs *)MXS_POWER_BASE;
742 
743 	/* Brownout at 3V */
744 	clrsetbits_le32(&power_regs->hw_power_battmonitor,
745 		POWER_BATTMONITOR_BRWNOUT_LVL_MASK,
746 		15 << POWER_BATTMONITOR_BRWNOUT_LVL_OFFSET);
747 
748 	writel(POWER_CTRL_BATT_BO_IRQ, &power_regs->hw_power_ctrl_clr);
749 	writel(POWER_CTRL_ENIRQ_BATT_BO, &power_regs->hw_power_ctrl_clr);
750 }
751 
752 /**
753  * mxs_switch_vddd_to_dcdc_source() - Switch VDDD rail to DC-DC converter
754  *
755  * This function turns off the VDDD linear regulator and therefore makes
756  * the VDDD rail be supplied only by the DC-DC converter.
757  */
758 static void mxs_switch_vddd_to_dcdc_source(void)
759 {
760 	struct mxs_power_regs *power_regs =
761 		(struct mxs_power_regs *)MXS_POWER_BASE;
762 
763 	clrsetbits_le32(&power_regs->hw_power_vdddctrl,
764 		POWER_VDDDCTRL_LINREG_OFFSET_MASK,
765 		POWER_VDDDCTRL_LINREG_OFFSET_1STEPS_BELOW);
766 
767 	clrbits_le32(&power_regs->hw_power_vdddctrl,
768 		POWER_VDDDCTRL_DISABLE_FET | POWER_VDDDCTRL_ENABLE_LINREG |
769 		POWER_VDDDCTRL_DISABLE_STEPPING);
770 }
771 
772 /**
773  * mxs_power_configure_power_source() - Configure power block source
774  *
775  * This function is the core of the power configuration logic. The function
776  * selects the power block input source and configures the whole power block
777  * accordingly. After the configuration is complete and the system is stable
778  * again, the function switches the CPU clock source back to PLL. Finally,
779  * the function switches the voltage rails to DC-DC converter.
780  */
781 static void mxs_power_configure_power_source(void)
782 {
783 	int batt_ready, batt_good;
784 	struct mxs_power_regs *power_regs =
785 		(struct mxs_power_regs *)MXS_POWER_BASE;
786 	struct mxs_lradc_regs *lradc_regs =
787 		(struct mxs_lradc_regs *)MXS_LRADC_BASE;
788 
789 	mxs_src_power_init();
790 
791 	if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) {
792 		batt_ready = mxs_is_batt_ready();
793 		if (batt_ready) {
794 			/* 5V source detected, good battery detected. */
795 			mxs_batt_boot();
796 		} else {
797 			batt_good = mxs_is_batt_good();
798 			if (!batt_good) {
799 				/* 5V source detected, bad battery detected. */
800 				writel(LRADC_CONVERSION_AUTOMATIC,
801 					&lradc_regs->hw_lradc_conversion_clr);
802 				clrbits_le32(&power_regs->hw_power_battmonitor,
803 					POWER_BATTMONITOR_BATT_VAL_MASK);
804 			}
805 			mxs_5v_boot();
806 		}
807 	} else {
808 		/* 5V not detected, booting from battery. */
809 		mxs_batt_boot();
810 	}
811 
812 	mxs_power_clock2pll();
813 
814 	mxs_init_batt_bo();
815 
816 	mxs_switch_vddd_to_dcdc_source();
817 
818 #ifdef CONFIG_MX23
819 	/* Fire up the VDDMEM LinReg now that we're all set. */
820 	writel(POWER_VDDMEMCTRL_ENABLE_LINREG | POWER_VDDMEMCTRL_ENABLE_ILIMIT,
821 		&power_regs->hw_power_vddmemctrl);
822 #endif
823 }
824 
825 /**
826  * mxs_enable_output_rail_protection() - Enable power rail protection
827  *
828  * This function enables overload protection on the power rails. This is
829  * triggered if the power rails' voltage drops rapidly due to overload and
830  * in such case, the supply to the powerrail is cut-off, protecting the
831  * CPU from damage. Note that under such condition, the system will likely
832  * crash or misbehave.
833  */
834 static void mxs_enable_output_rail_protection(void)
835 {
836 	struct mxs_power_regs *power_regs =
837 		(struct mxs_power_regs *)MXS_POWER_BASE;
838 
839 	writel(POWER_CTRL_VDDD_BO_IRQ | POWER_CTRL_VDDA_BO_IRQ |
840 		POWER_CTRL_VDDIO_BO_IRQ, &power_regs->hw_power_ctrl_clr);
841 
842 	setbits_le32(&power_regs->hw_power_vdddctrl,
843 			POWER_VDDDCTRL_PWDN_BRNOUT);
844 
845 	setbits_le32(&power_regs->hw_power_vddactrl,
846 			POWER_VDDACTRL_PWDN_BRNOUT);
847 
848 	setbits_le32(&power_regs->hw_power_vddioctrl,
849 			POWER_VDDIOCTRL_PWDN_BRNOUT);
850 }
851 
852 /**
853  * mxs_get_vddio_power_source_off() - Get VDDIO rail power source
854  *
855  * This function tests if the VDDIO rail is supplied by linear regulator
856  * or by the DC-DC converter. Returns 1 if powered by linear regulator,
857  * returns 0 if powered by the DC-DC converter.
858  */
859 static int mxs_get_vddio_power_source_off(void)
860 {
861 	struct mxs_power_regs *power_regs =
862 		(struct mxs_power_regs *)MXS_POWER_BASE;
863 	uint32_t tmp;
864 
865 	if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) {
866 		tmp = readl(&power_regs->hw_power_vddioctrl);
867 		if (tmp & POWER_VDDIOCTRL_DISABLE_FET) {
868 			if ((tmp & POWER_VDDIOCTRL_LINREG_OFFSET_MASK) ==
869 				POWER_VDDIOCTRL_LINREG_OFFSET_0STEPS) {
870 				return 1;
871 			}
872 		}
873 
874 		if (!(readl(&power_regs->hw_power_5vctrl) &
875 			POWER_5VCTRL_ENABLE_DCDC)) {
876 			if ((tmp & POWER_VDDIOCTRL_LINREG_OFFSET_MASK) ==
877 				POWER_VDDIOCTRL_LINREG_OFFSET_0STEPS) {
878 				return 1;
879 			}
880 		}
881 	}
882 
883 	return 0;
884 
885 }
886 
887 /**
888  * mxs_get_vddd_power_source_off() - Get VDDD rail power source
889  *
890  * This function tests if the VDDD rail is supplied by linear regulator
891  * or by the DC-DC converter. Returns 1 if powered by linear regulator,
892  * returns 0 if powered by the DC-DC converter.
893  */
894 static int mxs_get_vddd_power_source_off(void)
895 {
896 	struct mxs_power_regs *power_regs =
897 		(struct mxs_power_regs *)MXS_POWER_BASE;
898 	uint32_t tmp;
899 
900 	tmp = readl(&power_regs->hw_power_vdddctrl);
901 	if (tmp & POWER_VDDDCTRL_DISABLE_FET) {
902 		if ((tmp & POWER_VDDDCTRL_LINREG_OFFSET_MASK) ==
903 			POWER_VDDDCTRL_LINREG_OFFSET_0STEPS) {
904 			return 1;
905 		}
906 	}
907 
908 	if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) {
909 		if (!(readl(&power_regs->hw_power_5vctrl) &
910 			POWER_5VCTRL_ENABLE_DCDC)) {
911 			return 1;
912 		}
913 	}
914 
915 	if (!(tmp & POWER_VDDDCTRL_ENABLE_LINREG)) {
916 		if ((tmp & POWER_VDDDCTRL_LINREG_OFFSET_MASK) ==
917 			POWER_VDDDCTRL_LINREG_OFFSET_1STEPS_BELOW) {
918 			return 1;
919 		}
920 	}
921 
922 	return 0;
923 }
924 
925 struct mxs_vddx_cfg {
926 	uint32_t		*reg;
927 	uint8_t			step_mV;
928 	uint16_t		lowest_mV;
929 	int			(*powered_by_linreg)(void);
930 	uint32_t		trg_mask;
931 	uint32_t		bo_irq;
932 	uint32_t		bo_enirq;
933 	uint32_t		bo_offset_mask;
934 	uint32_t		bo_offset_offset;
935 };
936 
937 static const struct mxs_vddx_cfg mxs_vddio_cfg = {
938 	.reg			= &(((struct mxs_power_regs *)MXS_POWER_BASE)->
939 					hw_power_vddioctrl),
940 #if defined(CONFIG_MX23)
941 	.step_mV		= 25,
942 #else
943 	.step_mV		= 50,
944 #endif
945 	.lowest_mV		= 2800,
946 	.powered_by_linreg	= mxs_get_vddio_power_source_off,
947 	.trg_mask		= POWER_VDDIOCTRL_TRG_MASK,
948 	.bo_irq			= POWER_CTRL_VDDIO_BO_IRQ,
949 	.bo_enirq		= POWER_CTRL_ENIRQ_VDDIO_BO,
950 	.bo_offset_mask		= POWER_VDDIOCTRL_BO_OFFSET_MASK,
951 	.bo_offset_offset	= POWER_VDDIOCTRL_BO_OFFSET_OFFSET,
952 };
953 
954 static const struct mxs_vddx_cfg mxs_vddd_cfg = {
955 	.reg			= &(((struct mxs_power_regs *)MXS_POWER_BASE)->
956 					hw_power_vdddctrl),
957 	.step_mV		= 25,
958 	.lowest_mV		= 800,
959 	.powered_by_linreg	= mxs_get_vddd_power_source_off,
960 	.trg_mask		= POWER_VDDDCTRL_TRG_MASK,
961 	.bo_irq			= POWER_CTRL_VDDD_BO_IRQ,
962 	.bo_enirq		= POWER_CTRL_ENIRQ_VDDD_BO,
963 	.bo_offset_mask		= POWER_VDDDCTRL_BO_OFFSET_MASK,
964 	.bo_offset_offset	= POWER_VDDDCTRL_BO_OFFSET_OFFSET,
965 };
966 
967 #ifdef CONFIG_MX23
968 static const struct mxs_vddx_cfg mxs_vddmem_cfg = {
969 	.reg			= &(((struct mxs_power_regs *)MXS_POWER_BASE)->
970 					hw_power_vddmemctrl),
971 	.step_mV		= 50,
972 	.lowest_mV		= 1700,
973 	.powered_by_linreg	= NULL,
974 	.trg_mask		= POWER_VDDMEMCTRL_TRG_MASK,
975 	.bo_irq			= 0,
976 	.bo_enirq		= 0,
977 	.bo_offset_mask		= 0,
978 	.bo_offset_offset	= 0,
979 };
980 #endif
981 
982 /**
983  * mxs_power_set_vddx() - Configure voltage on DC-DC converter rail
984  * @cfg:		Configuration data of the DC-DC converter rail
985  * @new_target:		New target voltage of the DC-DC converter rail
986  * @new_brownout:	New brownout trigger voltage
987  *
988  * This function configures the output voltage on the DC-DC converter rail.
989  * The rail is selected by the @cfg argument. The new voltage target is
990  * selected by the @new_target and the voltage is specified in mV. The
991  * new brownout value is selected by the @new_brownout argument and the
992  * value is also in mV.
993  */
994 static void mxs_power_set_vddx(const struct mxs_vddx_cfg *cfg,
995 				uint32_t new_target, uint32_t new_brownout)
996 {
997 	struct mxs_power_regs *power_regs =
998 		(struct mxs_power_regs *)MXS_POWER_BASE;
999 	uint32_t cur_target, diff, bo_int = 0;
1000 	uint32_t powered_by_linreg = 0;
1001 	int adjust_up, tmp;
1002 
1003 	new_brownout = DIV_ROUND(new_target - new_brownout, cfg->step_mV);
1004 
1005 	cur_target = readl(cfg->reg);
1006 	cur_target &= cfg->trg_mask;
1007 	cur_target *= cfg->step_mV;
1008 	cur_target += cfg->lowest_mV;
1009 
1010 	adjust_up = new_target > cur_target;
1011 	if (cfg->powered_by_linreg)
1012 		powered_by_linreg = cfg->powered_by_linreg();
1013 
1014 	if (adjust_up && cfg->bo_irq) {
1015 		if (powered_by_linreg) {
1016 			bo_int = readl(cfg->reg);
1017 			clrbits_le32(cfg->reg, cfg->bo_enirq);
1018 		}
1019 		setbits_le32(cfg->reg, cfg->bo_offset_mask);
1020 	}
1021 
1022 	do {
1023 		if (abs(new_target - cur_target) > 100) {
1024 			if (adjust_up)
1025 				diff = cur_target + 100;
1026 			else
1027 				diff = cur_target - 100;
1028 		} else {
1029 			diff = new_target;
1030 		}
1031 
1032 		diff -= cfg->lowest_mV;
1033 		diff /= cfg->step_mV;
1034 
1035 		clrsetbits_le32(cfg->reg, cfg->trg_mask, diff);
1036 
1037 		if (powered_by_linreg ||
1038 			(readl(&power_regs->hw_power_sts) &
1039 				POWER_STS_VDD5V_GT_VDDIO))
1040 			early_delay(500);
1041 		else {
1042 			for (;;) {
1043 				tmp = readl(&power_regs->hw_power_sts);
1044 				if (tmp & POWER_STS_DC_OK)
1045 					break;
1046 			}
1047 		}
1048 
1049 		cur_target = readl(cfg->reg);
1050 		cur_target &= cfg->trg_mask;
1051 		cur_target *= cfg->step_mV;
1052 		cur_target += cfg->lowest_mV;
1053 	} while (new_target > cur_target);
1054 
1055 	if (cfg->bo_irq) {
1056 		if (adjust_up && powered_by_linreg) {
1057 			writel(cfg->bo_irq, &power_regs->hw_power_ctrl_clr);
1058 			if (bo_int & cfg->bo_enirq)
1059 				setbits_le32(cfg->reg, cfg->bo_enirq);
1060 		}
1061 
1062 		clrsetbits_le32(cfg->reg, cfg->bo_offset_mask,
1063 				new_brownout << cfg->bo_offset_offset);
1064 	}
1065 }
1066 
1067 /**
1068  * mxs_setup_batt_detect() - Start the battery voltage measurement logic
1069  *
1070  * This function starts and configures the LRADC block. This allows the
1071  * power initialization code to measure battery voltage and based on this
1072  * knowledge, decide whether to boot at all, boot from battery or boot
1073  * from 5V input.
1074  */
1075 static void mxs_setup_batt_detect(void)
1076 {
1077 	mxs_lradc_init();
1078 	mxs_lradc_enable_batt_measurement();
1079 	early_delay(10);
1080 }
1081 
1082 /**
1083  * mxs_ungate_power() - Ungate the POWER block
1084  *
1085  * This function ungates clock to the power block. In case the power block
1086  * was still gated at this point, it will not be possible to configure the
1087  * block and therefore the power initialization would fail. This function
1088  * is only needed on i.MX233, on i.MX28 the power block is always ungated.
1089  */
1090 static void mxs_ungate_power(void)
1091 {
1092 #ifdef CONFIG_MX23
1093 	struct mxs_power_regs *power_regs =
1094 		(struct mxs_power_regs *)MXS_POWER_BASE;
1095 
1096 	writel(POWER_CTRL_CLKGATE, &power_regs->hw_power_ctrl_clr);
1097 #endif
1098 }
1099 
1100 /**
1101  * mxs_power_init() - The power block init main function
1102  *
1103  * This function calls all the power block initialization functions in
1104  * proper sequence to start the power block.
1105  */
1106 void mxs_power_init(void)
1107 {
1108 	struct mxs_power_regs *power_regs =
1109 		(struct mxs_power_regs *)MXS_POWER_BASE;
1110 
1111 	mxs_ungate_power();
1112 
1113 	mxs_power_clock2xtal();
1114 	mxs_power_set_auto_restart();
1115 	mxs_power_set_linreg();
1116 	mxs_power_setup_5v_detect();
1117 
1118 	mxs_setup_batt_detect();
1119 
1120 	mxs_power_configure_power_source();
1121 	mxs_enable_output_rail_protection();
1122 
1123 	mxs_power_set_vddx(&mxs_vddio_cfg, 3300, 3150);
1124 	mxs_power_set_vddx(&mxs_vddd_cfg, 1500, 1000);
1125 #ifdef CONFIG_MX23
1126 	mxs_power_set_vddx(&mxs_vddmem_cfg, 2500, 1700);
1127 #endif
1128 	writel(POWER_CTRL_VDDD_BO_IRQ | POWER_CTRL_VDDA_BO_IRQ |
1129 		POWER_CTRL_VDDIO_BO_IRQ | POWER_CTRL_VDD5V_DROOP_IRQ |
1130 		POWER_CTRL_VBUS_VALID_IRQ | POWER_CTRL_BATT_BO_IRQ |
1131 		POWER_CTRL_DCDC4P2_BO_IRQ, &power_regs->hw_power_ctrl_clr);
1132 
1133 	writel(POWER_5VCTRL_PWDN_5VBRNOUT, &power_regs->hw_power_5vctrl_set);
1134 
1135 	early_delay(1000);
1136 }
1137 
1138 #ifdef	CONFIG_SPL_MXS_PSWITCH_WAIT
1139 /**
1140  * mxs_power_wait_pswitch() - Wait for power switch to be pressed
1141  *
1142  * This function waits until the power-switch was pressed to start booting
1143  * the board.
1144  */
1145 void mxs_power_wait_pswitch(void)
1146 {
1147 	struct mxs_power_regs *power_regs =
1148 		(struct mxs_power_regs *)MXS_POWER_BASE;
1149 
1150 	while (!(readl(&power_regs->hw_power_sts) & POWER_STS_PSWITCH_MASK))
1151 		;
1152 }
1153 #endif
1154