1 #include <systemd/sd-bus.h> 2 3 #include <sdbusplus/async/context.hpp> 4 5 #include <chrono> 6 7 namespace sdbusplus::async 8 { 9 10 context::context(bus_t&& b) : bus(std::move(b)) 11 { 12 dbus_source = event_loop.add_io(bus.get_fd(), EPOLLIN, dbus_event_handle, 13 this); 14 } 15 16 namespace details 17 { 18 19 /* The sd_bus_wait/process completion event. 20 * 21 * The wait/process handshake is modelled as a Sender with the the worker 22 * task `co_await`ing Senders over and over. This class is the completion 23 * handling for the Sender (to get it back to the Receiver, ie. the worker). 24 */ 25 struct wait_process_completion : bus::details::bus_friend 26 { 27 explicit wait_process_completion(context& ctx) : ctx(ctx) {} 28 virtual ~wait_process_completion() = default; 29 30 // Called by the `caller` to indicate the Sender is completed. 31 virtual void complete() noexcept = 0; 32 // Called by the `caller` to indicate the Sender should be stopped. 33 virtual void stop() noexcept = 0; 34 35 // Arm the completion event. 36 void arm() noexcept; 37 38 // Data to share with the worker. 39 context& ctx; 40 event_t::time_resolution timeout{}; 41 42 static task<> loop(context& ctx); 43 static void wait_once(context& ctx); 44 }; 45 46 /* The completion template based on receiver type. 47 * 48 * The type of the receivers (typically the co_awaiter) is only known by 49 * a template, so we need a sub-class of completion to hold the receiver. 50 */ 51 template <execution::receiver R> 52 struct wait_process_operation : public wait_process_completion 53 { 54 wait_process_operation(context& ctx, R r) : 55 wait_process_completion(ctx), receiver(std::move(r)) 56 {} 57 58 wait_process_operation(wait_process_operation&&) = delete; 59 60 void complete() noexcept override final 61 { 62 execution::set_value(std::move(this->receiver)); 63 } 64 65 void stop() noexcept override final 66 { 67 // Stop can be called when the context is shutting down, 68 // so treat it as if the receiver completed. 69 execution::set_value(std::move(this->receiver)); 70 } 71 72 friend void tag_invoke(execution::start_t, 73 wait_process_operation& self) noexcept 74 { 75 self.arm(); 76 } 77 78 R receiver; 79 }; 80 81 /* The sender for the wait/process event. */ 82 struct wait_process_sender 83 { 84 explicit wait_process_sender(context& ctx) : ctx(ctx){}; 85 86 friend auto tag_invoke(execution::get_completion_signatures_t, 87 const wait_process_sender&, auto) 88 -> execution::completion_signatures<execution::set_value_t()>; 89 90 template <execution::receiver R> 91 friend auto tag_invoke(execution::connect_t, wait_process_sender&& self, 92 R r) -> wait_process_operation<R> 93 { 94 // Create the completion for the wait. 95 return {self.ctx, std::move(r)}; 96 } 97 98 private: 99 context& ctx; 100 }; 101 102 task<> wait_process_completion::loop(context& ctx) 103 { 104 while (!ctx.stop_requested()) 105 { 106 // Handle the next sdbus event. 107 co_await wait_process_sender(ctx); 108 109 // Completion likely happened on the context 'caller' thread, so 110 // we need to switch to the worker thread. 111 co_await execution::schedule(ctx.loop.get_scheduler()); 112 } 113 } 114 115 } // namespace details 116 117 context::~context() noexcept(false) 118 { 119 if (worker_thread.joinable()) 120 { 121 throw std::logic_error( 122 "sdbusplus::async::context destructed without completion."); 123 } 124 } 125 126 bool context::request_stop() noexcept 127 { 128 auto first_stop = stop.request_stop(); 129 130 if (first_stop) 131 { 132 caller_wait.notify_one(); 133 event_loop.break_run(); 134 } 135 136 return first_stop; 137 } 138 139 void context::caller_run(task<> startup) 140 { 141 // Start up the worker thread. 142 worker_thread = std::thread{[this, startup = std::move(startup)]() mutable { 143 worker_run(std::move(startup)); 144 }}; 145 146 // Run until the context requested to stop. 147 while (!stop_requested()) 148 { 149 // Handle waiting on all the sd-events. 150 details::wait_process_completion::wait_once(*this); 151 } 152 153 // Stop has been requested, so finish up the loop. 154 loop.finish(); 155 if (worker_thread.joinable()) 156 { 157 worker_thread.join(); 158 } 159 } 160 161 void context::worker_run(task<> startup) 162 { 163 // Begin the 'startup' task. 164 // This shouldn't start detached because we want to be able to forward 165 // failures back to the 'run'. execution::ensure_started isn't 166 // implemented yet, so we don't have a lot of other options. 167 execution::start_detached(std::move(startup)); 168 169 // Also start up the sdbus 'wait/process' loop. 170 execution::start_detached(details::wait_process_completion::loop(*this)); 171 172 // Run the execution::run_loop to handle all the tasks. 173 loop.run(); 174 } 175 176 void details::wait_process_completion::arm() noexcept 177 { 178 // Call process. True indicates something was handled and we do not 179 // need to `wait`, because there might be yet another pending operation 180 // to process, so immediately signal the operation as complete. 181 if (ctx.get_bus().process_discard()) 182 { 183 this->complete(); 184 return; 185 } 186 187 // We need to call wait now, get the current timeout and stage ourselves 188 // as the next completion. 189 190 // Get the bus' timeout. 191 uint64_t to_usec = 0; 192 sd_bus_get_timeout(get_busp(ctx.get_bus()), &to_usec); 193 194 if (to_usec == UINT64_MAX) 195 { 196 // sd_bus_get_timeout returns UINT64_MAX to indicate 'wait forever'. 197 // Turn this into -1 for sd-event. 198 timeout = std::chrono::microseconds{-1}; 199 } 200 else 201 { 202 timeout = std::chrono::microseconds(to_usec); 203 } 204 205 // Assign ourselves as the pending completion and release the caller. 206 std::lock_guard lock{ctx.lock}; 207 ctx.staged = this; 208 ctx.caller_wait.notify_one(); 209 } 210 211 void details::wait_process_completion::wait_once(context& ctx) 212 { 213 // Scope for lock. 214 { 215 std::unique_lock lock{ctx.lock}; 216 217 // If there isn't a completion waiting already, wait on the condition 218 // variable for one to show up (we can't call `poll` yet because we 219 // don't have the required parameters). 220 ctx.caller_wait.wait(lock, [&] { 221 return (ctx.pending != nullptr) || (ctx.staged != nullptr) || 222 (ctx.stop_requested()); 223 }); 224 225 // Save the waiter as pending. 226 if (ctx.pending == nullptr) 227 { 228 ctx.pending = std::exchange(ctx.staged, nullptr); 229 } 230 } 231 232 // If the context has been requested to be stopped, exit now instead of 233 // running the context event loop. 234 if (ctx.stop_requested()) 235 { 236 return; 237 } 238 239 // Run the event loop to process one request. 240 ctx.event_loop.run_one(ctx.pending->timeout); 241 242 // If there is a stop requested, we need to stop the pending operation. 243 if (ctx.stop_requested()) 244 { 245 decltype(ctx.pending) pending = nullptr; 246 247 { 248 std::lock_guard lock{ctx.lock}; 249 pending = std::exchange(ctx.pending, nullptr); 250 } 251 252 // Do the stop outside the lock to prevent potential deadlocks due to 253 // the stop handler running. 254 if (pending != nullptr) 255 { 256 pending->stop(); 257 } 258 } 259 } 260 261 int context::dbus_event_handle(sd_event_source*, int, uint32_t, void* data) 262 { 263 auto self = static_cast<context*>(data); 264 265 decltype(self->pending) pending = nullptr; 266 { 267 std::lock_guard lock{self->lock}; 268 pending = std::exchange(self->pending, nullptr); 269 } 270 271 // Outside the lock complete the pending operation. 272 // 273 // This can cause the Receiver task (the worker) to start executing (on 274 // this thread!), hence we do not want the lock held in order to avoid 275 // deadlocks. 276 if (pending != nullptr) 277 { 278 if (self->stop_requested()) 279 { 280 pending->stop(); 281 } 282 else 283 { 284 pending->complete(); 285 } 286 } 287 288 return 0; 289 } 290 291 } // namespace sdbusplus::async 292