xref: /openbmc/qemu/util/throttle.c (revision fa36f1b2ebcd9a7b2a58c8e12dfb1cc8596c23c0)
1 /*
2  * QEMU throttling infrastructure
3  *
4  * Copyright (C) Nodalink, EURL. 2013-2014
5  * Copyright (C) Igalia, S.L. 2015
6  *
7  * Authors:
8  *   Benoît Canet <benoit.canet@nodalink.com>
9  *   Alberto Garcia <berto@igalia.com>
10  *
11  * This program is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU General Public License as
13  * published by the Free Software Foundation; either version 2 or
14  * (at your option) version 3 of the License.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, see <http://www.gnu.org/licenses/>.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qapi/error.h"
27 #include "qemu/throttle.h"
28 #include "qemu/timer.h"
29 #include "block/aio.h"
30 
31 /* This function make a bucket leak
32  *
33  * @bkt:   the bucket to make leak
34  * @delta_ns: the time delta
35  */
36 void throttle_leak_bucket(LeakyBucket *bkt, int64_t delta_ns)
37 {
38     double leak;
39 
40     /* compute how much to leak */
41     leak = (bkt->avg * (double) delta_ns) / NANOSECONDS_PER_SECOND;
42 
43     /* make the bucket leak */
44     bkt->level = MAX(bkt->level - leak, 0);
45 
46     /* if we allow bursts for more than one second we also need to
47      * keep track of bkt->burst_level so the bkt->max goal per second
48      * is attained */
49     if (bkt->burst_length > 1) {
50         leak = (bkt->max * (double) delta_ns) / NANOSECONDS_PER_SECOND;
51         bkt->burst_level = MAX(bkt->burst_level - leak, 0);
52     }
53 }
54 
55 /* Calculate the time delta since last leak and make proportionals leaks
56  *
57  * @now:      the current timestamp in ns
58  */
59 static void throttle_do_leak(ThrottleState *ts, int64_t now)
60 {
61     /* compute the time elapsed since the last leak */
62     int64_t delta_ns = now - ts->previous_leak;
63     int i;
64 
65     ts->previous_leak = now;
66 
67     if (delta_ns <= 0) {
68         return;
69     }
70 
71     /* make each bucket leak */
72     for (i = 0; i < BUCKETS_COUNT; i++) {
73         throttle_leak_bucket(&ts->cfg.buckets[i], delta_ns);
74     }
75 }
76 
77 /* do the real job of computing the time to wait
78  *
79  * @limit: the throttling limit
80  * @extra: the number of operation to delay
81  * @ret:   the time to wait in ns
82  */
83 static int64_t throttle_do_compute_wait(double limit, double extra)
84 {
85     double wait = extra * NANOSECONDS_PER_SECOND;
86     wait /= limit;
87     return wait;
88 }
89 
90 /* This function compute the wait time in ns that a leaky bucket should trigger
91  *
92  * @bkt: the leaky bucket we operate on
93  * @ret: the resulting wait time in ns or 0 if the operation can go through
94  */
95 int64_t throttle_compute_wait(LeakyBucket *bkt)
96 {
97     double extra; /* the number of extra units blocking the io */
98 
99     if (!bkt->avg) {
100         return 0;
101     }
102 
103     /* If the bucket is full then we have to wait */
104     extra = bkt->level - bkt->max * bkt->burst_length;
105     if (extra > 0) {
106         return throttle_do_compute_wait(bkt->avg, extra);
107     }
108 
109     /* If the bucket is not full yet we have to make sure that we
110      * fulfill the goal of bkt->max units per second. */
111     if (bkt->burst_length > 1) {
112         /* We use 1/10 of the max value to smooth the throttling.
113          * See throttle_fix_bucket() for more details. */
114         extra = bkt->burst_level - bkt->max / 10;
115         if (extra > 0) {
116             return throttle_do_compute_wait(bkt->max, extra);
117         }
118     }
119 
120     return 0;
121 }
122 
123 /* This function compute the time that must be waited while this IO
124  *
125  * @is_write:   true if the current IO is a write, false if it's a read
126  * @ret:        time to wait
127  */
128 static int64_t throttle_compute_wait_for(ThrottleState *ts,
129                                          bool is_write)
130 {
131     BucketType to_check[2][4] = { {THROTTLE_BPS_TOTAL,
132                                    THROTTLE_OPS_TOTAL,
133                                    THROTTLE_BPS_READ,
134                                    THROTTLE_OPS_READ},
135                                   {THROTTLE_BPS_TOTAL,
136                                    THROTTLE_OPS_TOTAL,
137                                    THROTTLE_BPS_WRITE,
138                                    THROTTLE_OPS_WRITE}, };
139     int64_t wait, max_wait = 0;
140     int i;
141 
142     for (i = 0; i < 4; i++) {
143         BucketType index = to_check[is_write][i];
144         wait = throttle_compute_wait(&ts->cfg.buckets[index]);
145         if (wait > max_wait) {
146             max_wait = wait;
147         }
148     }
149 
150     return max_wait;
151 }
152 
153 /* compute the timer for this type of operation
154  *
155  * @is_write:   the type of operation
156  * @now:        the current clock timestamp
157  * @next_timestamp: the resulting timer
158  * @ret:        true if a timer must be set
159  */
160 static bool throttle_compute_timer(ThrottleState *ts,
161                                    bool is_write,
162                                    int64_t now,
163                                    int64_t *next_timestamp)
164 {
165     int64_t wait;
166 
167     /* leak proportionally to the time elapsed */
168     throttle_do_leak(ts, now);
169 
170     /* compute the wait time if any */
171     wait = throttle_compute_wait_for(ts, is_write);
172 
173     /* if the code must wait compute when the next timer should fire */
174     if (wait) {
175         *next_timestamp = now + wait;
176         return true;
177     }
178 
179     /* else no need to wait at all */
180     *next_timestamp = now;
181     return false;
182 }
183 
184 /* Add timers to event loop */
185 void throttle_timers_attach_aio_context(ThrottleTimers *tt,
186                                         AioContext *new_context)
187 {
188     tt->timers[0] = aio_timer_new(new_context, tt->clock_type, SCALE_NS,
189                                   tt->read_timer_cb, tt->timer_opaque);
190     tt->timers[1] = aio_timer_new(new_context, tt->clock_type, SCALE_NS,
191                                   tt->write_timer_cb, tt->timer_opaque);
192 }
193 
194 /*
195  * Initialize the ThrottleConfig structure to a valid state
196  * @cfg: the config to initialize
197  */
198 void throttle_config_init(ThrottleConfig *cfg)
199 {
200     unsigned i;
201     memset(cfg, 0, sizeof(*cfg));
202     for (i = 0; i < BUCKETS_COUNT; i++) {
203         cfg->buckets[i].burst_length = 1;
204     }
205 }
206 
207 /* To be called first on the ThrottleState */
208 void throttle_init(ThrottleState *ts)
209 {
210     memset(ts, 0, sizeof(ThrottleState));
211     throttle_config_init(&ts->cfg);
212 }
213 
214 /* To be called first on the ThrottleTimers */
215 void throttle_timers_init(ThrottleTimers *tt,
216                           AioContext *aio_context,
217                           QEMUClockType clock_type,
218                           QEMUTimerCB *read_timer_cb,
219                           QEMUTimerCB *write_timer_cb,
220                           void *timer_opaque)
221 {
222     memset(tt, 0, sizeof(ThrottleTimers));
223 
224     tt->clock_type = clock_type;
225     tt->read_timer_cb = read_timer_cb;
226     tt->write_timer_cb = write_timer_cb;
227     tt->timer_opaque = timer_opaque;
228     throttle_timers_attach_aio_context(tt, aio_context);
229 }
230 
231 /* destroy a timer */
232 static void throttle_timer_destroy(QEMUTimer **timer)
233 {
234     assert(*timer != NULL);
235 
236     timer_del(*timer);
237     timer_free(*timer);
238     *timer = NULL;
239 }
240 
241 /* Remove timers from event loop */
242 void throttle_timers_detach_aio_context(ThrottleTimers *tt)
243 {
244     int i;
245 
246     for (i = 0; i < 2; i++) {
247         throttle_timer_destroy(&tt->timers[i]);
248     }
249 }
250 
251 /* To be called last on the ThrottleTimers */
252 void throttle_timers_destroy(ThrottleTimers *tt)
253 {
254     throttle_timers_detach_aio_context(tt);
255 }
256 
257 /* is any throttling timer configured */
258 bool throttle_timers_are_initialized(ThrottleTimers *tt)
259 {
260     if (tt->timers[0]) {
261         return true;
262     }
263 
264     return false;
265 }
266 
267 /* Does any throttling must be done
268  *
269  * @cfg: the throttling configuration to inspect
270  * @ret: true if throttling must be done else false
271  */
272 bool throttle_enabled(ThrottleConfig *cfg)
273 {
274     int i;
275 
276     for (i = 0; i < BUCKETS_COUNT; i++) {
277         if (cfg->buckets[i].avg > 0) {
278             return true;
279         }
280     }
281 
282     return false;
283 }
284 
285 /* check if a throttling configuration is valid
286  * @cfg: the throttling configuration to inspect
287  * @ret: true if valid else false
288  * @errp: error object
289  */
290 bool throttle_is_valid(ThrottleConfig *cfg, Error **errp)
291 {
292     int i;
293     bool bps_flag, ops_flag;
294     bool bps_max_flag, ops_max_flag;
295 
296     bps_flag = cfg->buckets[THROTTLE_BPS_TOTAL].avg &&
297                (cfg->buckets[THROTTLE_BPS_READ].avg ||
298                 cfg->buckets[THROTTLE_BPS_WRITE].avg);
299 
300     ops_flag = cfg->buckets[THROTTLE_OPS_TOTAL].avg &&
301                (cfg->buckets[THROTTLE_OPS_READ].avg ||
302                 cfg->buckets[THROTTLE_OPS_WRITE].avg);
303 
304     bps_max_flag = cfg->buckets[THROTTLE_BPS_TOTAL].max &&
305                   (cfg->buckets[THROTTLE_BPS_READ].max  ||
306                    cfg->buckets[THROTTLE_BPS_WRITE].max);
307 
308     ops_max_flag = cfg->buckets[THROTTLE_OPS_TOTAL].max &&
309                    (cfg->buckets[THROTTLE_OPS_READ].max ||
310                    cfg->buckets[THROTTLE_OPS_WRITE].max);
311 
312     if (bps_flag || ops_flag || bps_max_flag || ops_max_flag) {
313         error_setg(errp, "bps/iops/max total values and read/write values"
314                    " cannot be used at the same time");
315         return false;
316     }
317 
318     if (cfg->op_size &&
319         !cfg->buckets[THROTTLE_OPS_TOTAL].avg &&
320         !cfg->buckets[THROTTLE_OPS_READ].avg &&
321         !cfg->buckets[THROTTLE_OPS_WRITE].avg) {
322         error_setg(errp, "iops size requires an iops value to be set");
323         return false;
324     }
325 
326     for (i = 0; i < BUCKETS_COUNT; i++) {
327         LeakyBucket *bkt = &cfg->buckets[i];
328         if (bkt->avg < 0 || bkt->max < 0 ||
329             bkt->avg > THROTTLE_VALUE_MAX || bkt->max > THROTTLE_VALUE_MAX) {
330             error_setg(errp, "bps/iops/max values must be within [0, %lld]",
331                        THROTTLE_VALUE_MAX);
332             return false;
333         }
334 
335         if (!bkt->burst_length) {
336             error_setg(errp, "the burst length cannot be 0");
337             return false;
338         }
339 
340         if (bkt->burst_length > 1 && !bkt->max) {
341             error_setg(errp, "burst length set without burst rate");
342             return false;
343         }
344 
345         if (bkt->max && !bkt->avg) {
346             error_setg(errp, "bps_max/iops_max require corresponding"
347                        " bps/iops values");
348             return false;
349         }
350 
351         if (bkt->max && bkt->max < bkt->avg) {
352             error_setg(errp, "bps_max/iops_max cannot be lower than bps/iops");
353             return false;
354         }
355     }
356 
357     return true;
358 }
359 
360 /* fix bucket parameters */
361 static void throttle_fix_bucket(LeakyBucket *bkt)
362 {
363     double min;
364 
365     /* zero bucket level */
366     bkt->level = bkt->burst_level = 0;
367 
368     /* If bkt->max is 0 we still want to allow short bursts of I/O
369      * from the guest, otherwise every other request will be throttled
370      * and performance will suffer considerably. */
371     min = bkt->avg / 10;
372     if (bkt->avg && !bkt->max) {
373         bkt->max = min;
374     }
375 }
376 
377 /* undo internal bucket parameter changes (see throttle_fix_bucket()) */
378 static void throttle_unfix_bucket(LeakyBucket *bkt)
379 {
380     if (bkt->max < bkt->avg) {
381         bkt->max = 0;
382     }
383 }
384 
385 /* Used to configure the throttle
386  *
387  * @ts: the throttle state we are working on
388  * @clock_type: the group's clock_type
389  * @cfg: the config to set
390  */
391 void throttle_config(ThrottleState *ts,
392                      QEMUClockType clock_type,
393                      ThrottleConfig *cfg)
394 {
395     int i;
396 
397     ts->cfg = *cfg;
398 
399     for (i = 0; i < BUCKETS_COUNT; i++) {
400         throttle_fix_bucket(&ts->cfg.buckets[i]);
401     }
402 
403     ts->previous_leak = qemu_clock_get_ns(clock_type);
404 }
405 
406 /* used to get config
407  *
408  * @ts:  the throttle state we are working on
409  * @cfg: the config to write
410  */
411 void throttle_get_config(ThrottleState *ts, ThrottleConfig *cfg)
412 {
413     int i;
414 
415     *cfg = ts->cfg;
416 
417     for (i = 0; i < BUCKETS_COUNT; i++) {
418         throttle_unfix_bucket(&cfg->buckets[i]);
419     }
420 }
421 
422 
423 /* Schedule the read or write timer if needed
424  *
425  * NOTE: this function is not unit tested due to it's usage of timer_mod
426  *
427  * @tt:       the timers structure
428  * @is_write: the type of operation (read/write)
429  * @ret:      true if the timer has been scheduled else false
430  */
431 bool throttle_schedule_timer(ThrottleState *ts,
432                              ThrottleTimers *tt,
433                              bool is_write)
434 {
435     int64_t now = qemu_clock_get_ns(tt->clock_type);
436     int64_t next_timestamp;
437     bool must_wait;
438 
439     must_wait = throttle_compute_timer(ts,
440                                        is_write,
441                                        now,
442                                        &next_timestamp);
443 
444     /* request not throttled */
445     if (!must_wait) {
446         return false;
447     }
448 
449     /* request throttled and timer pending -> do nothing */
450     if (timer_pending(tt->timers[is_write])) {
451         return true;
452     }
453 
454     /* request throttled and timer not pending -> arm timer */
455     timer_mod(tt->timers[is_write], next_timestamp);
456     return true;
457 }
458 
459 /* do the accounting for this operation
460  *
461  * @is_write: the type of operation (read/write)
462  * @size:     the size of the operation
463  */
464 void throttle_account(ThrottleState *ts, bool is_write, uint64_t size)
465 {
466     const BucketType bucket_types_size[2][2] = {
467         { THROTTLE_BPS_TOTAL, THROTTLE_BPS_READ },
468         { THROTTLE_BPS_TOTAL, THROTTLE_BPS_WRITE }
469     };
470     const BucketType bucket_types_units[2][2] = {
471         { THROTTLE_OPS_TOTAL, THROTTLE_OPS_READ },
472         { THROTTLE_OPS_TOTAL, THROTTLE_OPS_WRITE }
473     };
474     double units = 1.0;
475     unsigned i;
476 
477     /* if cfg.op_size is defined and smaller than size we compute unit count */
478     if (ts->cfg.op_size && size > ts->cfg.op_size) {
479         units = (double) size / ts->cfg.op_size;
480     }
481 
482     for (i = 0; i < 2; i++) {
483         LeakyBucket *bkt;
484 
485         bkt = &ts->cfg.buckets[bucket_types_size[is_write][i]];
486         bkt->level += size;
487         if (bkt->burst_length > 1) {
488             bkt->burst_level += size;
489         }
490 
491         bkt = &ts->cfg.buckets[bucket_types_units[is_write][i]];
492         bkt->level += units;
493         if (bkt->burst_length > 1) {
494             bkt->burst_level += units;
495         }
496     }
497 }
498 
499