xref: /openbmc/qemu/util/qemu-thread-win32.c (revision 7609ffb9191e3fc473203f4bd58b934161eab358)
1 /*
2  * Win32 implementation for mutex/cond/thread functions
3  *
4  * Copyright Red Hat, Inc. 2010
5  *
6  * Author:
7  *  Paolo Bonzini <pbonzini@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef _WIN32_WINNT
15 #define _WIN32_WINNT 0x0600
16 #endif
17 
18 #include "qemu/osdep.h"
19 #include "qemu-common.h"
20 #include "qemu/thread.h"
21 #include "qemu/notify.h"
22 #include <process.h>
23 
24 static bool name_threads;
25 
26 void qemu_thread_naming(bool enable)
27 {
28     /* But note we don't actually name them on Windows yet */
29     name_threads = enable;
30 
31     fprintf(stderr, "qemu: thread naming not supported on this host\n");
32 }
33 
34 static void error_exit(int err, const char *msg)
35 {
36     char *pstr;
37 
38     FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER,
39                   NULL, err, 0, (LPTSTR)&pstr, 2, NULL);
40     fprintf(stderr, "qemu: %s: %s\n", msg, pstr);
41     LocalFree(pstr);
42     abort();
43 }
44 
45 void qemu_mutex_init(QemuMutex *mutex)
46 {
47     InitializeSRWLock(&mutex->lock);
48 }
49 
50 void qemu_mutex_destroy(QemuMutex *mutex)
51 {
52     InitializeSRWLock(&mutex->lock);
53 }
54 
55 void qemu_mutex_lock(QemuMutex *mutex)
56 {
57     AcquireSRWLockExclusive(&mutex->lock);
58 }
59 
60 int qemu_mutex_trylock(QemuMutex *mutex)
61 {
62     int owned;
63 
64     owned = TryAcquireSRWLockExclusive(&mutex->lock);
65     return !owned;
66 }
67 
68 void qemu_mutex_unlock(QemuMutex *mutex)
69 {
70     ReleaseSRWLockExclusive(&mutex->lock);
71 }
72 
73 void qemu_rec_mutex_init(QemuRecMutex *mutex)
74 {
75     InitializeCriticalSection(&mutex->lock);
76 }
77 
78 void qemu_rec_mutex_destroy(QemuRecMutex *mutex)
79 {
80     DeleteCriticalSection(&mutex->lock);
81 }
82 
83 void qemu_rec_mutex_lock(QemuRecMutex *mutex)
84 {
85     EnterCriticalSection(&mutex->lock);
86 }
87 
88 int qemu_rec_mutex_trylock(QemuRecMutex *mutex)
89 {
90     return !TryEnterCriticalSection(&mutex->lock);
91 }
92 
93 void qemu_rec_mutex_unlock(QemuRecMutex *mutex)
94 {
95     LeaveCriticalSection(&mutex->lock);
96 }
97 
98 void qemu_cond_init(QemuCond *cond)
99 {
100     memset(cond, 0, sizeof(*cond));
101     InitializeConditionVariable(&cond->var);
102 }
103 
104 void qemu_cond_destroy(QemuCond *cond)
105 {
106     InitializeConditionVariable(&cond->var);
107 }
108 
109 void qemu_cond_signal(QemuCond *cond)
110 {
111     WakeConditionVariable(&cond->var);
112 }
113 
114 void qemu_cond_broadcast(QemuCond *cond)
115 {
116     WakeAllConditionVariable(&cond->var);
117 }
118 
119 void qemu_cond_wait(QemuCond *cond, QemuMutex *mutex)
120 {
121     SleepConditionVariableSRW(&cond->var, &mutex->lock, INFINITE, 0);
122 }
123 
124 void qemu_sem_init(QemuSemaphore *sem, int init)
125 {
126     /* Manual reset.  */
127     sem->sema = CreateSemaphore(NULL, init, LONG_MAX, NULL);
128 }
129 
130 void qemu_sem_destroy(QemuSemaphore *sem)
131 {
132     CloseHandle(sem->sema);
133 }
134 
135 void qemu_sem_post(QemuSemaphore *sem)
136 {
137     ReleaseSemaphore(sem->sema, 1, NULL);
138 }
139 
140 int qemu_sem_timedwait(QemuSemaphore *sem, int ms)
141 {
142     int rc = WaitForSingleObject(sem->sema, ms);
143     if (rc == WAIT_OBJECT_0) {
144         return 0;
145     }
146     if (rc != WAIT_TIMEOUT) {
147         error_exit(GetLastError(), __func__);
148     }
149     return -1;
150 }
151 
152 void qemu_sem_wait(QemuSemaphore *sem)
153 {
154     if (WaitForSingleObject(sem->sema, INFINITE) != WAIT_OBJECT_0) {
155         error_exit(GetLastError(), __func__);
156     }
157 }
158 
159 /* Wrap a Win32 manual-reset event with a fast userspace path.  The idea
160  * is to reset the Win32 event lazily, as part of a test-reset-test-wait
161  * sequence.  Such a sequence is, indeed, how QemuEvents are used by
162  * RCU and other subsystems!
163  *
164  * Valid transitions:
165  * - free->set, when setting the event
166  * - busy->set, when setting the event, followed by SetEvent
167  * - set->free, when resetting the event
168  * - free->busy, when waiting
169  *
170  * set->busy does not happen (it can be observed from the outside but
171  * it really is set->free->busy).
172  *
173  * busy->free provably cannot happen; to enforce it, the set->free transition
174  * is done with an OR, which becomes a no-op if the event has concurrently
175  * transitioned to free or busy (and is faster than cmpxchg).
176  */
177 
178 #define EV_SET         0
179 #define EV_FREE        1
180 #define EV_BUSY       -1
181 
182 void qemu_event_init(QemuEvent *ev, bool init)
183 {
184     /* Manual reset.  */
185     ev->event = CreateEvent(NULL, TRUE, TRUE, NULL);
186     ev->value = (init ? EV_SET : EV_FREE);
187 }
188 
189 void qemu_event_destroy(QemuEvent *ev)
190 {
191     CloseHandle(ev->event);
192 }
193 
194 void qemu_event_set(QemuEvent *ev)
195 {
196     /* qemu_event_set has release semantics, but because it *loads*
197      * ev->value we need a full memory barrier here.
198      */
199     smp_mb();
200     if (atomic_read(&ev->value) != EV_SET) {
201         if (atomic_xchg(&ev->value, EV_SET) == EV_BUSY) {
202             /* There were waiters, wake them up.  */
203             SetEvent(ev->event);
204         }
205     }
206 }
207 
208 void qemu_event_reset(QemuEvent *ev)
209 {
210     unsigned value;
211 
212     value = atomic_read(&ev->value);
213     smp_mb_acquire();
214     if (value == EV_SET) {
215         /* If there was a concurrent reset (or even reset+wait),
216          * do nothing.  Otherwise change EV_SET->EV_FREE.
217          */
218         atomic_or(&ev->value, EV_FREE);
219     }
220 }
221 
222 void qemu_event_wait(QemuEvent *ev)
223 {
224     unsigned value;
225 
226     value = atomic_read(&ev->value);
227     smp_mb_acquire();
228     if (value != EV_SET) {
229         if (value == EV_FREE) {
230             /* qemu_event_set is not yet going to call SetEvent, but we are
231              * going to do another check for EV_SET below when setting EV_BUSY.
232              * At that point it is safe to call WaitForSingleObject.
233              */
234             ResetEvent(ev->event);
235 
236             /* Tell qemu_event_set that there are waiters.  No need to retry
237              * because there cannot be a concurent busy->free transition.
238              * After the CAS, the event will be either set or busy.
239              */
240             if (atomic_cmpxchg(&ev->value, EV_FREE, EV_BUSY) == EV_SET) {
241                 value = EV_SET;
242             } else {
243                 value = EV_BUSY;
244             }
245         }
246         if (value == EV_BUSY) {
247             WaitForSingleObject(ev->event, INFINITE);
248         }
249     }
250 }
251 
252 struct QemuThreadData {
253     /* Passed to win32_start_routine.  */
254     void             *(*start_routine)(void *);
255     void             *arg;
256     short             mode;
257     NotifierList      exit;
258 
259     /* Only used for joinable threads. */
260     bool              exited;
261     void             *ret;
262     CRITICAL_SECTION  cs;
263 };
264 
265 static bool atexit_registered;
266 static NotifierList main_thread_exit;
267 
268 static __thread QemuThreadData *qemu_thread_data;
269 
270 static void run_main_thread_exit(void)
271 {
272     notifier_list_notify(&main_thread_exit, NULL);
273 }
274 
275 void qemu_thread_atexit_add(Notifier *notifier)
276 {
277     if (!qemu_thread_data) {
278         if (!atexit_registered) {
279             atexit_registered = true;
280             atexit(run_main_thread_exit);
281         }
282         notifier_list_add(&main_thread_exit, notifier);
283     } else {
284         notifier_list_add(&qemu_thread_data->exit, notifier);
285     }
286 }
287 
288 void qemu_thread_atexit_remove(Notifier *notifier)
289 {
290     notifier_remove(notifier);
291 }
292 
293 static unsigned __stdcall win32_start_routine(void *arg)
294 {
295     QemuThreadData *data = (QemuThreadData *) arg;
296     void *(*start_routine)(void *) = data->start_routine;
297     void *thread_arg = data->arg;
298 
299     qemu_thread_data = data;
300     qemu_thread_exit(start_routine(thread_arg));
301     abort();
302 }
303 
304 void qemu_thread_exit(void *arg)
305 {
306     QemuThreadData *data = qemu_thread_data;
307 
308     notifier_list_notify(&data->exit, NULL);
309     if (data->mode == QEMU_THREAD_JOINABLE) {
310         data->ret = arg;
311         EnterCriticalSection(&data->cs);
312         data->exited = true;
313         LeaveCriticalSection(&data->cs);
314     } else {
315         g_free(data);
316     }
317     _endthreadex(0);
318 }
319 
320 void *qemu_thread_join(QemuThread *thread)
321 {
322     QemuThreadData *data;
323     void *ret;
324     HANDLE handle;
325 
326     data = thread->data;
327     if (data->mode == QEMU_THREAD_DETACHED) {
328         return NULL;
329     }
330 
331     /*
332      * Because multiple copies of the QemuThread can exist via
333      * qemu_thread_get_self, we need to store a value that cannot
334      * leak there.  The simplest, non racy way is to store the TID,
335      * discard the handle that _beginthreadex gives back, and
336      * get another copy of the handle here.
337      */
338     handle = qemu_thread_get_handle(thread);
339     if (handle) {
340         WaitForSingleObject(handle, INFINITE);
341         CloseHandle(handle);
342     }
343     ret = data->ret;
344     DeleteCriticalSection(&data->cs);
345     g_free(data);
346     return ret;
347 }
348 
349 void qemu_thread_create(QemuThread *thread, const char *name,
350                        void *(*start_routine)(void *),
351                        void *arg, int mode)
352 {
353     HANDLE hThread;
354     struct QemuThreadData *data;
355 
356     data = g_malloc(sizeof *data);
357     data->start_routine = start_routine;
358     data->arg = arg;
359     data->mode = mode;
360     data->exited = false;
361     notifier_list_init(&data->exit);
362 
363     if (data->mode != QEMU_THREAD_DETACHED) {
364         InitializeCriticalSection(&data->cs);
365     }
366 
367     hThread = (HANDLE) _beginthreadex(NULL, 0, win32_start_routine,
368                                       data, 0, &thread->tid);
369     if (!hThread) {
370         error_exit(GetLastError(), __func__);
371     }
372     CloseHandle(hThread);
373     thread->data = data;
374 }
375 
376 void qemu_thread_get_self(QemuThread *thread)
377 {
378     thread->data = qemu_thread_data;
379     thread->tid = GetCurrentThreadId();
380 }
381 
382 HANDLE qemu_thread_get_handle(QemuThread *thread)
383 {
384     QemuThreadData *data;
385     HANDLE handle;
386 
387     data = thread->data;
388     if (data->mode == QEMU_THREAD_DETACHED) {
389         return NULL;
390     }
391 
392     EnterCriticalSection(&data->cs);
393     if (!data->exited) {
394         handle = OpenThread(SYNCHRONIZE | THREAD_SUSPEND_RESUME |
395                             THREAD_SET_CONTEXT, FALSE, thread->tid);
396     } else {
397         handle = NULL;
398     }
399     LeaveCriticalSection(&data->cs);
400     return handle;
401 }
402 
403 bool qemu_thread_is_self(QemuThread *thread)
404 {
405     return GetCurrentThreadId() == thread->tid;
406 }
407