xref: /openbmc/qemu/util/qemu-thread-win32.c (revision 083fab0290f2c40d3d04f7f22eed9c8f2d5b6787)
1 /*
2  * Win32 implementation for mutex/cond/thread functions
3  *
4  * Copyright Red Hat, Inc. 2010
5  *
6  * Author:
7  *  Paolo Bonzini <pbonzini@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef _WIN32_WINNT
15 #define _WIN32_WINNT 0x0600
16 #endif
17 
18 #include "qemu/osdep.h"
19 #include "qemu-common.h"
20 #include "qemu/thread.h"
21 #include "qemu/notify.h"
22 #include "trace.h"
23 #include <process.h>
24 
25 static bool name_threads;
26 
27 void qemu_thread_naming(bool enable)
28 {
29     /* But note we don't actually name them on Windows yet */
30     name_threads = enable;
31 
32     fprintf(stderr, "qemu: thread naming not supported on this host\n");
33 }
34 
35 static void error_exit(int err, const char *msg)
36 {
37     char *pstr;
38 
39     FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER,
40                   NULL, err, 0, (LPTSTR)&pstr, 2, NULL);
41     fprintf(stderr, "qemu: %s: %s\n", msg, pstr);
42     LocalFree(pstr);
43     abort();
44 }
45 
46 void qemu_mutex_init(QemuMutex *mutex)
47 {
48     InitializeSRWLock(&mutex->lock);
49     mutex->initialized = true;
50 }
51 
52 void qemu_mutex_destroy(QemuMutex *mutex)
53 {
54     assert(mutex->initialized);
55     mutex->initialized = false;
56     InitializeSRWLock(&mutex->lock);
57 }
58 
59 void qemu_mutex_lock(QemuMutex *mutex)
60 {
61     assert(mutex->initialized);
62     AcquireSRWLockExclusive(&mutex->lock);
63     trace_qemu_mutex_locked(mutex);
64 }
65 
66 int qemu_mutex_trylock(QemuMutex *mutex)
67 {
68     int owned;
69 
70     assert(mutex->initialized);
71     owned = TryAcquireSRWLockExclusive(&mutex->lock);
72     if (owned) {
73         trace_qemu_mutex_locked(mutex);
74         return 0;
75     }
76     return -EBUSY;
77 }
78 
79 void qemu_mutex_unlock(QemuMutex *mutex)
80 {
81     assert(mutex->initialized);
82     trace_qemu_mutex_unlocked(mutex);
83     ReleaseSRWLockExclusive(&mutex->lock);
84 }
85 
86 void qemu_rec_mutex_init(QemuRecMutex *mutex)
87 {
88     InitializeCriticalSection(&mutex->lock);
89     mutex->initialized = true;
90 }
91 
92 void qemu_rec_mutex_destroy(QemuRecMutex *mutex)
93 {
94     assert(mutex->initialized);
95     mutex->initialized = false;
96     DeleteCriticalSection(&mutex->lock);
97 }
98 
99 void qemu_rec_mutex_lock(QemuRecMutex *mutex)
100 {
101     assert(mutex->initialized);
102     EnterCriticalSection(&mutex->lock);
103 }
104 
105 int qemu_rec_mutex_trylock(QemuRecMutex *mutex)
106 {
107     assert(mutex->initialized);
108     return !TryEnterCriticalSection(&mutex->lock);
109 }
110 
111 void qemu_rec_mutex_unlock(QemuRecMutex *mutex)
112 {
113     assert(mutex->initialized);
114     LeaveCriticalSection(&mutex->lock);
115 }
116 
117 void qemu_cond_init(QemuCond *cond)
118 {
119     memset(cond, 0, sizeof(*cond));
120     InitializeConditionVariable(&cond->var);
121     cond->initialized = true;
122 }
123 
124 void qemu_cond_destroy(QemuCond *cond)
125 {
126     assert(cond->initialized);
127     cond->initialized = false;
128     InitializeConditionVariable(&cond->var);
129 }
130 
131 void qemu_cond_signal(QemuCond *cond)
132 {
133     assert(cond->initialized);
134     WakeConditionVariable(&cond->var);
135 }
136 
137 void qemu_cond_broadcast(QemuCond *cond)
138 {
139     assert(cond->initialized);
140     WakeAllConditionVariable(&cond->var);
141 }
142 
143 void qemu_cond_wait(QemuCond *cond, QemuMutex *mutex)
144 {
145     assert(cond->initialized);
146     trace_qemu_mutex_unlocked(mutex);
147     SleepConditionVariableSRW(&cond->var, &mutex->lock, INFINITE, 0);
148     trace_qemu_mutex_locked(mutex);
149 }
150 
151 void qemu_sem_init(QemuSemaphore *sem, int init)
152 {
153     /* Manual reset.  */
154     sem->sema = CreateSemaphore(NULL, init, LONG_MAX, NULL);
155     sem->initialized = true;
156 }
157 
158 void qemu_sem_destroy(QemuSemaphore *sem)
159 {
160     assert(sem->initialized);
161     sem->initialized = false;
162     CloseHandle(sem->sema);
163 }
164 
165 void qemu_sem_post(QemuSemaphore *sem)
166 {
167     assert(sem->initialized);
168     ReleaseSemaphore(sem->sema, 1, NULL);
169 }
170 
171 int qemu_sem_timedwait(QemuSemaphore *sem, int ms)
172 {
173     int rc;
174 
175     assert(sem->initialized);
176     rc = WaitForSingleObject(sem->sema, ms);
177     if (rc == WAIT_OBJECT_0) {
178         return 0;
179     }
180     if (rc != WAIT_TIMEOUT) {
181         error_exit(GetLastError(), __func__);
182     }
183     return -1;
184 }
185 
186 void qemu_sem_wait(QemuSemaphore *sem)
187 {
188     assert(sem->initialized);
189     if (WaitForSingleObject(sem->sema, INFINITE) != WAIT_OBJECT_0) {
190         error_exit(GetLastError(), __func__);
191     }
192 }
193 
194 /* Wrap a Win32 manual-reset event with a fast userspace path.  The idea
195  * is to reset the Win32 event lazily, as part of a test-reset-test-wait
196  * sequence.  Such a sequence is, indeed, how QemuEvents are used by
197  * RCU and other subsystems!
198  *
199  * Valid transitions:
200  * - free->set, when setting the event
201  * - busy->set, when setting the event, followed by SetEvent
202  * - set->free, when resetting the event
203  * - free->busy, when waiting
204  *
205  * set->busy does not happen (it can be observed from the outside but
206  * it really is set->free->busy).
207  *
208  * busy->free provably cannot happen; to enforce it, the set->free transition
209  * is done with an OR, which becomes a no-op if the event has concurrently
210  * transitioned to free or busy (and is faster than cmpxchg).
211  */
212 
213 #define EV_SET         0
214 #define EV_FREE        1
215 #define EV_BUSY       -1
216 
217 void qemu_event_init(QemuEvent *ev, bool init)
218 {
219     /* Manual reset.  */
220     ev->event = CreateEvent(NULL, TRUE, TRUE, NULL);
221     ev->value = (init ? EV_SET : EV_FREE);
222     ev->initialized = true;
223 }
224 
225 void qemu_event_destroy(QemuEvent *ev)
226 {
227     assert(ev->initialized);
228     ev->initialized = false;
229     CloseHandle(ev->event);
230 }
231 
232 void qemu_event_set(QemuEvent *ev)
233 {
234     assert(ev->initialized);
235     /* qemu_event_set has release semantics, but because it *loads*
236      * ev->value we need a full memory barrier here.
237      */
238     smp_mb();
239     if (atomic_read(&ev->value) != EV_SET) {
240         if (atomic_xchg(&ev->value, EV_SET) == EV_BUSY) {
241             /* There were waiters, wake them up.  */
242             SetEvent(ev->event);
243         }
244     }
245 }
246 
247 void qemu_event_reset(QemuEvent *ev)
248 {
249     unsigned value;
250 
251     assert(ev->initialized);
252     value = atomic_read(&ev->value);
253     smp_mb_acquire();
254     if (value == EV_SET) {
255         /* If there was a concurrent reset (or even reset+wait),
256          * do nothing.  Otherwise change EV_SET->EV_FREE.
257          */
258         atomic_or(&ev->value, EV_FREE);
259     }
260 }
261 
262 void qemu_event_wait(QemuEvent *ev)
263 {
264     unsigned value;
265 
266     assert(ev->initialized);
267     value = atomic_read(&ev->value);
268     smp_mb_acquire();
269     if (value != EV_SET) {
270         if (value == EV_FREE) {
271             /* qemu_event_set is not yet going to call SetEvent, but we are
272              * going to do another check for EV_SET below when setting EV_BUSY.
273              * At that point it is safe to call WaitForSingleObject.
274              */
275             ResetEvent(ev->event);
276 
277             /* Tell qemu_event_set that there are waiters.  No need to retry
278              * because there cannot be a concurent busy->free transition.
279              * After the CAS, the event will be either set or busy.
280              */
281             if (atomic_cmpxchg(&ev->value, EV_FREE, EV_BUSY) == EV_SET) {
282                 value = EV_SET;
283             } else {
284                 value = EV_BUSY;
285             }
286         }
287         if (value == EV_BUSY) {
288             WaitForSingleObject(ev->event, INFINITE);
289         }
290     }
291 }
292 
293 struct QemuThreadData {
294     /* Passed to win32_start_routine.  */
295     void             *(*start_routine)(void *);
296     void             *arg;
297     short             mode;
298     NotifierList      exit;
299 
300     /* Only used for joinable threads. */
301     bool              exited;
302     void             *ret;
303     CRITICAL_SECTION  cs;
304 };
305 
306 static bool atexit_registered;
307 static NotifierList main_thread_exit;
308 
309 static __thread QemuThreadData *qemu_thread_data;
310 
311 static void run_main_thread_exit(void)
312 {
313     notifier_list_notify(&main_thread_exit, NULL);
314 }
315 
316 void qemu_thread_atexit_add(Notifier *notifier)
317 {
318     if (!qemu_thread_data) {
319         if (!atexit_registered) {
320             atexit_registered = true;
321             atexit(run_main_thread_exit);
322         }
323         notifier_list_add(&main_thread_exit, notifier);
324     } else {
325         notifier_list_add(&qemu_thread_data->exit, notifier);
326     }
327 }
328 
329 void qemu_thread_atexit_remove(Notifier *notifier)
330 {
331     notifier_remove(notifier);
332 }
333 
334 static unsigned __stdcall win32_start_routine(void *arg)
335 {
336     QemuThreadData *data = (QemuThreadData *) arg;
337     void *(*start_routine)(void *) = data->start_routine;
338     void *thread_arg = data->arg;
339 
340     qemu_thread_data = data;
341     qemu_thread_exit(start_routine(thread_arg));
342     abort();
343 }
344 
345 void qemu_thread_exit(void *arg)
346 {
347     QemuThreadData *data = qemu_thread_data;
348 
349     notifier_list_notify(&data->exit, NULL);
350     if (data->mode == QEMU_THREAD_JOINABLE) {
351         data->ret = arg;
352         EnterCriticalSection(&data->cs);
353         data->exited = true;
354         LeaveCriticalSection(&data->cs);
355     } else {
356         g_free(data);
357     }
358     _endthreadex(0);
359 }
360 
361 void *qemu_thread_join(QemuThread *thread)
362 {
363     QemuThreadData *data;
364     void *ret;
365     HANDLE handle;
366 
367     data = thread->data;
368     if (data->mode == QEMU_THREAD_DETACHED) {
369         return NULL;
370     }
371 
372     /*
373      * Because multiple copies of the QemuThread can exist via
374      * qemu_thread_get_self, we need to store a value that cannot
375      * leak there.  The simplest, non racy way is to store the TID,
376      * discard the handle that _beginthreadex gives back, and
377      * get another copy of the handle here.
378      */
379     handle = qemu_thread_get_handle(thread);
380     if (handle) {
381         WaitForSingleObject(handle, INFINITE);
382         CloseHandle(handle);
383     }
384     ret = data->ret;
385     DeleteCriticalSection(&data->cs);
386     g_free(data);
387     return ret;
388 }
389 
390 void qemu_thread_create(QemuThread *thread, const char *name,
391                        void *(*start_routine)(void *),
392                        void *arg, int mode)
393 {
394     HANDLE hThread;
395     struct QemuThreadData *data;
396 
397     data = g_malloc(sizeof *data);
398     data->start_routine = start_routine;
399     data->arg = arg;
400     data->mode = mode;
401     data->exited = false;
402     notifier_list_init(&data->exit);
403 
404     if (data->mode != QEMU_THREAD_DETACHED) {
405         InitializeCriticalSection(&data->cs);
406     }
407 
408     hThread = (HANDLE) _beginthreadex(NULL, 0, win32_start_routine,
409                                       data, 0, &thread->tid);
410     if (!hThread) {
411         error_exit(GetLastError(), __func__);
412     }
413     CloseHandle(hThread);
414     thread->data = data;
415 }
416 
417 void qemu_thread_get_self(QemuThread *thread)
418 {
419     thread->data = qemu_thread_data;
420     thread->tid = GetCurrentThreadId();
421 }
422 
423 HANDLE qemu_thread_get_handle(QemuThread *thread)
424 {
425     QemuThreadData *data;
426     HANDLE handle;
427 
428     data = thread->data;
429     if (data->mode == QEMU_THREAD_DETACHED) {
430         return NULL;
431     }
432 
433     EnterCriticalSection(&data->cs);
434     if (!data->exited) {
435         handle = OpenThread(SYNCHRONIZE | THREAD_SUSPEND_RESUME |
436                             THREAD_SET_CONTEXT, FALSE, thread->tid);
437     } else {
438         handle = NULL;
439     }
440     LeaveCriticalSection(&data->cs);
441     return handle;
442 }
443 
444 bool qemu_thread_is_self(QemuThread *thread)
445 {
446     return GetCurrentThreadId() == thread->tid;
447 }
448