1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qapi/error.h" 27 #include "qemu/cutils.h" 28 #include "qemu/timer.h" 29 #include "qemu/sockets.h" // struct in_addr needed for libslirp.h 30 #include "sysemu/qtest.h" 31 #include "sysemu/cpus.h" 32 #include "sysemu/replay.h" 33 #include "slirp/libslirp.h" 34 #include "qemu/main-loop.h" 35 #include "block/aio.h" 36 #include "qemu/error-report.h" 37 38 #ifndef _WIN32 39 40 /* If we have signalfd, we mask out the signals we want to handle and then 41 * use signalfd to listen for them. We rely on whatever the current signal 42 * handler is to dispatch the signals when we receive them. 43 */ 44 static void sigfd_handler(void *opaque) 45 { 46 int fd = (intptr_t)opaque; 47 struct qemu_signalfd_siginfo info; 48 struct sigaction action; 49 ssize_t len; 50 51 while (1) { 52 do { 53 len = read(fd, &info, sizeof(info)); 54 } while (len == -1 && errno == EINTR); 55 56 if (len == -1 && errno == EAGAIN) { 57 break; 58 } 59 60 if (len != sizeof(info)) { 61 printf("read from sigfd returned %zd: %m\n", len); 62 return; 63 } 64 65 sigaction(info.ssi_signo, NULL, &action); 66 if ((action.sa_flags & SA_SIGINFO) && action.sa_sigaction) { 67 sigaction_invoke(&action, &info); 68 } else if (action.sa_handler) { 69 action.sa_handler(info.ssi_signo); 70 } 71 } 72 } 73 74 static int qemu_signal_init(void) 75 { 76 int sigfd; 77 sigset_t set; 78 79 /* 80 * SIG_IPI must be blocked in the main thread and must not be caught 81 * by sigwait() in the signal thread. Otherwise, the cpu thread will 82 * not catch it reliably. 83 */ 84 sigemptyset(&set); 85 sigaddset(&set, SIG_IPI); 86 sigaddset(&set, SIGIO); 87 sigaddset(&set, SIGALRM); 88 sigaddset(&set, SIGBUS); 89 /* SIGINT cannot be handled via signalfd, so that ^C can be used 90 * to interrupt QEMU when it is being run under gdb. SIGHUP and 91 * SIGTERM are also handled asynchronously, even though it is not 92 * strictly necessary, because they use the same handler as SIGINT. 93 */ 94 pthread_sigmask(SIG_BLOCK, &set, NULL); 95 96 sigdelset(&set, SIG_IPI); 97 sigfd = qemu_signalfd(&set); 98 if (sigfd == -1) { 99 fprintf(stderr, "failed to create signalfd\n"); 100 return -errno; 101 } 102 103 fcntl_setfl(sigfd, O_NONBLOCK); 104 105 qemu_set_fd_handler(sigfd, sigfd_handler, NULL, (void *)(intptr_t)sigfd); 106 107 return 0; 108 } 109 110 #else /* _WIN32 */ 111 112 static int qemu_signal_init(void) 113 { 114 return 0; 115 } 116 #endif 117 118 static AioContext *qemu_aio_context; 119 static QEMUBH *qemu_notify_bh; 120 121 static void notify_event_cb(void *opaque) 122 { 123 /* No need to do anything; this bottom half is only used to 124 * kick the kernel out of ppoll/poll/WaitForMultipleObjects. 125 */ 126 } 127 128 AioContext *qemu_get_aio_context(void) 129 { 130 return qemu_aio_context; 131 } 132 133 void qemu_notify_event(void) 134 { 135 if (!qemu_aio_context) { 136 return; 137 } 138 qemu_bh_schedule(qemu_notify_bh); 139 } 140 141 static GArray *gpollfds; 142 143 int qemu_init_main_loop(Error **errp) 144 { 145 int ret; 146 GSource *src; 147 Error *local_error = NULL; 148 149 init_clocks(qemu_timer_notify_cb); 150 151 ret = qemu_signal_init(); 152 if (ret) { 153 return ret; 154 } 155 156 qemu_aio_context = aio_context_new(&local_error); 157 if (!qemu_aio_context) { 158 error_propagate(errp, local_error); 159 return -EMFILE; 160 } 161 qemu_notify_bh = qemu_bh_new(notify_event_cb, NULL); 162 gpollfds = g_array_new(FALSE, FALSE, sizeof(GPollFD)); 163 src = aio_get_g_source(qemu_aio_context); 164 g_source_set_name(src, "aio-context"); 165 g_source_attach(src, NULL); 166 g_source_unref(src); 167 src = iohandler_get_g_source(); 168 g_source_set_name(src, "io-handler"); 169 g_source_attach(src, NULL); 170 g_source_unref(src); 171 return 0; 172 } 173 174 static int max_priority; 175 176 #ifndef _WIN32 177 static int glib_pollfds_idx; 178 static int glib_n_poll_fds; 179 180 static void glib_pollfds_fill(int64_t *cur_timeout) 181 { 182 GMainContext *context = g_main_context_default(); 183 int timeout = 0; 184 int64_t timeout_ns; 185 int n; 186 187 g_main_context_prepare(context, &max_priority); 188 189 glib_pollfds_idx = gpollfds->len; 190 n = glib_n_poll_fds; 191 do { 192 GPollFD *pfds; 193 glib_n_poll_fds = n; 194 g_array_set_size(gpollfds, glib_pollfds_idx + glib_n_poll_fds); 195 pfds = &g_array_index(gpollfds, GPollFD, glib_pollfds_idx); 196 n = g_main_context_query(context, max_priority, &timeout, pfds, 197 glib_n_poll_fds); 198 } while (n != glib_n_poll_fds); 199 200 if (timeout < 0) { 201 timeout_ns = -1; 202 } else { 203 timeout_ns = (int64_t)timeout * (int64_t)SCALE_MS; 204 } 205 206 *cur_timeout = qemu_soonest_timeout(timeout_ns, *cur_timeout); 207 } 208 209 static void glib_pollfds_poll(void) 210 { 211 GMainContext *context = g_main_context_default(); 212 GPollFD *pfds = &g_array_index(gpollfds, GPollFD, glib_pollfds_idx); 213 214 if (g_main_context_check(context, max_priority, pfds, glib_n_poll_fds)) { 215 g_main_context_dispatch(context); 216 } 217 } 218 219 #define MAX_MAIN_LOOP_SPIN (1000) 220 221 static int os_host_main_loop_wait(int64_t timeout) 222 { 223 GMainContext *context = g_main_context_default(); 224 int ret; 225 static int spin_counter; 226 227 g_main_context_acquire(context); 228 229 glib_pollfds_fill(&timeout); 230 231 /* If the I/O thread is very busy or we are incorrectly busy waiting in 232 * the I/O thread, this can lead to starvation of the BQL such that the 233 * VCPU threads never run. To make sure we can detect the later case, 234 * print a message to the screen. If we run into this condition, create 235 * a fake timeout in order to give the VCPU threads a chance to run. 236 */ 237 if (!timeout && (spin_counter > MAX_MAIN_LOOP_SPIN)) { 238 static bool notified; 239 240 if (!notified && !qtest_enabled() && !qtest_driver()) { 241 warn_report("I/O thread spun for %d iterations", 242 MAX_MAIN_LOOP_SPIN); 243 notified = true; 244 } 245 246 timeout = SCALE_MS; 247 } 248 249 250 if (timeout) { 251 spin_counter = 0; 252 } else { 253 spin_counter++; 254 } 255 qemu_mutex_unlock_iothread(); 256 replay_mutex_unlock(); 257 258 ret = qemu_poll_ns((GPollFD *)gpollfds->data, gpollfds->len, timeout); 259 260 replay_mutex_lock(); 261 qemu_mutex_lock_iothread(); 262 263 glib_pollfds_poll(); 264 265 g_main_context_release(context); 266 267 return ret; 268 } 269 #else 270 /***********************************************************/ 271 /* Polling handling */ 272 273 typedef struct PollingEntry { 274 PollingFunc *func; 275 void *opaque; 276 struct PollingEntry *next; 277 } PollingEntry; 278 279 static PollingEntry *first_polling_entry; 280 281 int qemu_add_polling_cb(PollingFunc *func, void *opaque) 282 { 283 PollingEntry **ppe, *pe; 284 pe = g_malloc0(sizeof(PollingEntry)); 285 pe->func = func; 286 pe->opaque = opaque; 287 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next); 288 *ppe = pe; 289 return 0; 290 } 291 292 void qemu_del_polling_cb(PollingFunc *func, void *opaque) 293 { 294 PollingEntry **ppe, *pe; 295 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) { 296 pe = *ppe; 297 if (pe->func == func && pe->opaque == opaque) { 298 *ppe = pe->next; 299 g_free(pe); 300 break; 301 } 302 } 303 } 304 305 /***********************************************************/ 306 /* Wait objects support */ 307 typedef struct WaitObjects { 308 int num; 309 int revents[MAXIMUM_WAIT_OBJECTS + 1]; 310 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1]; 311 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1]; 312 void *opaque[MAXIMUM_WAIT_OBJECTS + 1]; 313 } WaitObjects; 314 315 static WaitObjects wait_objects = {0}; 316 317 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque) 318 { 319 WaitObjects *w = &wait_objects; 320 if (w->num >= MAXIMUM_WAIT_OBJECTS) { 321 return -1; 322 } 323 w->events[w->num] = handle; 324 w->func[w->num] = func; 325 w->opaque[w->num] = opaque; 326 w->revents[w->num] = 0; 327 w->num++; 328 return 0; 329 } 330 331 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque) 332 { 333 int i, found; 334 WaitObjects *w = &wait_objects; 335 336 found = 0; 337 for (i = 0; i < w->num; i++) { 338 if (w->events[i] == handle) { 339 found = 1; 340 } 341 if (found) { 342 w->events[i] = w->events[i + 1]; 343 w->func[i] = w->func[i + 1]; 344 w->opaque[i] = w->opaque[i + 1]; 345 w->revents[i] = w->revents[i + 1]; 346 } 347 } 348 if (found) { 349 w->num--; 350 } 351 } 352 353 void qemu_fd_register(int fd) 354 { 355 WSAEventSelect(fd, event_notifier_get_handle(&qemu_aio_context->notifier), 356 FD_READ | FD_ACCEPT | FD_CLOSE | 357 FD_CONNECT | FD_WRITE | FD_OOB); 358 } 359 360 static int pollfds_fill(GArray *pollfds, fd_set *rfds, fd_set *wfds, 361 fd_set *xfds) 362 { 363 int nfds = -1; 364 int i; 365 366 for (i = 0; i < pollfds->len; i++) { 367 GPollFD *pfd = &g_array_index(pollfds, GPollFD, i); 368 int fd = pfd->fd; 369 int events = pfd->events; 370 if (events & G_IO_IN) { 371 FD_SET(fd, rfds); 372 nfds = MAX(nfds, fd); 373 } 374 if (events & G_IO_OUT) { 375 FD_SET(fd, wfds); 376 nfds = MAX(nfds, fd); 377 } 378 if (events & G_IO_PRI) { 379 FD_SET(fd, xfds); 380 nfds = MAX(nfds, fd); 381 } 382 } 383 return nfds; 384 } 385 386 static void pollfds_poll(GArray *pollfds, int nfds, fd_set *rfds, 387 fd_set *wfds, fd_set *xfds) 388 { 389 int i; 390 391 for (i = 0; i < pollfds->len; i++) { 392 GPollFD *pfd = &g_array_index(pollfds, GPollFD, i); 393 int fd = pfd->fd; 394 int revents = 0; 395 396 if (FD_ISSET(fd, rfds)) { 397 revents |= G_IO_IN; 398 } 399 if (FD_ISSET(fd, wfds)) { 400 revents |= G_IO_OUT; 401 } 402 if (FD_ISSET(fd, xfds)) { 403 revents |= G_IO_PRI; 404 } 405 pfd->revents = revents & pfd->events; 406 } 407 } 408 409 static int os_host_main_loop_wait(int64_t timeout) 410 { 411 GMainContext *context = g_main_context_default(); 412 GPollFD poll_fds[1024 * 2]; /* this is probably overkill */ 413 int select_ret = 0; 414 int g_poll_ret, ret, i, n_poll_fds; 415 PollingEntry *pe; 416 WaitObjects *w = &wait_objects; 417 gint poll_timeout; 418 int64_t poll_timeout_ns; 419 static struct timeval tv0; 420 fd_set rfds, wfds, xfds; 421 int nfds; 422 423 g_main_context_acquire(context); 424 425 /* XXX: need to suppress polling by better using win32 events */ 426 ret = 0; 427 for (pe = first_polling_entry; pe != NULL; pe = pe->next) { 428 ret |= pe->func(pe->opaque); 429 } 430 if (ret != 0) { 431 g_main_context_release(context); 432 return ret; 433 } 434 435 FD_ZERO(&rfds); 436 FD_ZERO(&wfds); 437 FD_ZERO(&xfds); 438 nfds = pollfds_fill(gpollfds, &rfds, &wfds, &xfds); 439 if (nfds >= 0) { 440 select_ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv0); 441 if (select_ret != 0) { 442 timeout = 0; 443 } 444 if (select_ret > 0) { 445 pollfds_poll(gpollfds, nfds, &rfds, &wfds, &xfds); 446 } 447 } 448 449 g_main_context_prepare(context, &max_priority); 450 n_poll_fds = g_main_context_query(context, max_priority, &poll_timeout, 451 poll_fds, ARRAY_SIZE(poll_fds)); 452 g_assert(n_poll_fds <= ARRAY_SIZE(poll_fds)); 453 454 for (i = 0; i < w->num; i++) { 455 poll_fds[n_poll_fds + i].fd = (DWORD_PTR)w->events[i]; 456 poll_fds[n_poll_fds + i].events = G_IO_IN; 457 } 458 459 if (poll_timeout < 0) { 460 poll_timeout_ns = -1; 461 } else { 462 poll_timeout_ns = (int64_t)poll_timeout * (int64_t)SCALE_MS; 463 } 464 465 poll_timeout_ns = qemu_soonest_timeout(poll_timeout_ns, timeout); 466 467 qemu_mutex_unlock_iothread(); 468 469 replay_mutex_unlock(); 470 471 g_poll_ret = qemu_poll_ns(poll_fds, n_poll_fds + w->num, poll_timeout_ns); 472 473 replay_mutex_lock(); 474 475 qemu_mutex_lock_iothread(); 476 if (g_poll_ret > 0) { 477 for (i = 0; i < w->num; i++) { 478 w->revents[i] = poll_fds[n_poll_fds + i].revents; 479 } 480 for (i = 0; i < w->num; i++) { 481 if (w->revents[i] && w->func[i]) { 482 w->func[i](w->opaque[i]); 483 } 484 } 485 } 486 487 if (g_main_context_check(context, max_priority, poll_fds, n_poll_fds)) { 488 g_main_context_dispatch(context); 489 } 490 491 g_main_context_release(context); 492 493 return select_ret || g_poll_ret; 494 } 495 #endif 496 497 void main_loop_wait(int nonblocking) 498 { 499 int ret; 500 uint32_t timeout = UINT32_MAX; 501 int64_t timeout_ns; 502 503 if (nonblocking) { 504 timeout = 0; 505 } 506 507 /* poll any events */ 508 g_array_set_size(gpollfds, 0); /* reset for new iteration */ 509 /* XXX: separate device handlers from system ones */ 510 slirp_pollfds_fill(gpollfds, &timeout); 511 512 if (timeout == UINT32_MAX) { 513 timeout_ns = -1; 514 } else { 515 timeout_ns = (uint64_t)timeout * (int64_t)(SCALE_MS); 516 } 517 518 timeout_ns = qemu_soonest_timeout(timeout_ns, 519 timerlistgroup_deadline_ns( 520 &main_loop_tlg)); 521 522 ret = os_host_main_loop_wait(timeout_ns); 523 slirp_pollfds_poll(gpollfds, (ret < 0)); 524 525 /* CPU thread can infinitely wait for event after 526 missing the warp */ 527 qemu_start_warp_timer(); 528 qemu_clock_run_all_timers(); 529 } 530 531 /* Functions to operate on the main QEMU AioContext. */ 532 533 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque) 534 { 535 return aio_bh_new(qemu_aio_context, cb, opaque); 536 } 537