xref: /openbmc/qemu/util/hbitmap.c (revision 05a248715cef192336a594afed812871a52efc1f)
1 /*
2  * Hierarchical Bitmap Data Type
3  *
4  * Copyright Red Hat, Inc., 2012
5  *
6  * Author: Paolo Bonzini <pbonzini@redhat.com>
7  *
8  * This work is licensed under the terms of the GNU GPL, version 2 or
9  * later.  See the COPYING file in the top-level directory.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/hbitmap.h"
14 #include "qemu/host-utils.h"
15 #include "trace.h"
16 #include "crypto/hash.h"
17 
18 /* HBitmaps provides an array of bits.  The bits are stored as usual in an
19  * array of unsigned longs, but HBitmap is also optimized to provide fast
20  * iteration over set bits; going from one bit to the next is O(logB n)
21  * worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough
22  * that the number of levels is in fact fixed.
23  *
24  * In order to do this, it stacks multiple bitmaps with progressively coarser
25  * granularity; in all levels except the last, bit N is set iff the N-th
26  * unsigned long is nonzero in the immediately next level.  When iteration
27  * completes on the last level it can examine the 2nd-last level to quickly
28  * skip entire words, and even do so recursively to skip blocks of 64 words or
29  * powers thereof (32 on 32-bit machines).
30  *
31  * Given an index in the bitmap, it can be split in group of bits like
32  * this (for the 64-bit case):
33  *
34  *   bits 0-57 => word in the last bitmap     | bits 58-63 => bit in the word
35  *   bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word
36  *   bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word
37  *
38  * So it is easy to move up simply by shifting the index right by
39  * log2(BITS_PER_LONG) bits.  To move down, you shift the index left
40  * similarly, and add the word index within the group.  Iteration uses
41  * ffs (find first set bit) to find the next word to examine; this
42  * operation can be done in constant time in most current architectures.
43  *
44  * Setting or clearing a range of m bits on all levels, the work to perform
45  * is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap.
46  *
47  * When iterating on a bitmap, each bit (on any level) is only visited
48  * once.  Hence, The total cost of visiting a bitmap with m bits in it is
49  * the number of bits that are set in all bitmaps.  Unless the bitmap is
50  * extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized
51  * cost of advancing from one bit to the next is usually constant (worst case
52  * O(logB n) as in the non-amortized complexity).
53  */
54 
55 struct HBitmap {
56     /*
57      * Size of the bitmap, as requested in hbitmap_alloc or in hbitmap_truncate.
58      */
59     uint64_t orig_size;
60 
61     /* Number of total bits in the bottom level.  */
62     uint64_t size;
63 
64     /* Number of set bits in the bottom level.  */
65     uint64_t count;
66 
67     /* A scaling factor.  Given a granularity of G, each bit in the bitmap will
68      * will actually represent a group of 2^G elements.  Each operation on a
69      * range of bits first rounds the bits to determine which group they land
70      * in, and then affect the entire page; iteration will only visit the first
71      * bit of each group.  Here is an example of operations in a size-16,
72      * granularity-1 HBitmap:
73      *
74      *    initial state            00000000
75      *    set(start=0, count=9)    11111000 (iter: 0, 2, 4, 6, 8)
76      *    reset(start=1, count=3)  00111000 (iter: 4, 6, 8)
77      *    set(start=9, count=2)    00111100 (iter: 4, 6, 8, 10)
78      *    reset(start=5, count=5)  00000000
79      *
80      * From an implementation point of view, when setting or resetting bits,
81      * the bitmap will scale bit numbers right by this amount of bits.  When
82      * iterating, the bitmap will scale bit numbers left by this amount of
83      * bits.
84      */
85     int granularity;
86 
87     /* A meta dirty bitmap to track the dirtiness of bits in this HBitmap. */
88     HBitmap *meta;
89 
90     /* A number of progressively less coarse bitmaps (i.e. level 0 is the
91      * coarsest).  Each bit in level N represents a word in level N+1 that
92      * has a set bit, except the last level where each bit represents the
93      * actual bitmap.
94      *
95      * Note that all bitmaps have the same number of levels.  Even a 1-bit
96      * bitmap will still allocate HBITMAP_LEVELS arrays.
97      */
98     unsigned long *levels[HBITMAP_LEVELS];
99 
100     /* The length of each levels[] array. */
101     uint64_t sizes[HBITMAP_LEVELS];
102 };
103 
104 /* Advance hbi to the next nonzero word and return it.  hbi->pos
105  * is updated.  Returns zero if we reach the end of the bitmap.
106  */
107 static unsigned long hbitmap_iter_skip_words(HBitmapIter *hbi)
108 {
109     size_t pos = hbi->pos;
110     const HBitmap *hb = hbi->hb;
111     unsigned i = HBITMAP_LEVELS - 1;
112 
113     unsigned long cur;
114     do {
115         i--;
116         pos >>= BITS_PER_LEVEL;
117         cur = hbi->cur[i] & hb->levels[i][pos];
118     } while (cur == 0);
119 
120     /* Check for end of iteration.  We always use fewer than BITS_PER_LONG
121      * bits in the level 0 bitmap; thus we can repurpose the most significant
122      * bit as a sentinel.  The sentinel is set in hbitmap_alloc and ensures
123      * that the above loop ends even without an explicit check on i.
124      */
125 
126     if (i == 0 && cur == (1UL << (BITS_PER_LONG - 1))) {
127         return 0;
128     }
129     for (; i < HBITMAP_LEVELS - 1; i++) {
130         /* Shift back pos to the left, matching the right shifts above.
131          * The index of this word's least significant set bit provides
132          * the low-order bits.
133          */
134         assert(cur);
135         pos = (pos << BITS_PER_LEVEL) + ctzl(cur);
136         hbi->cur[i] = cur & (cur - 1);
137 
138         /* Set up next level for iteration.  */
139         cur = hb->levels[i + 1][pos];
140     }
141 
142     hbi->pos = pos;
143     trace_hbitmap_iter_skip_words(hbi->hb, hbi, pos, cur);
144 
145     assert(cur);
146     return cur;
147 }
148 
149 int64_t hbitmap_iter_next(HBitmapIter *hbi)
150 {
151     unsigned long cur = hbi->cur[HBITMAP_LEVELS - 1] &
152             hbi->hb->levels[HBITMAP_LEVELS - 1][hbi->pos];
153     int64_t item;
154 
155     if (cur == 0) {
156         cur = hbitmap_iter_skip_words(hbi);
157         if (cur == 0) {
158             return -1;
159         }
160     }
161 
162     /* The next call will resume work from the next bit.  */
163     hbi->cur[HBITMAP_LEVELS - 1] = cur & (cur - 1);
164     item = ((uint64_t)hbi->pos << BITS_PER_LEVEL) + ctzl(cur);
165 
166     return item << hbi->granularity;
167 }
168 
169 void hbitmap_iter_init(HBitmapIter *hbi, const HBitmap *hb, uint64_t first)
170 {
171     unsigned i, bit;
172     uint64_t pos;
173 
174     hbi->hb = hb;
175     pos = first >> hb->granularity;
176     assert(pos < hb->size);
177     hbi->pos = pos >> BITS_PER_LEVEL;
178     hbi->granularity = hb->granularity;
179 
180     for (i = HBITMAP_LEVELS; i-- > 0; ) {
181         bit = pos & (BITS_PER_LONG - 1);
182         pos >>= BITS_PER_LEVEL;
183 
184         /* Drop bits representing items before first.  */
185         hbi->cur[i] = hb->levels[i][pos] & ~((1UL << bit) - 1);
186 
187         /* We have already added level i+1, so the lowest set bit has
188          * been processed.  Clear it.
189          */
190         if (i != HBITMAP_LEVELS - 1) {
191             hbi->cur[i] &= ~(1UL << bit);
192         }
193     }
194 }
195 
196 int64_t hbitmap_next_dirty(const HBitmap *hb, int64_t start, int64_t count)
197 {
198     HBitmapIter hbi;
199     int64_t first_dirty_off;
200     uint64_t end;
201 
202     assert(start >= 0 && count >= 0);
203 
204     if (start >= hb->orig_size || count == 0) {
205         return -1;
206     }
207 
208     end = count > hb->orig_size - start ? hb->orig_size : start + count;
209 
210     hbitmap_iter_init(&hbi, hb, start);
211     first_dirty_off = hbitmap_iter_next(&hbi);
212 
213     if (first_dirty_off < 0 || first_dirty_off >= end) {
214         return -1;
215     }
216 
217     return MAX(start, first_dirty_off);
218 }
219 
220 int64_t hbitmap_next_zero(const HBitmap *hb, int64_t start, int64_t count)
221 {
222     size_t pos = (start >> hb->granularity) >> BITS_PER_LEVEL;
223     unsigned long *last_lev = hb->levels[HBITMAP_LEVELS - 1];
224     unsigned long cur = last_lev[pos];
225     unsigned start_bit_offset;
226     uint64_t end_bit, sz;
227     int64_t res;
228 
229     assert(start >= 0 && count >= 0);
230 
231     if (start >= hb->orig_size || count == 0) {
232         return -1;
233     }
234 
235     end_bit = count > hb->orig_size - start ?
236                 hb->size :
237                 ((start + count - 1) >> hb->granularity) + 1;
238     sz = (end_bit + BITS_PER_LONG - 1) >> BITS_PER_LEVEL;
239 
240     /* There may be some zero bits in @cur before @start. We are not interested
241      * in them, let's set them.
242      */
243     start_bit_offset = (start >> hb->granularity) & (BITS_PER_LONG - 1);
244     cur |= (1UL << start_bit_offset) - 1;
245     assert((start >> hb->granularity) < hb->size);
246 
247     if (cur == (unsigned long)-1) {
248         do {
249             pos++;
250         } while (pos < sz && last_lev[pos] == (unsigned long)-1);
251 
252         if (pos >= sz) {
253             return -1;
254         }
255 
256         cur = last_lev[pos];
257     }
258 
259     res = (pos << BITS_PER_LEVEL) + ctol(cur);
260     if (res >= end_bit) {
261         return -1;
262     }
263 
264     res = res << hb->granularity;
265     if (res < start) {
266         assert(((start - res) >> hb->granularity) == 0);
267         return start;
268     }
269 
270     return res;
271 }
272 
273 bool hbitmap_next_dirty_area(const HBitmap *hb, int64_t start, int64_t end,
274                              int64_t max_dirty_count,
275                              int64_t *dirty_start, int64_t *dirty_count)
276 {
277     int64_t next_zero;
278 
279     assert(start >= 0 && end >= 0 && max_dirty_count > 0);
280 
281     end = MIN(end, hb->orig_size);
282     if (start >= end) {
283         return false;
284     }
285 
286     start = hbitmap_next_dirty(hb, start, end - start);
287     if (start < 0) {
288         return false;
289     }
290 
291     end = start + MIN(end - start, max_dirty_count);
292 
293     next_zero = hbitmap_next_zero(hb, start, end - start);
294     if (next_zero >= 0) {
295         end = next_zero;
296     }
297 
298     *dirty_start = start;
299     *dirty_count = end - start;
300 
301     return true;
302 }
303 
304 bool hbitmap_empty(const HBitmap *hb)
305 {
306     return hb->count == 0;
307 }
308 
309 int hbitmap_granularity(const HBitmap *hb)
310 {
311     return hb->granularity;
312 }
313 
314 uint64_t hbitmap_count(const HBitmap *hb)
315 {
316     return hb->count << hb->granularity;
317 }
318 
319 /**
320  * hbitmap_iter_next_word:
321  * @hbi: HBitmapIter to operate on.
322  * @p_cur: Location where to store the next non-zero word.
323  *
324  * Return the index of the next nonzero word that is set in @hbi's
325  * associated HBitmap, and set *p_cur to the content of that word
326  * (bits before the index that was passed to hbitmap_iter_init are
327  * trimmed on the first call).  Return -1, and set *p_cur to zero,
328  * if all remaining words are zero.
329  */
330 static size_t hbitmap_iter_next_word(HBitmapIter *hbi, unsigned long *p_cur)
331 {
332     unsigned long cur = hbi->cur[HBITMAP_LEVELS - 1];
333 
334     if (cur == 0) {
335         cur = hbitmap_iter_skip_words(hbi);
336         if (cur == 0) {
337             *p_cur = 0;
338             return -1;
339         }
340     }
341 
342     /* The next call will resume work from the next word.  */
343     hbi->cur[HBITMAP_LEVELS - 1] = 0;
344     *p_cur = cur;
345     return hbi->pos;
346 }
347 
348 /* Count the number of set bits between start and end, not accounting for
349  * the granularity.  Also an example of how to use hbitmap_iter_next_word.
350  */
351 static uint64_t hb_count_between(HBitmap *hb, uint64_t start, uint64_t last)
352 {
353     HBitmapIter hbi;
354     uint64_t count = 0;
355     uint64_t end = last + 1;
356     unsigned long cur;
357     size_t pos;
358 
359     hbitmap_iter_init(&hbi, hb, start << hb->granularity);
360     for (;;) {
361         pos = hbitmap_iter_next_word(&hbi, &cur);
362         if (pos >= (end >> BITS_PER_LEVEL)) {
363             break;
364         }
365         count += ctpopl(cur);
366     }
367 
368     if (pos == (end >> BITS_PER_LEVEL)) {
369         /* Drop bits representing the END-th and subsequent items.  */
370         int bit = end & (BITS_PER_LONG - 1);
371         cur &= (1UL << bit) - 1;
372         count += ctpopl(cur);
373     }
374 
375     return count;
376 }
377 
378 /* Setting starts at the last layer and propagates up if an element
379  * changes.
380  */
381 static inline bool hb_set_elem(unsigned long *elem, uint64_t start, uint64_t last)
382 {
383     unsigned long mask;
384     unsigned long old;
385 
386     assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
387     assert(start <= last);
388 
389     mask = 2UL << (last & (BITS_PER_LONG - 1));
390     mask -= 1UL << (start & (BITS_PER_LONG - 1));
391     old = *elem;
392     *elem |= mask;
393     return old != *elem;
394 }
395 
396 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)...
397  * Returns true if at least one bit is changed. */
398 static bool hb_set_between(HBitmap *hb, int level, uint64_t start,
399                            uint64_t last)
400 {
401     size_t pos = start >> BITS_PER_LEVEL;
402     size_t lastpos = last >> BITS_PER_LEVEL;
403     bool changed = false;
404     size_t i;
405 
406     i = pos;
407     if (i < lastpos) {
408         uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
409         changed |= hb_set_elem(&hb->levels[level][i], start, next - 1);
410         for (;;) {
411             start = next;
412             next += BITS_PER_LONG;
413             if (++i == lastpos) {
414                 break;
415             }
416             changed |= (hb->levels[level][i] == 0);
417             hb->levels[level][i] = ~0UL;
418         }
419     }
420     changed |= hb_set_elem(&hb->levels[level][i], start, last);
421 
422     /* If there was any change in this layer, we may have to update
423      * the one above.
424      */
425     if (level > 0 && changed) {
426         hb_set_between(hb, level - 1, pos, lastpos);
427     }
428     return changed;
429 }
430 
431 void hbitmap_set(HBitmap *hb, uint64_t start, uint64_t count)
432 {
433     /* Compute range in the last layer.  */
434     uint64_t first, n;
435     uint64_t last = start + count - 1;
436 
437     if (count == 0) {
438         return;
439     }
440 
441     trace_hbitmap_set(hb, start, count,
442                       start >> hb->granularity, last >> hb->granularity);
443 
444     first = start >> hb->granularity;
445     last >>= hb->granularity;
446     assert(last < hb->size);
447     n = last - first + 1;
448 
449     hb->count += n - hb_count_between(hb, first, last);
450     if (hb_set_between(hb, HBITMAP_LEVELS - 1, first, last) &&
451         hb->meta) {
452         hbitmap_set(hb->meta, start, count);
453     }
454 }
455 
456 /* Resetting works the other way round: propagate up if the new
457  * value is zero.
458  */
459 static inline bool hb_reset_elem(unsigned long *elem, uint64_t start, uint64_t last)
460 {
461     unsigned long mask;
462     bool blanked;
463 
464     assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
465     assert(start <= last);
466 
467     mask = 2UL << (last & (BITS_PER_LONG - 1));
468     mask -= 1UL << (start & (BITS_PER_LONG - 1));
469     blanked = *elem != 0 && ((*elem & ~mask) == 0);
470     *elem &= ~mask;
471     return blanked;
472 }
473 
474 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)...
475  * Returns true if at least one bit is changed. */
476 static bool hb_reset_between(HBitmap *hb, int level, uint64_t start,
477                              uint64_t last)
478 {
479     size_t pos = start >> BITS_PER_LEVEL;
480     size_t lastpos = last >> BITS_PER_LEVEL;
481     bool changed = false;
482     size_t i;
483 
484     i = pos;
485     if (i < lastpos) {
486         uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
487 
488         /* Here we need a more complex test than when setting bits.  Even if
489          * something was changed, we must not blank bits in the upper level
490          * unless the lower-level word became entirely zero.  So, remove pos
491          * from the upper-level range if bits remain set.
492          */
493         if (hb_reset_elem(&hb->levels[level][i], start, next - 1)) {
494             changed = true;
495         } else {
496             pos++;
497         }
498 
499         for (;;) {
500             start = next;
501             next += BITS_PER_LONG;
502             if (++i == lastpos) {
503                 break;
504             }
505             changed |= (hb->levels[level][i] != 0);
506             hb->levels[level][i] = 0UL;
507         }
508     }
509 
510     /* Same as above, this time for lastpos.  */
511     if (hb_reset_elem(&hb->levels[level][i], start, last)) {
512         changed = true;
513     } else {
514         lastpos--;
515     }
516 
517     if (level > 0 && changed) {
518         hb_reset_between(hb, level - 1, pos, lastpos);
519     }
520 
521     return changed;
522 
523 }
524 
525 void hbitmap_reset(HBitmap *hb, uint64_t start, uint64_t count)
526 {
527     /* Compute range in the last layer.  */
528     uint64_t first;
529     uint64_t last = start + count - 1;
530     uint64_t gran = 1ULL << hb->granularity;
531 
532     if (count == 0) {
533         return;
534     }
535 
536     assert(QEMU_IS_ALIGNED(start, gran));
537     assert(QEMU_IS_ALIGNED(count, gran) || (start + count == hb->orig_size));
538 
539     trace_hbitmap_reset(hb, start, count,
540                         start >> hb->granularity, last >> hb->granularity);
541 
542     first = start >> hb->granularity;
543     last >>= hb->granularity;
544     assert(last < hb->size);
545 
546     hb->count -= hb_count_between(hb, first, last);
547     if (hb_reset_between(hb, HBITMAP_LEVELS - 1, first, last) &&
548         hb->meta) {
549         hbitmap_set(hb->meta, start, count);
550     }
551 }
552 
553 void hbitmap_reset_all(HBitmap *hb)
554 {
555     unsigned int i;
556 
557     /* Same as hbitmap_alloc() except for memset() instead of malloc() */
558     for (i = HBITMAP_LEVELS; --i >= 1; ) {
559         memset(hb->levels[i], 0, hb->sizes[i] * sizeof(unsigned long));
560     }
561 
562     hb->levels[0][0] = 1UL << (BITS_PER_LONG - 1);
563     hb->count = 0;
564 }
565 
566 bool hbitmap_is_serializable(const HBitmap *hb)
567 {
568     /* Every serialized chunk must be aligned to 64 bits so that endianness
569      * requirements can be fulfilled on both 64 bit and 32 bit hosts.
570      * We have hbitmap_serialization_align() which converts this
571      * alignment requirement from bitmap bits to items covered (e.g. sectors).
572      * That value is:
573      *    64 << hb->granularity
574      * Since this value must not exceed UINT64_MAX, hb->granularity must be
575      * less than 58 (== 64 - 6, where 6 is ld(64), i.e. 1 << 6 == 64).
576      *
577      * In order for hbitmap_serialization_align() to always return a
578      * meaningful value, bitmaps that are to be serialized must have a
579      * granularity of less than 58. */
580 
581     return hb->granularity < 58;
582 }
583 
584 bool hbitmap_get(const HBitmap *hb, uint64_t item)
585 {
586     /* Compute position and bit in the last layer.  */
587     uint64_t pos = item >> hb->granularity;
588     unsigned long bit = 1UL << (pos & (BITS_PER_LONG - 1));
589     assert(pos < hb->size);
590 
591     return (hb->levels[HBITMAP_LEVELS - 1][pos >> BITS_PER_LEVEL] & bit) != 0;
592 }
593 
594 uint64_t hbitmap_serialization_align(const HBitmap *hb)
595 {
596     assert(hbitmap_is_serializable(hb));
597 
598     /* Require at least 64 bit granularity to be safe on both 64 bit and 32 bit
599      * hosts. */
600     return UINT64_C(64) << hb->granularity;
601 }
602 
603 /* Start should be aligned to serialization granularity, chunk size should be
604  * aligned to serialization granularity too, except for last chunk.
605  */
606 static void serialization_chunk(const HBitmap *hb,
607                                 uint64_t start, uint64_t count,
608                                 unsigned long **first_el, uint64_t *el_count)
609 {
610     uint64_t last = start + count - 1;
611     uint64_t gran = hbitmap_serialization_align(hb);
612 
613     assert((start & (gran - 1)) == 0);
614     assert((last >> hb->granularity) < hb->size);
615     if ((last >> hb->granularity) != hb->size - 1) {
616         assert((count & (gran - 1)) == 0);
617     }
618 
619     start = (start >> hb->granularity) >> BITS_PER_LEVEL;
620     last = (last >> hb->granularity) >> BITS_PER_LEVEL;
621 
622     *first_el = &hb->levels[HBITMAP_LEVELS - 1][start];
623     *el_count = last - start + 1;
624 }
625 
626 uint64_t hbitmap_serialization_size(const HBitmap *hb,
627                                     uint64_t start, uint64_t count)
628 {
629     uint64_t el_count;
630     unsigned long *cur;
631 
632     if (!count) {
633         return 0;
634     }
635     serialization_chunk(hb, start, count, &cur, &el_count);
636 
637     return el_count * sizeof(unsigned long);
638 }
639 
640 void hbitmap_serialize_part(const HBitmap *hb, uint8_t *buf,
641                             uint64_t start, uint64_t count)
642 {
643     uint64_t el_count;
644     unsigned long *cur, *end;
645 
646     if (!count) {
647         return;
648     }
649     serialization_chunk(hb, start, count, &cur, &el_count);
650     end = cur + el_count;
651 
652     while (cur != end) {
653         unsigned long el =
654             (BITS_PER_LONG == 32 ? cpu_to_le32(*cur) : cpu_to_le64(*cur));
655 
656         memcpy(buf, &el, sizeof(el));
657         buf += sizeof(el);
658         cur++;
659     }
660 }
661 
662 void hbitmap_deserialize_part(HBitmap *hb, uint8_t *buf,
663                               uint64_t start, uint64_t count,
664                               bool finish)
665 {
666     uint64_t el_count;
667     unsigned long *cur, *end;
668 
669     if (!count) {
670         return;
671     }
672     serialization_chunk(hb, start, count, &cur, &el_count);
673     end = cur + el_count;
674 
675     while (cur != end) {
676         memcpy(cur, buf, sizeof(*cur));
677 
678         if (BITS_PER_LONG == 32) {
679             le32_to_cpus((uint32_t *)cur);
680         } else {
681             le64_to_cpus((uint64_t *)cur);
682         }
683 
684         buf += sizeof(unsigned long);
685         cur++;
686     }
687     if (finish) {
688         hbitmap_deserialize_finish(hb);
689     }
690 }
691 
692 void hbitmap_deserialize_zeroes(HBitmap *hb, uint64_t start, uint64_t count,
693                                 bool finish)
694 {
695     uint64_t el_count;
696     unsigned long *first;
697 
698     if (!count) {
699         return;
700     }
701     serialization_chunk(hb, start, count, &first, &el_count);
702 
703     memset(first, 0, el_count * sizeof(unsigned long));
704     if (finish) {
705         hbitmap_deserialize_finish(hb);
706     }
707 }
708 
709 void hbitmap_deserialize_ones(HBitmap *hb, uint64_t start, uint64_t count,
710                               bool finish)
711 {
712     uint64_t el_count;
713     unsigned long *first;
714 
715     if (!count) {
716         return;
717     }
718     serialization_chunk(hb, start, count, &first, &el_count);
719 
720     memset(first, 0xff, el_count * sizeof(unsigned long));
721     if (finish) {
722         hbitmap_deserialize_finish(hb);
723     }
724 }
725 
726 void hbitmap_deserialize_finish(HBitmap *bitmap)
727 {
728     int64_t i, size, prev_size;
729     int lev;
730 
731     /* restore levels starting from penultimate to zero level, assuming
732      * that the last level is ok */
733     size = MAX((bitmap->size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
734     for (lev = HBITMAP_LEVELS - 1; lev-- > 0; ) {
735         prev_size = size;
736         size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
737         memset(bitmap->levels[lev], 0, size * sizeof(unsigned long));
738 
739         for (i = 0; i < prev_size; ++i) {
740             if (bitmap->levels[lev + 1][i]) {
741                 bitmap->levels[lev][i >> BITS_PER_LEVEL] |=
742                     1UL << (i & (BITS_PER_LONG - 1));
743             }
744         }
745     }
746 
747     bitmap->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
748     bitmap->count = hb_count_between(bitmap, 0, bitmap->size - 1);
749 }
750 
751 void hbitmap_free(HBitmap *hb)
752 {
753     unsigned i;
754     assert(!hb->meta);
755     for (i = HBITMAP_LEVELS; i-- > 0; ) {
756         g_free(hb->levels[i]);
757     }
758     g_free(hb);
759 }
760 
761 HBitmap *hbitmap_alloc(uint64_t size, int granularity)
762 {
763     HBitmap *hb = g_new0(struct HBitmap, 1);
764     unsigned i;
765 
766     assert(size <= INT64_MAX);
767     hb->orig_size = size;
768 
769     assert(granularity >= 0 && granularity < 64);
770     size = (size + (1ULL << granularity) - 1) >> granularity;
771     assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
772 
773     hb->size = size;
774     hb->granularity = granularity;
775     for (i = HBITMAP_LEVELS; i-- > 0; ) {
776         size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
777         hb->sizes[i] = size;
778         hb->levels[i] = g_new0(unsigned long, size);
779     }
780 
781     /* We necessarily have free bits in level 0 due to the definition
782      * of HBITMAP_LEVELS, so use one for a sentinel.  This speeds up
783      * hbitmap_iter_skip_words.
784      */
785     assert(size == 1);
786     hb->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
787     return hb;
788 }
789 
790 void hbitmap_truncate(HBitmap *hb, uint64_t size)
791 {
792     bool shrink;
793     unsigned i;
794     uint64_t num_elements = size;
795     uint64_t old;
796 
797     assert(size <= INT64_MAX);
798     hb->orig_size = size;
799 
800     /* Size comes in as logical elements, adjust for granularity. */
801     size = (size + (1ULL << hb->granularity) - 1) >> hb->granularity;
802     assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
803     shrink = size < hb->size;
804 
805     /* bit sizes are identical; nothing to do. */
806     if (size == hb->size) {
807         return;
808     }
809 
810     /* If we're losing bits, let's clear those bits before we invalidate all of
811      * our invariants. This helps keep the bitcount consistent, and will prevent
812      * us from carrying around garbage bits beyond the end of the map.
813      */
814     if (shrink) {
815         /* Don't clear partial granularity groups;
816          * start at the first full one. */
817         uint64_t start = ROUND_UP(num_elements, UINT64_C(1) << hb->granularity);
818         uint64_t fix_count = (hb->size << hb->granularity) - start;
819 
820         assert(fix_count);
821         hbitmap_reset(hb, start, fix_count);
822     }
823 
824     hb->size = size;
825     for (i = HBITMAP_LEVELS; i-- > 0; ) {
826         size = MAX(BITS_TO_LONGS(size), 1);
827         if (hb->sizes[i] == size) {
828             break;
829         }
830         old = hb->sizes[i];
831         hb->sizes[i] = size;
832         hb->levels[i] = g_realloc(hb->levels[i], size * sizeof(unsigned long));
833         if (!shrink) {
834             memset(&hb->levels[i][old], 0x00,
835                    (size - old) * sizeof(*hb->levels[i]));
836         }
837     }
838     if (hb->meta) {
839         hbitmap_truncate(hb->meta, hb->size << hb->granularity);
840     }
841 }
842 
843 bool hbitmap_can_merge(const HBitmap *a, const HBitmap *b)
844 {
845     return (a->orig_size == b->orig_size);
846 }
847 
848 /**
849  * hbitmap_sparse_merge: performs dst = dst | src
850  * works with differing granularities.
851  * best used when src is sparsely populated.
852  */
853 static void hbitmap_sparse_merge(HBitmap *dst, const HBitmap *src)
854 {
855     int64_t offset;
856     int64_t count;
857 
858     for (offset = 0;
859          hbitmap_next_dirty_area(src, offset, src->orig_size, INT64_MAX,
860                                  &offset, &count);
861          offset += count)
862     {
863         hbitmap_set(dst, offset, count);
864     }
865 }
866 
867 /**
868  * Given HBitmaps A and B, let R := A (BITOR) B.
869  * Bitmaps A and B will not be modified,
870  *     except when bitmap R is an alias of A or B.
871  *
872  * @return true if the merge was successful,
873  *         false if it was not attempted.
874  */
875 bool hbitmap_merge(const HBitmap *a, const HBitmap *b, HBitmap *result)
876 {
877     int i;
878     uint64_t j;
879 
880     if (!hbitmap_can_merge(a, b) || !hbitmap_can_merge(a, result)) {
881         return false;
882     }
883     assert(hbitmap_can_merge(b, result));
884 
885     if ((!hbitmap_count(a) && result == b) ||
886         (!hbitmap_count(b) && result == a)) {
887         return true;
888     }
889 
890     if (!hbitmap_count(a) && !hbitmap_count(b)) {
891         hbitmap_reset_all(result);
892         return true;
893     }
894 
895     if (a->granularity != b->granularity) {
896         if ((a != result) && (b != result)) {
897             hbitmap_reset_all(result);
898         }
899         if (a != result) {
900             hbitmap_sparse_merge(result, a);
901         }
902         if (b != result) {
903             hbitmap_sparse_merge(result, b);
904         }
905         return true;
906     }
907 
908     /* This merge is O(size), as BITS_PER_LONG and HBITMAP_LEVELS are constant.
909      * It may be possible to improve running times for sparsely populated maps
910      * by using hbitmap_iter_next, but this is suboptimal for dense maps.
911      */
912     assert(a->size == b->size);
913     for (i = HBITMAP_LEVELS - 1; i >= 0; i--) {
914         for (j = 0; j < a->sizes[i]; j++) {
915             result->levels[i][j] = a->levels[i][j] | b->levels[i][j];
916         }
917     }
918 
919     /* Recompute the dirty count */
920     result->count = hb_count_between(result, 0, result->size - 1);
921 
922     return true;
923 }
924 
925 char *hbitmap_sha256(const HBitmap *bitmap, Error **errp)
926 {
927     size_t size = bitmap->sizes[HBITMAP_LEVELS - 1] * sizeof(unsigned long);
928     char *data = (char *)bitmap->levels[HBITMAP_LEVELS - 1];
929     char *hash = NULL;
930     qcrypto_hash_digest(QCRYPTO_HASH_ALG_SHA256, data, size, &hash, errp);
931 
932     return hash;
933 }
934