xref: /openbmc/qemu/util/bitmap.c (revision 6e99f5741ff1b408ea76e6caf2bd4f76df4060e9)
1 /*
2  * Bitmap Module
3  *
4  * Stolen from linux/src/lib/bitmap.c
5  *
6  * Copyright (C) 2010 Corentin Chary
7  *
8  * This source code is licensed under the GNU General Public License,
9  * Version 2.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/bitops.h"
14 #include "qemu/bitmap.h"
15 #include "qemu/atomic.h"
16 
17 /*
18  * bitmaps provide an array of bits, implemented using an
19  * array of unsigned longs.  The number of valid bits in a
20  * given bitmap does _not_ need to be an exact multiple of
21  * BITS_PER_LONG.
22  *
23  * The possible unused bits in the last, partially used word
24  * of a bitmap are 'don't care'.  The implementation makes
25  * no particular effort to keep them zero.  It ensures that
26  * their value will not affect the results of any operation.
27  * The bitmap operations that return Boolean (bitmap_empty,
28  * for example) or scalar (bitmap_weight, for example) results
29  * carefully filter out these unused bits from impacting their
30  * results.
31  *
32  * These operations actually hold to a slightly stronger rule:
33  * if you don't input any bitmaps to these ops that have some
34  * unused bits set, then they won't output any set unused bits
35  * in output bitmaps.
36  *
37  * The byte ordering of bitmaps is more natural on little
38  * endian architectures.
39  */
40 
41 int slow_bitmap_empty(const unsigned long *bitmap, long bits)
42 {
43     long k, lim = bits/BITS_PER_LONG;
44 
45     for (k = 0; k < lim; ++k) {
46         if (bitmap[k]) {
47             return 0;
48         }
49     }
50     if (bits % BITS_PER_LONG) {
51         if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) {
52             return 0;
53         }
54     }
55 
56     return 1;
57 }
58 
59 int slow_bitmap_full(const unsigned long *bitmap, long bits)
60 {
61     long k, lim = bits/BITS_PER_LONG;
62 
63     for (k = 0; k < lim; ++k) {
64         if (~bitmap[k]) {
65             return 0;
66         }
67     }
68 
69     if (bits % BITS_PER_LONG) {
70         if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) {
71             return 0;
72         }
73     }
74 
75     return 1;
76 }
77 
78 int slow_bitmap_equal(const unsigned long *bitmap1,
79                       const unsigned long *bitmap2, long bits)
80 {
81     long k, lim = bits/BITS_PER_LONG;
82 
83     for (k = 0; k < lim; ++k) {
84         if (bitmap1[k] != bitmap2[k]) {
85             return 0;
86         }
87     }
88 
89     if (bits % BITS_PER_LONG) {
90         if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) {
91             return 0;
92         }
93     }
94 
95     return 1;
96 }
97 
98 void slow_bitmap_complement(unsigned long *dst, const unsigned long *src,
99                             long bits)
100 {
101     long k, lim = bits/BITS_PER_LONG;
102 
103     for (k = 0; k < lim; ++k) {
104         dst[k] = ~src[k];
105     }
106 
107     if (bits % BITS_PER_LONG) {
108         dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
109     }
110 }
111 
112 int slow_bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
113                     const unsigned long *bitmap2, long bits)
114 {
115     long k;
116     long nr = BITS_TO_LONGS(bits);
117     unsigned long result = 0;
118 
119     for (k = 0; k < nr; k++) {
120         result |= (dst[k] = bitmap1[k] & bitmap2[k]);
121     }
122     return result != 0;
123 }
124 
125 void slow_bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
126                     const unsigned long *bitmap2, long bits)
127 {
128     long k;
129     long nr = BITS_TO_LONGS(bits);
130 
131     for (k = 0; k < nr; k++) {
132         dst[k] = bitmap1[k] | bitmap2[k];
133     }
134 }
135 
136 void slow_bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
137                      const unsigned long *bitmap2, long bits)
138 {
139     long k;
140     long nr = BITS_TO_LONGS(bits);
141 
142     for (k = 0; k < nr; k++) {
143         dst[k] = bitmap1[k] ^ bitmap2[k];
144     }
145 }
146 
147 int slow_bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
148                        const unsigned long *bitmap2, long bits)
149 {
150     long k;
151     long nr = BITS_TO_LONGS(bits);
152     unsigned long result = 0;
153 
154     for (k = 0; k < nr; k++) {
155         result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
156     }
157     return result != 0;
158 }
159 
160 void bitmap_set(unsigned long *map, long start, long nr)
161 {
162     unsigned long *p = map + BIT_WORD(start);
163     const long size = start + nr;
164     int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
165     unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
166 
167     while (nr - bits_to_set >= 0) {
168         *p |= mask_to_set;
169         nr -= bits_to_set;
170         bits_to_set = BITS_PER_LONG;
171         mask_to_set = ~0UL;
172         p++;
173     }
174     if (nr) {
175         mask_to_set &= BITMAP_LAST_WORD_MASK(size);
176         *p |= mask_to_set;
177     }
178 }
179 
180 void bitmap_set_atomic(unsigned long *map, long start, long nr)
181 {
182     unsigned long *p = map + BIT_WORD(start);
183     const long size = start + nr;
184     int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
185     unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
186 
187     /* First word */
188     if (nr - bits_to_set > 0) {
189         atomic_or(p, mask_to_set);
190         nr -= bits_to_set;
191         bits_to_set = BITS_PER_LONG;
192         mask_to_set = ~0UL;
193         p++;
194     }
195 
196     /* Full words */
197     if (bits_to_set == BITS_PER_LONG) {
198         while (nr >= BITS_PER_LONG) {
199             *p = ~0UL;
200             nr -= BITS_PER_LONG;
201             p++;
202         }
203     }
204 
205     /* Last word */
206     if (nr) {
207         mask_to_set &= BITMAP_LAST_WORD_MASK(size);
208         atomic_or(p, mask_to_set);
209     } else {
210         /* If we avoided the full barrier in atomic_or(), issue a
211          * barrier to account for the assignments in the while loop.
212          */
213         smp_mb();
214     }
215 }
216 
217 void bitmap_clear(unsigned long *map, long start, long nr)
218 {
219     unsigned long *p = map + BIT_WORD(start);
220     const long size = start + nr;
221     int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
222     unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
223 
224     while (nr - bits_to_clear >= 0) {
225         *p &= ~mask_to_clear;
226         nr -= bits_to_clear;
227         bits_to_clear = BITS_PER_LONG;
228         mask_to_clear = ~0UL;
229         p++;
230     }
231     if (nr) {
232         mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
233         *p &= ~mask_to_clear;
234     }
235 }
236 
237 bool bitmap_test_and_clear_atomic(unsigned long *map, long start, long nr)
238 {
239     unsigned long *p = map + BIT_WORD(start);
240     const long size = start + nr;
241     int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
242     unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
243     unsigned long dirty = 0;
244     unsigned long old_bits;
245 
246     /* First word */
247     if (nr - bits_to_clear > 0) {
248         old_bits = atomic_fetch_and(p, ~mask_to_clear);
249         dirty |= old_bits & mask_to_clear;
250         nr -= bits_to_clear;
251         bits_to_clear = BITS_PER_LONG;
252         mask_to_clear = ~0UL;
253         p++;
254     }
255 
256     /* Full words */
257     if (bits_to_clear == BITS_PER_LONG) {
258         while (nr >= BITS_PER_LONG) {
259             if (*p) {
260                 old_bits = atomic_xchg(p, 0);
261                 dirty |= old_bits;
262             }
263             nr -= BITS_PER_LONG;
264             p++;
265         }
266     }
267 
268     /* Last word */
269     if (nr) {
270         mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
271         old_bits = atomic_fetch_and(p, ~mask_to_clear);
272         dirty |= old_bits & mask_to_clear;
273     } else {
274         if (!dirty) {
275             smp_mb();
276         }
277     }
278 
279     return dirty != 0;
280 }
281 
282 #define ALIGN_MASK(x,mask)      (((x)+(mask))&~(mask))
283 
284 /**
285  * bitmap_find_next_zero_area - find a contiguous aligned zero area
286  * @map: The address to base the search on
287  * @size: The bitmap size in bits
288  * @start: The bitnumber to start searching at
289  * @nr: The number of zeroed bits we're looking for
290  * @align_mask: Alignment mask for zero area
291  *
292  * The @align_mask should be one less than a power of 2; the effect is that
293  * the bit offset of all zero areas this function finds is multiples of that
294  * power of 2. A @align_mask of 0 means no alignment is required.
295  */
296 unsigned long bitmap_find_next_zero_area(unsigned long *map,
297                                          unsigned long size,
298                                          unsigned long start,
299                                          unsigned long nr,
300                                          unsigned long align_mask)
301 {
302     unsigned long index, end, i;
303 again:
304     index = find_next_zero_bit(map, size, start);
305 
306     /* Align allocation */
307     index = ALIGN_MASK(index, align_mask);
308 
309     end = index + nr;
310     if (end > size) {
311         return end;
312     }
313     i = find_next_bit(map, end, index);
314     if (i < end) {
315         start = i + 1;
316         goto again;
317     }
318     return index;
319 }
320 
321 int slow_bitmap_intersects(const unsigned long *bitmap1,
322                            const unsigned long *bitmap2, long bits)
323 {
324     long k, lim = bits/BITS_PER_LONG;
325 
326     for (k = 0; k < lim; ++k) {
327         if (bitmap1[k] & bitmap2[k]) {
328             return 1;
329         }
330     }
331 
332     if (bits % BITS_PER_LONG) {
333         if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) {
334             return 1;
335         }
336     }
337     return 0;
338 }
339