1 /* 2 * Bitmap Module 3 * 4 * Stolen from linux/src/lib/bitmap.c 5 * 6 * Copyright (C) 2010 Corentin Chary 7 * 8 * This source code is licensed under the GNU General Public License, 9 * Version 2. 10 */ 11 12 #include "qemu/osdep.h" 13 #include "qemu/bitops.h" 14 #include "qemu/bitmap.h" 15 #include "qemu/atomic.h" 16 17 /* 18 * bitmaps provide an array of bits, implemented using an 19 * array of unsigned longs. The number of valid bits in a 20 * given bitmap does _not_ need to be an exact multiple of 21 * BITS_PER_LONG. 22 * 23 * The possible unused bits in the last, partially used word 24 * of a bitmap are 'don't care'. The implementation makes 25 * no particular effort to keep them zero. It ensures that 26 * their value will not affect the results of any operation. 27 * The bitmap operations that return Boolean (bitmap_empty, 28 * for example) or scalar (bitmap_weight, for example) results 29 * carefully filter out these unused bits from impacting their 30 * results. 31 * 32 * These operations actually hold to a slightly stronger rule: 33 * if you don't input any bitmaps to these ops that have some 34 * unused bits set, then they won't output any set unused bits 35 * in output bitmaps. 36 * 37 * The byte ordering of bitmaps is more natural on little 38 * endian architectures. 39 */ 40 41 int slow_bitmap_empty(const unsigned long *bitmap, long bits) 42 { 43 long k, lim = bits/BITS_PER_LONG; 44 45 for (k = 0; k < lim; ++k) { 46 if (bitmap[k]) { 47 return 0; 48 } 49 } 50 if (bits % BITS_PER_LONG) { 51 if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) { 52 return 0; 53 } 54 } 55 56 return 1; 57 } 58 59 int slow_bitmap_full(const unsigned long *bitmap, long bits) 60 { 61 long k, lim = bits/BITS_PER_LONG; 62 63 for (k = 0; k < lim; ++k) { 64 if (~bitmap[k]) { 65 return 0; 66 } 67 } 68 69 if (bits % BITS_PER_LONG) { 70 if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) { 71 return 0; 72 } 73 } 74 75 return 1; 76 } 77 78 int slow_bitmap_equal(const unsigned long *bitmap1, 79 const unsigned long *bitmap2, long bits) 80 { 81 long k, lim = bits/BITS_PER_LONG; 82 83 for (k = 0; k < lim; ++k) { 84 if (bitmap1[k] != bitmap2[k]) { 85 return 0; 86 } 87 } 88 89 if (bits % BITS_PER_LONG) { 90 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) { 91 return 0; 92 } 93 } 94 95 return 1; 96 } 97 98 void slow_bitmap_complement(unsigned long *dst, const unsigned long *src, 99 long bits) 100 { 101 long k, lim = bits/BITS_PER_LONG; 102 103 for (k = 0; k < lim; ++k) { 104 dst[k] = ~src[k]; 105 } 106 107 if (bits % BITS_PER_LONG) { 108 dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits); 109 } 110 } 111 112 int slow_bitmap_and(unsigned long *dst, const unsigned long *bitmap1, 113 const unsigned long *bitmap2, long bits) 114 { 115 long k; 116 long nr = BITS_TO_LONGS(bits); 117 unsigned long result = 0; 118 119 for (k = 0; k < nr; k++) { 120 result |= (dst[k] = bitmap1[k] & bitmap2[k]); 121 } 122 return result != 0; 123 } 124 125 void slow_bitmap_or(unsigned long *dst, const unsigned long *bitmap1, 126 const unsigned long *bitmap2, long bits) 127 { 128 long k; 129 long nr = BITS_TO_LONGS(bits); 130 131 for (k = 0; k < nr; k++) { 132 dst[k] = bitmap1[k] | bitmap2[k]; 133 } 134 } 135 136 void slow_bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, 137 const unsigned long *bitmap2, long bits) 138 { 139 long k; 140 long nr = BITS_TO_LONGS(bits); 141 142 for (k = 0; k < nr; k++) { 143 dst[k] = bitmap1[k] ^ bitmap2[k]; 144 } 145 } 146 147 int slow_bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, 148 const unsigned long *bitmap2, long bits) 149 { 150 long k; 151 long nr = BITS_TO_LONGS(bits); 152 unsigned long result = 0; 153 154 for (k = 0; k < nr; k++) { 155 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]); 156 } 157 return result != 0; 158 } 159 160 void bitmap_set(unsigned long *map, long start, long nr) 161 { 162 unsigned long *p = map + BIT_WORD(start); 163 const long size = start + nr; 164 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); 165 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); 166 167 while (nr - bits_to_set >= 0) { 168 *p |= mask_to_set; 169 nr -= bits_to_set; 170 bits_to_set = BITS_PER_LONG; 171 mask_to_set = ~0UL; 172 p++; 173 } 174 if (nr) { 175 mask_to_set &= BITMAP_LAST_WORD_MASK(size); 176 *p |= mask_to_set; 177 } 178 } 179 180 void bitmap_set_atomic(unsigned long *map, long start, long nr) 181 { 182 unsigned long *p = map + BIT_WORD(start); 183 const long size = start + nr; 184 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); 185 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); 186 187 /* First word */ 188 if (nr - bits_to_set > 0) { 189 atomic_or(p, mask_to_set); 190 nr -= bits_to_set; 191 bits_to_set = BITS_PER_LONG; 192 mask_to_set = ~0UL; 193 p++; 194 } 195 196 /* Full words */ 197 if (bits_to_set == BITS_PER_LONG) { 198 while (nr >= BITS_PER_LONG) { 199 *p = ~0UL; 200 nr -= BITS_PER_LONG; 201 p++; 202 } 203 } 204 205 /* Last word */ 206 if (nr) { 207 mask_to_set &= BITMAP_LAST_WORD_MASK(size); 208 atomic_or(p, mask_to_set); 209 } else { 210 /* If we avoided the full barrier in atomic_or(), issue a 211 * barrier to account for the assignments in the while loop. 212 */ 213 smp_mb(); 214 } 215 } 216 217 void bitmap_clear(unsigned long *map, long start, long nr) 218 { 219 unsigned long *p = map + BIT_WORD(start); 220 const long size = start + nr; 221 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); 222 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); 223 224 while (nr - bits_to_clear >= 0) { 225 *p &= ~mask_to_clear; 226 nr -= bits_to_clear; 227 bits_to_clear = BITS_PER_LONG; 228 mask_to_clear = ~0UL; 229 p++; 230 } 231 if (nr) { 232 mask_to_clear &= BITMAP_LAST_WORD_MASK(size); 233 *p &= ~mask_to_clear; 234 } 235 } 236 237 bool bitmap_test_and_clear_atomic(unsigned long *map, long start, long nr) 238 { 239 unsigned long *p = map + BIT_WORD(start); 240 const long size = start + nr; 241 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); 242 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); 243 unsigned long dirty = 0; 244 unsigned long old_bits; 245 246 /* First word */ 247 if (nr - bits_to_clear > 0) { 248 old_bits = atomic_fetch_and(p, ~mask_to_clear); 249 dirty |= old_bits & mask_to_clear; 250 nr -= bits_to_clear; 251 bits_to_clear = BITS_PER_LONG; 252 mask_to_clear = ~0UL; 253 p++; 254 } 255 256 /* Full words */ 257 if (bits_to_clear == BITS_PER_LONG) { 258 while (nr >= BITS_PER_LONG) { 259 if (*p) { 260 old_bits = atomic_xchg(p, 0); 261 dirty |= old_bits; 262 } 263 nr -= BITS_PER_LONG; 264 p++; 265 } 266 } 267 268 /* Last word */ 269 if (nr) { 270 mask_to_clear &= BITMAP_LAST_WORD_MASK(size); 271 old_bits = atomic_fetch_and(p, ~mask_to_clear); 272 dirty |= old_bits & mask_to_clear; 273 } else { 274 if (!dirty) { 275 smp_mb(); 276 } 277 } 278 279 return dirty != 0; 280 } 281 282 #define ALIGN_MASK(x,mask) (((x)+(mask))&~(mask)) 283 284 /** 285 * bitmap_find_next_zero_area - find a contiguous aligned zero area 286 * @map: The address to base the search on 287 * @size: The bitmap size in bits 288 * @start: The bitnumber to start searching at 289 * @nr: The number of zeroed bits we're looking for 290 * @align_mask: Alignment mask for zero area 291 * 292 * The @align_mask should be one less than a power of 2; the effect is that 293 * the bit offset of all zero areas this function finds is multiples of that 294 * power of 2. A @align_mask of 0 means no alignment is required. 295 */ 296 unsigned long bitmap_find_next_zero_area(unsigned long *map, 297 unsigned long size, 298 unsigned long start, 299 unsigned long nr, 300 unsigned long align_mask) 301 { 302 unsigned long index, end, i; 303 again: 304 index = find_next_zero_bit(map, size, start); 305 306 /* Align allocation */ 307 index = ALIGN_MASK(index, align_mask); 308 309 end = index + nr; 310 if (end > size) { 311 return end; 312 } 313 i = find_next_bit(map, end, index); 314 if (i < end) { 315 start = i + 1; 316 goto again; 317 } 318 return index; 319 } 320 321 int slow_bitmap_intersects(const unsigned long *bitmap1, 322 const unsigned long *bitmap2, long bits) 323 { 324 long k, lim = bits/BITS_PER_LONG; 325 326 for (k = 0; k < lim; ++k) { 327 if (bitmap1[k] & bitmap2[k]) { 328 return 1; 329 } 330 } 331 332 if (bits % BITS_PER_LONG) { 333 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) { 334 return 1; 335 } 336 } 337 return 0; 338 } 339