xref: /openbmc/qemu/tests/unit/test-crypto-hmac.c (revision 8092b51849499be97c42c0f1a832ade969e38724)
1 /*
2  * QEMU Crypto hmac algorithms tests
3  *
4  * Copyright (c) 2016 HUAWEI TECHNOLOGIES CO., LTD.
5  *
6  * Authors:
7  *    Longpeng(Mike) <longpeng2@huawei.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or
10  * (at your option) any later version.  See the COPYING file in the
11  * top-level directory.
12  *
13  */
14 
15 #include "qemu/osdep.h"
16 #include "crypto/init.h"
17 #include "crypto/hmac.h"
18 
19 #define INPUT_TEXT1 "ABCDEFGHIJKLMNOPQRSTUVWXY"
20 #define INPUT_TEXT2 "Zabcdefghijklmnopqrstuvwx"
21 #define INPUT_TEXT3 "yz0123456789"
22 #define INPUT_TEXT INPUT_TEXT1 \
23               INPUT_TEXT2 \
24               INPUT_TEXT3
25 
26 #define KEY "monkey monkey monkey monkey"
27 
28 typedef struct QCryptoHmacTestData QCryptoHmacTestData;
29 struct QCryptoHmacTestData {
30     QCryptoHashAlgorithm alg;
31     const char *hex_digest;
32 };
33 
34 static QCryptoHmacTestData test_data[] = {
35     {
36         .alg = QCRYPTO_HASH_ALG_MD5,
37         .hex_digest =
38             "ede9cb83679ba82d88fbeae865b3f8fc",
39     },
40     {
41         .alg = QCRYPTO_HASH_ALG_SHA1,
42         .hex_digest =
43             "c7b5a631e3aac975c4ededfcd346e469"
44             "dbc5f2d1",
45     },
46     {
47         .alg = QCRYPTO_HASH_ALG_SHA224,
48         .hex_digest =
49             "5f768179dbb29ca722875d0f461a2e2f"
50             "597d0210340a84df1a8e9c63",
51     },
52     {
53         .alg = QCRYPTO_HASH_ALG_SHA256,
54         .hex_digest =
55             "3798f363c57afa6edaffe39016ca7bad"
56             "efd1e670afb0e3987194307dec3197db",
57     },
58     {
59         .alg = QCRYPTO_HASH_ALG_SHA384,
60         .hex_digest =
61             "d218680a6032d33dccd9882d6a6a7164"
62             "64f26623be257a9b2919b185294f4a49"
63             "9e54b190bfd6bc5cedd2cd05c7e65e82",
64     },
65     {
66         .alg = QCRYPTO_HASH_ALG_SHA512,
67         .hex_digest =
68             "835a4f5b3750b4c1fccfa88da2f746a4"
69             "900160c9f18964309bb736c13b59491b"
70             "8e32d37b724cc5aebb0f554c6338a3b5"
71             "94c4ba26862b2dadb59b7ede1d08d53e",
72     },
73     {
74         .alg = QCRYPTO_HASH_ALG_RIPEMD160,
75         .hex_digest =
76             "94964ed4c1155b62b668c241d67279e5"
77             "8a711676",
78     },
79 };
80 
81 static const char hex[] = "0123456789abcdef";
82 
83 static void test_hmac_alloc(void)
84 {
85     size_t i;
86 
87     for (i = 0; i < G_N_ELEMENTS(test_data); i++) {
88         QCryptoHmacTestData *data = &test_data[i];
89         QCryptoHmac *hmac = NULL;
90         uint8_t *result = NULL;
91         size_t resultlen = 0;
92         const char *exp_output = NULL;
93         int ret;
94         size_t j;
95 
96         if (!qcrypto_hmac_supports(data->alg)) {
97             return;
98         }
99 
100         exp_output = data->hex_digest;
101 
102         hmac = qcrypto_hmac_new(data->alg, (const uint8_t *)KEY,
103                                 strlen(KEY), &error_fatal);
104         g_assert(hmac != NULL);
105 
106         ret = qcrypto_hmac_bytes(hmac, (const char *)INPUT_TEXT,
107                                  strlen(INPUT_TEXT), &result,
108                                  &resultlen, &error_fatal);
109         g_assert(ret == 0);
110 
111         for (j = 0; j < resultlen; j++) {
112             g_assert(exp_output[j * 2] == hex[(result[j] >> 4) & 0xf]);
113             g_assert(exp_output[j * 2 + 1] == hex[result[j] & 0xf]);
114         }
115 
116         qcrypto_hmac_free(hmac);
117 
118         g_free(result);
119     }
120 }
121 
122 static void test_hmac_prealloc(void)
123 {
124     size_t i;
125 
126     for (i = 0; i < G_N_ELEMENTS(test_data); i++) {
127         QCryptoHmacTestData *data = &test_data[i];
128         QCryptoHmac *hmac = NULL;
129         uint8_t *result = NULL;
130         size_t resultlen = 0;
131         const char *exp_output = NULL;
132         int ret;
133         size_t j;
134 
135         if (!qcrypto_hmac_supports(data->alg)) {
136             return;
137         }
138 
139         exp_output = data->hex_digest;
140 
141         resultlen = strlen(exp_output) / 2;
142         result = g_new0(uint8_t, resultlen);
143 
144         hmac = qcrypto_hmac_new(data->alg, (const uint8_t *)KEY,
145                                 strlen(KEY), &error_fatal);
146         g_assert(hmac != NULL);
147 
148         ret = qcrypto_hmac_bytes(hmac, (const char *)INPUT_TEXT,
149                                  strlen(INPUT_TEXT), &result,
150                                  &resultlen, &error_fatal);
151         g_assert(ret == 0);
152 
153         exp_output = data->hex_digest;
154         for (j = 0; j < resultlen; j++) {
155             g_assert(exp_output[j * 2] == hex[(result[j] >> 4) & 0xf]);
156             g_assert(exp_output[j * 2 + 1] == hex[result[j] & 0xf]);
157         }
158 
159         qcrypto_hmac_free(hmac);
160 
161         g_free(result);
162     }
163 }
164 
165 static void test_hmac_iov(void)
166 {
167     size_t i;
168 
169     for (i = 0; i < G_N_ELEMENTS(test_data); i++) {
170         QCryptoHmacTestData *data = &test_data[i];
171         QCryptoHmac *hmac = NULL;
172         uint8_t *result = NULL;
173         size_t resultlen = 0;
174         const char *exp_output = NULL;
175         int ret;
176         size_t j;
177         struct iovec iov[3] = {
178             { .iov_base = (char *)INPUT_TEXT1, .iov_len = strlen(INPUT_TEXT1) },
179             { .iov_base = (char *)INPUT_TEXT2, .iov_len = strlen(INPUT_TEXT2) },
180             { .iov_base = (char *)INPUT_TEXT3, .iov_len = strlen(INPUT_TEXT3) },
181         };
182 
183         if (!qcrypto_hmac_supports(data->alg)) {
184             return;
185         }
186 
187         exp_output = data->hex_digest;
188 
189         hmac = qcrypto_hmac_new(data->alg, (const uint8_t *)KEY,
190                                 strlen(KEY), &error_fatal);
191         g_assert(hmac != NULL);
192 
193         ret = qcrypto_hmac_bytesv(hmac, iov, 3, &result,
194                                   &resultlen, &error_fatal);
195         g_assert(ret == 0);
196 
197         for (j = 0; j < resultlen; j++) {
198             g_assert(exp_output[j * 2] == hex[(result[j] >> 4) & 0xf]);
199             g_assert(exp_output[j * 2 + 1] == hex[result[j] & 0xf]);
200         }
201 
202         qcrypto_hmac_free(hmac);
203 
204         g_free(result);
205     }
206 }
207 
208 static void test_hmac_digest(void)
209 {
210     size_t i;
211 
212     for (i = 0; i < G_N_ELEMENTS(test_data); i++) {
213         QCryptoHmacTestData *data = &test_data[i];
214         QCryptoHmac *hmac = NULL;
215         uint8_t *result = NULL;
216         const char *exp_output = NULL;
217         int ret;
218 
219         if (!qcrypto_hmac_supports(data->alg)) {
220             return;
221         }
222 
223         exp_output = data->hex_digest;
224 
225         hmac = qcrypto_hmac_new(data->alg, (const uint8_t *)KEY,
226                                 strlen(KEY), &error_fatal);
227         g_assert(hmac != NULL);
228 
229         ret = qcrypto_hmac_digest(hmac, (const char *)INPUT_TEXT,
230                                   strlen(INPUT_TEXT), (char **)&result,
231                                   &error_fatal);
232         g_assert(ret == 0);
233 
234         g_assert_cmpstr((const char *)result, ==, exp_output);
235 
236         qcrypto_hmac_free(hmac);
237 
238         g_free(result);
239     }
240 }
241 
242 int main(int argc, char **argv)
243 {
244     g_test_init(&argc, &argv, NULL);
245 
246     g_assert(qcrypto_init(NULL) == 0);
247 
248     g_test_add_func("/crypto/hmac/iov", test_hmac_iov);
249     g_test_add_func("/crypto/hmac/alloc", test_hmac_alloc);
250     g_test_add_func("/crypto/hmac/prealloc", test_hmac_prealloc);
251     g_test_add_func("/crypto/hmac/digest", test_hmac_digest);
252 
253     return g_test_run();
254 }
255