1 /* 2 * Tiny Code Generator for QEMU 3 * 4 * Copyright (c) 2008 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 /* define it to use liveness analysis (better code) */ 26 #define USE_TCG_OPTIMIZATIONS 27 28 #include "qemu/osdep.h" 29 30 /* Define to jump the ELF file used to communicate with GDB. */ 31 #undef DEBUG_JIT 32 33 #include "qemu/error-report.h" 34 #include "qemu/cutils.h" 35 #include "qemu/host-utils.h" 36 #include "qemu/timer.h" 37 38 /* Note: the long term plan is to reduce the dependencies on the QEMU 39 CPU definitions. Currently they are used for qemu_ld/st 40 instructions */ 41 #define NO_CPU_IO_DEFS 42 #include "cpu.h" 43 44 #include "exec/cpu-common.h" 45 #include "exec/exec-all.h" 46 47 #include "tcg-op.h" 48 49 #if UINTPTR_MAX == UINT32_MAX 50 # define ELF_CLASS ELFCLASS32 51 #else 52 # define ELF_CLASS ELFCLASS64 53 #endif 54 #ifdef HOST_WORDS_BIGENDIAN 55 # define ELF_DATA ELFDATA2MSB 56 #else 57 # define ELF_DATA ELFDATA2LSB 58 #endif 59 60 #include "elf.h" 61 #include "exec/log.h" 62 #include "sysemu/sysemu.h" 63 64 /* Forward declarations for functions declared in tcg-target.inc.c and 65 used here. */ 66 static void tcg_target_init(TCGContext *s); 67 static const TCGTargetOpDef *tcg_target_op_def(TCGOpcode); 68 static void tcg_target_qemu_prologue(TCGContext *s); 69 static bool patch_reloc(tcg_insn_unit *code_ptr, int type, 70 intptr_t value, intptr_t addend); 71 72 /* The CIE and FDE header definitions will be common to all hosts. */ 73 typedef struct { 74 uint32_t len __attribute__((aligned((sizeof(void *))))); 75 uint32_t id; 76 uint8_t version; 77 char augmentation[1]; 78 uint8_t code_align; 79 uint8_t data_align; 80 uint8_t return_column; 81 } DebugFrameCIE; 82 83 typedef struct QEMU_PACKED { 84 uint32_t len __attribute__((aligned((sizeof(void *))))); 85 uint32_t cie_offset; 86 uintptr_t func_start; 87 uintptr_t func_len; 88 } DebugFrameFDEHeader; 89 90 typedef struct QEMU_PACKED { 91 DebugFrameCIE cie; 92 DebugFrameFDEHeader fde; 93 } DebugFrameHeader; 94 95 static void tcg_register_jit_int(void *buf, size_t size, 96 const void *debug_frame, 97 size_t debug_frame_size) 98 __attribute__((unused)); 99 100 /* Forward declarations for functions declared and used in tcg-target.inc.c. */ 101 static const char *target_parse_constraint(TCGArgConstraint *ct, 102 const char *ct_str, TCGType type); 103 static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg1, 104 intptr_t arg2); 105 static void tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg); 106 static void tcg_out_movi(TCGContext *s, TCGType type, 107 TCGReg ret, tcg_target_long arg); 108 static void tcg_out_op(TCGContext *s, TCGOpcode opc, const TCGArg *args, 109 const int *const_args); 110 #if TCG_TARGET_MAYBE_vec 111 static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc, unsigned vecl, 112 unsigned vece, const TCGArg *args, 113 const int *const_args); 114 #else 115 static inline void tcg_out_vec_op(TCGContext *s, TCGOpcode opc, unsigned vecl, 116 unsigned vece, const TCGArg *args, 117 const int *const_args) 118 { 119 g_assert_not_reached(); 120 } 121 #endif 122 static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg, TCGReg arg1, 123 intptr_t arg2); 124 static bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val, 125 TCGReg base, intptr_t ofs); 126 static void tcg_out_call(TCGContext *s, tcg_insn_unit *target); 127 static int tcg_target_const_match(tcg_target_long val, TCGType type, 128 const TCGArgConstraint *arg_ct); 129 #ifdef TCG_TARGET_NEED_LDST_LABELS 130 static bool tcg_out_ldst_finalize(TCGContext *s); 131 #endif 132 133 #define TCG_HIGHWATER 1024 134 135 static TCGContext **tcg_ctxs; 136 static unsigned int n_tcg_ctxs; 137 TCGv_env cpu_env = 0; 138 139 struct tcg_region_tree { 140 QemuMutex lock; 141 GTree *tree; 142 /* padding to avoid false sharing is computed at run-time */ 143 }; 144 145 /* 146 * We divide code_gen_buffer into equally-sized "regions" that TCG threads 147 * dynamically allocate from as demand dictates. Given appropriate region 148 * sizing, this minimizes flushes even when some TCG threads generate a lot 149 * more code than others. 150 */ 151 struct tcg_region_state { 152 QemuMutex lock; 153 154 /* fields set at init time */ 155 void *start; 156 void *start_aligned; 157 void *end; 158 size_t n; 159 size_t size; /* size of one region */ 160 size_t stride; /* .size + guard size */ 161 162 /* fields protected by the lock */ 163 size_t current; /* current region index */ 164 size_t agg_size_full; /* aggregate size of full regions */ 165 }; 166 167 static struct tcg_region_state region; 168 /* 169 * This is an array of struct tcg_region_tree's, with padding. 170 * We use void * to simplify the computation of region_trees[i]; each 171 * struct is found every tree_size bytes. 172 */ 173 static void *region_trees; 174 static size_t tree_size; 175 static TCGRegSet tcg_target_available_regs[TCG_TYPE_COUNT]; 176 static TCGRegSet tcg_target_call_clobber_regs; 177 178 #if TCG_TARGET_INSN_UNIT_SIZE == 1 179 static __attribute__((unused)) inline void tcg_out8(TCGContext *s, uint8_t v) 180 { 181 *s->code_ptr++ = v; 182 } 183 184 static __attribute__((unused)) inline void tcg_patch8(tcg_insn_unit *p, 185 uint8_t v) 186 { 187 *p = v; 188 } 189 #endif 190 191 #if TCG_TARGET_INSN_UNIT_SIZE <= 2 192 static __attribute__((unused)) inline void tcg_out16(TCGContext *s, uint16_t v) 193 { 194 if (TCG_TARGET_INSN_UNIT_SIZE == 2) { 195 *s->code_ptr++ = v; 196 } else { 197 tcg_insn_unit *p = s->code_ptr; 198 memcpy(p, &v, sizeof(v)); 199 s->code_ptr = p + (2 / TCG_TARGET_INSN_UNIT_SIZE); 200 } 201 } 202 203 static __attribute__((unused)) inline void tcg_patch16(tcg_insn_unit *p, 204 uint16_t v) 205 { 206 if (TCG_TARGET_INSN_UNIT_SIZE == 2) { 207 *p = v; 208 } else { 209 memcpy(p, &v, sizeof(v)); 210 } 211 } 212 #endif 213 214 #if TCG_TARGET_INSN_UNIT_SIZE <= 4 215 static __attribute__((unused)) inline void tcg_out32(TCGContext *s, uint32_t v) 216 { 217 if (TCG_TARGET_INSN_UNIT_SIZE == 4) { 218 *s->code_ptr++ = v; 219 } else { 220 tcg_insn_unit *p = s->code_ptr; 221 memcpy(p, &v, sizeof(v)); 222 s->code_ptr = p + (4 / TCG_TARGET_INSN_UNIT_SIZE); 223 } 224 } 225 226 static __attribute__((unused)) inline void tcg_patch32(tcg_insn_unit *p, 227 uint32_t v) 228 { 229 if (TCG_TARGET_INSN_UNIT_SIZE == 4) { 230 *p = v; 231 } else { 232 memcpy(p, &v, sizeof(v)); 233 } 234 } 235 #endif 236 237 #if TCG_TARGET_INSN_UNIT_SIZE <= 8 238 static __attribute__((unused)) inline void tcg_out64(TCGContext *s, uint64_t v) 239 { 240 if (TCG_TARGET_INSN_UNIT_SIZE == 8) { 241 *s->code_ptr++ = v; 242 } else { 243 tcg_insn_unit *p = s->code_ptr; 244 memcpy(p, &v, sizeof(v)); 245 s->code_ptr = p + (8 / TCG_TARGET_INSN_UNIT_SIZE); 246 } 247 } 248 249 static __attribute__((unused)) inline void tcg_patch64(tcg_insn_unit *p, 250 uint64_t v) 251 { 252 if (TCG_TARGET_INSN_UNIT_SIZE == 8) { 253 *p = v; 254 } else { 255 memcpy(p, &v, sizeof(v)); 256 } 257 } 258 #endif 259 260 /* label relocation processing */ 261 262 static void tcg_out_reloc(TCGContext *s, tcg_insn_unit *code_ptr, int type, 263 TCGLabel *l, intptr_t addend) 264 { 265 TCGRelocation *r; 266 267 if (l->has_value) { 268 /* FIXME: This may break relocations on RISC targets that 269 modify instruction fields in place. The caller may not have 270 written the initial value. */ 271 bool ok = patch_reloc(code_ptr, type, l->u.value, addend); 272 tcg_debug_assert(ok); 273 } else { 274 /* add a new relocation entry */ 275 r = tcg_malloc(sizeof(TCGRelocation)); 276 r->type = type; 277 r->ptr = code_ptr; 278 r->addend = addend; 279 r->next = l->u.first_reloc; 280 l->u.first_reloc = r; 281 } 282 } 283 284 static void tcg_out_label(TCGContext *s, TCGLabel *l, tcg_insn_unit *ptr) 285 { 286 intptr_t value = (intptr_t)ptr; 287 TCGRelocation *r; 288 289 tcg_debug_assert(!l->has_value); 290 291 for (r = l->u.first_reloc; r != NULL; r = r->next) { 292 bool ok = patch_reloc(r->ptr, r->type, value, r->addend); 293 tcg_debug_assert(ok); 294 } 295 296 l->has_value = 1; 297 l->u.value_ptr = ptr; 298 } 299 300 TCGLabel *gen_new_label(void) 301 { 302 TCGContext *s = tcg_ctx; 303 TCGLabel *l = tcg_malloc(sizeof(TCGLabel)); 304 305 *l = (TCGLabel){ 306 .id = s->nb_labels++ 307 }; 308 309 return l; 310 } 311 312 static void set_jmp_reset_offset(TCGContext *s, int which) 313 { 314 size_t off = tcg_current_code_size(s); 315 s->tb_jmp_reset_offset[which] = off; 316 /* Make sure that we didn't overflow the stored offset. */ 317 assert(s->tb_jmp_reset_offset[which] == off); 318 } 319 320 #include "tcg-target.inc.c" 321 322 /* compare a pointer @ptr and a tb_tc @s */ 323 static int ptr_cmp_tb_tc(const void *ptr, const struct tb_tc *s) 324 { 325 if (ptr >= s->ptr + s->size) { 326 return 1; 327 } else if (ptr < s->ptr) { 328 return -1; 329 } 330 return 0; 331 } 332 333 static gint tb_tc_cmp(gconstpointer ap, gconstpointer bp) 334 { 335 const struct tb_tc *a = ap; 336 const struct tb_tc *b = bp; 337 338 /* 339 * When both sizes are set, we know this isn't a lookup. 340 * This is the most likely case: every TB must be inserted; lookups 341 * are a lot less frequent. 342 */ 343 if (likely(a->size && b->size)) { 344 if (a->ptr > b->ptr) { 345 return 1; 346 } else if (a->ptr < b->ptr) { 347 return -1; 348 } 349 /* a->ptr == b->ptr should happen only on deletions */ 350 g_assert(a->size == b->size); 351 return 0; 352 } 353 /* 354 * All lookups have either .size field set to 0. 355 * From the glib sources we see that @ap is always the lookup key. However 356 * the docs provide no guarantee, so we just mark this case as likely. 357 */ 358 if (likely(a->size == 0)) { 359 return ptr_cmp_tb_tc(a->ptr, b); 360 } 361 return ptr_cmp_tb_tc(b->ptr, a); 362 } 363 364 static void tcg_region_trees_init(void) 365 { 366 size_t i; 367 368 tree_size = ROUND_UP(sizeof(struct tcg_region_tree), qemu_dcache_linesize); 369 region_trees = qemu_memalign(qemu_dcache_linesize, region.n * tree_size); 370 for (i = 0; i < region.n; i++) { 371 struct tcg_region_tree *rt = region_trees + i * tree_size; 372 373 qemu_mutex_init(&rt->lock); 374 rt->tree = g_tree_new(tb_tc_cmp); 375 } 376 } 377 378 static struct tcg_region_tree *tc_ptr_to_region_tree(void *p) 379 { 380 size_t region_idx; 381 382 if (p < region.start_aligned) { 383 region_idx = 0; 384 } else { 385 ptrdiff_t offset = p - region.start_aligned; 386 387 if (offset > region.stride * (region.n - 1)) { 388 region_idx = region.n - 1; 389 } else { 390 region_idx = offset / region.stride; 391 } 392 } 393 return region_trees + region_idx * tree_size; 394 } 395 396 void tcg_tb_insert(TranslationBlock *tb) 397 { 398 struct tcg_region_tree *rt = tc_ptr_to_region_tree(tb->tc.ptr); 399 400 qemu_mutex_lock(&rt->lock); 401 g_tree_insert(rt->tree, &tb->tc, tb); 402 qemu_mutex_unlock(&rt->lock); 403 } 404 405 void tcg_tb_remove(TranslationBlock *tb) 406 { 407 struct tcg_region_tree *rt = tc_ptr_to_region_tree(tb->tc.ptr); 408 409 qemu_mutex_lock(&rt->lock); 410 g_tree_remove(rt->tree, &tb->tc); 411 qemu_mutex_unlock(&rt->lock); 412 } 413 414 /* 415 * Find the TB 'tb' such that 416 * tb->tc.ptr <= tc_ptr < tb->tc.ptr + tb->tc.size 417 * Return NULL if not found. 418 */ 419 TranslationBlock *tcg_tb_lookup(uintptr_t tc_ptr) 420 { 421 struct tcg_region_tree *rt = tc_ptr_to_region_tree((void *)tc_ptr); 422 TranslationBlock *tb; 423 struct tb_tc s = { .ptr = (void *)tc_ptr }; 424 425 qemu_mutex_lock(&rt->lock); 426 tb = g_tree_lookup(rt->tree, &s); 427 qemu_mutex_unlock(&rt->lock); 428 return tb; 429 } 430 431 static void tcg_region_tree_lock_all(void) 432 { 433 size_t i; 434 435 for (i = 0; i < region.n; i++) { 436 struct tcg_region_tree *rt = region_trees + i * tree_size; 437 438 qemu_mutex_lock(&rt->lock); 439 } 440 } 441 442 static void tcg_region_tree_unlock_all(void) 443 { 444 size_t i; 445 446 for (i = 0; i < region.n; i++) { 447 struct tcg_region_tree *rt = region_trees + i * tree_size; 448 449 qemu_mutex_unlock(&rt->lock); 450 } 451 } 452 453 void tcg_tb_foreach(GTraverseFunc func, gpointer user_data) 454 { 455 size_t i; 456 457 tcg_region_tree_lock_all(); 458 for (i = 0; i < region.n; i++) { 459 struct tcg_region_tree *rt = region_trees + i * tree_size; 460 461 g_tree_foreach(rt->tree, func, user_data); 462 } 463 tcg_region_tree_unlock_all(); 464 } 465 466 size_t tcg_nb_tbs(void) 467 { 468 size_t nb_tbs = 0; 469 size_t i; 470 471 tcg_region_tree_lock_all(); 472 for (i = 0; i < region.n; i++) { 473 struct tcg_region_tree *rt = region_trees + i * tree_size; 474 475 nb_tbs += g_tree_nnodes(rt->tree); 476 } 477 tcg_region_tree_unlock_all(); 478 return nb_tbs; 479 } 480 481 static void tcg_region_tree_reset_all(void) 482 { 483 size_t i; 484 485 tcg_region_tree_lock_all(); 486 for (i = 0; i < region.n; i++) { 487 struct tcg_region_tree *rt = region_trees + i * tree_size; 488 489 /* Increment the refcount first so that destroy acts as a reset */ 490 g_tree_ref(rt->tree); 491 g_tree_destroy(rt->tree); 492 } 493 tcg_region_tree_unlock_all(); 494 } 495 496 static void tcg_region_bounds(size_t curr_region, void **pstart, void **pend) 497 { 498 void *start, *end; 499 500 start = region.start_aligned + curr_region * region.stride; 501 end = start + region.size; 502 503 if (curr_region == 0) { 504 start = region.start; 505 } 506 if (curr_region == region.n - 1) { 507 end = region.end; 508 } 509 510 *pstart = start; 511 *pend = end; 512 } 513 514 static void tcg_region_assign(TCGContext *s, size_t curr_region) 515 { 516 void *start, *end; 517 518 tcg_region_bounds(curr_region, &start, &end); 519 520 s->code_gen_buffer = start; 521 s->code_gen_ptr = start; 522 s->code_gen_buffer_size = end - start; 523 s->code_gen_highwater = end - TCG_HIGHWATER; 524 } 525 526 static bool tcg_region_alloc__locked(TCGContext *s) 527 { 528 if (region.current == region.n) { 529 return true; 530 } 531 tcg_region_assign(s, region.current); 532 region.current++; 533 return false; 534 } 535 536 /* 537 * Request a new region once the one in use has filled up. 538 * Returns true on error. 539 */ 540 static bool tcg_region_alloc(TCGContext *s) 541 { 542 bool err; 543 /* read the region size now; alloc__locked will overwrite it on success */ 544 size_t size_full = s->code_gen_buffer_size; 545 546 qemu_mutex_lock(®ion.lock); 547 err = tcg_region_alloc__locked(s); 548 if (!err) { 549 region.agg_size_full += size_full - TCG_HIGHWATER; 550 } 551 qemu_mutex_unlock(®ion.lock); 552 return err; 553 } 554 555 /* 556 * Perform a context's first region allocation. 557 * This function does _not_ increment region.agg_size_full. 558 */ 559 static inline bool tcg_region_initial_alloc__locked(TCGContext *s) 560 { 561 return tcg_region_alloc__locked(s); 562 } 563 564 /* Call from a safe-work context */ 565 void tcg_region_reset_all(void) 566 { 567 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs); 568 unsigned int i; 569 570 qemu_mutex_lock(®ion.lock); 571 region.current = 0; 572 region.agg_size_full = 0; 573 574 for (i = 0; i < n_ctxs; i++) { 575 TCGContext *s = atomic_read(&tcg_ctxs[i]); 576 bool err = tcg_region_initial_alloc__locked(s); 577 578 g_assert(!err); 579 } 580 qemu_mutex_unlock(®ion.lock); 581 582 tcg_region_tree_reset_all(); 583 } 584 585 #ifdef CONFIG_USER_ONLY 586 static size_t tcg_n_regions(void) 587 { 588 return 1; 589 } 590 #else 591 /* 592 * It is likely that some vCPUs will translate more code than others, so we 593 * first try to set more regions than max_cpus, with those regions being of 594 * reasonable size. If that's not possible we make do by evenly dividing 595 * the code_gen_buffer among the vCPUs. 596 */ 597 static size_t tcg_n_regions(void) 598 { 599 size_t i; 600 601 /* Use a single region if all we have is one vCPU thread */ 602 if (max_cpus == 1 || !qemu_tcg_mttcg_enabled()) { 603 return 1; 604 } 605 606 /* Try to have more regions than max_cpus, with each region being >= 2 MB */ 607 for (i = 8; i > 0; i--) { 608 size_t regions_per_thread = i; 609 size_t region_size; 610 611 region_size = tcg_init_ctx.code_gen_buffer_size; 612 region_size /= max_cpus * regions_per_thread; 613 614 if (region_size >= 2 * 1024u * 1024) { 615 return max_cpus * regions_per_thread; 616 } 617 } 618 /* If we can't, then just allocate one region per vCPU thread */ 619 return max_cpus; 620 } 621 #endif 622 623 /* 624 * Initializes region partitioning. 625 * 626 * Called at init time from the parent thread (i.e. the one calling 627 * tcg_context_init), after the target's TCG globals have been set. 628 * 629 * Region partitioning works by splitting code_gen_buffer into separate regions, 630 * and then assigning regions to TCG threads so that the threads can translate 631 * code in parallel without synchronization. 632 * 633 * In softmmu the number of TCG threads is bounded by max_cpus, so we use at 634 * least max_cpus regions in MTTCG. In !MTTCG we use a single region. 635 * Note that the TCG options from the command-line (i.e. -accel accel=tcg,[...]) 636 * must have been parsed before calling this function, since it calls 637 * qemu_tcg_mttcg_enabled(). 638 * 639 * In user-mode we use a single region. Having multiple regions in user-mode 640 * is not supported, because the number of vCPU threads (recall that each thread 641 * spawned by the guest corresponds to a vCPU thread) is only bounded by the 642 * OS, and usually this number is huge (tens of thousands is not uncommon). 643 * Thus, given this large bound on the number of vCPU threads and the fact 644 * that code_gen_buffer is allocated at compile-time, we cannot guarantee 645 * that the availability of at least one region per vCPU thread. 646 * 647 * However, this user-mode limitation is unlikely to be a significant problem 648 * in practice. Multi-threaded guests share most if not all of their translated 649 * code, which makes parallel code generation less appealing than in softmmu. 650 */ 651 void tcg_region_init(void) 652 { 653 void *buf = tcg_init_ctx.code_gen_buffer; 654 void *aligned; 655 size_t size = tcg_init_ctx.code_gen_buffer_size; 656 size_t page_size = qemu_real_host_page_size; 657 size_t region_size; 658 size_t n_regions; 659 size_t i; 660 661 n_regions = tcg_n_regions(); 662 663 /* The first region will be 'aligned - buf' bytes larger than the others */ 664 aligned = QEMU_ALIGN_PTR_UP(buf, page_size); 665 g_assert(aligned < tcg_init_ctx.code_gen_buffer + size); 666 /* 667 * Make region_size a multiple of page_size, using aligned as the start. 668 * As a result of this we might end up with a few extra pages at the end of 669 * the buffer; we will assign those to the last region. 670 */ 671 region_size = (size - (aligned - buf)) / n_regions; 672 region_size = QEMU_ALIGN_DOWN(region_size, page_size); 673 674 /* A region must have at least 2 pages; one code, one guard */ 675 g_assert(region_size >= 2 * page_size); 676 677 /* init the region struct */ 678 qemu_mutex_init(®ion.lock); 679 region.n = n_regions; 680 region.size = region_size - page_size; 681 region.stride = region_size; 682 region.start = buf; 683 region.start_aligned = aligned; 684 /* page-align the end, since its last page will be a guard page */ 685 region.end = QEMU_ALIGN_PTR_DOWN(buf + size, page_size); 686 /* account for that last guard page */ 687 region.end -= page_size; 688 689 /* set guard pages */ 690 for (i = 0; i < region.n; i++) { 691 void *start, *end; 692 int rc; 693 694 tcg_region_bounds(i, &start, &end); 695 rc = qemu_mprotect_none(end, page_size); 696 g_assert(!rc); 697 } 698 699 tcg_region_trees_init(); 700 701 /* In user-mode we support only one ctx, so do the initial allocation now */ 702 #ifdef CONFIG_USER_ONLY 703 { 704 bool err = tcg_region_initial_alloc__locked(tcg_ctx); 705 706 g_assert(!err); 707 } 708 #endif 709 } 710 711 /* 712 * All TCG threads except the parent (i.e. the one that called tcg_context_init 713 * and registered the target's TCG globals) must register with this function 714 * before initiating translation. 715 * 716 * In user-mode we just point tcg_ctx to tcg_init_ctx. See the documentation 717 * of tcg_region_init() for the reasoning behind this. 718 * 719 * In softmmu each caller registers its context in tcg_ctxs[]. Note that in 720 * softmmu tcg_ctxs[] does not track tcg_ctx_init, since the initial context 721 * is not used anymore for translation once this function is called. 722 * 723 * Not tracking tcg_init_ctx in tcg_ctxs[] in softmmu keeps code that iterates 724 * over the array (e.g. tcg_code_size() the same for both softmmu and user-mode. 725 */ 726 #ifdef CONFIG_USER_ONLY 727 void tcg_register_thread(void) 728 { 729 tcg_ctx = &tcg_init_ctx; 730 } 731 #else 732 void tcg_register_thread(void) 733 { 734 TCGContext *s = g_malloc(sizeof(*s)); 735 unsigned int i, n; 736 bool err; 737 738 *s = tcg_init_ctx; 739 740 /* Relink mem_base. */ 741 for (i = 0, n = tcg_init_ctx.nb_globals; i < n; ++i) { 742 if (tcg_init_ctx.temps[i].mem_base) { 743 ptrdiff_t b = tcg_init_ctx.temps[i].mem_base - tcg_init_ctx.temps; 744 tcg_debug_assert(b >= 0 && b < n); 745 s->temps[i].mem_base = &s->temps[b]; 746 } 747 } 748 749 /* Claim an entry in tcg_ctxs */ 750 n = atomic_fetch_inc(&n_tcg_ctxs); 751 g_assert(n < max_cpus); 752 atomic_set(&tcg_ctxs[n], s); 753 754 tcg_ctx = s; 755 qemu_mutex_lock(®ion.lock); 756 err = tcg_region_initial_alloc__locked(tcg_ctx); 757 g_assert(!err); 758 qemu_mutex_unlock(®ion.lock); 759 } 760 #endif /* !CONFIG_USER_ONLY */ 761 762 /* 763 * Returns the size (in bytes) of all translated code (i.e. from all regions) 764 * currently in the cache. 765 * See also: tcg_code_capacity() 766 * Do not confuse with tcg_current_code_size(); that one applies to a single 767 * TCG context. 768 */ 769 size_t tcg_code_size(void) 770 { 771 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs); 772 unsigned int i; 773 size_t total; 774 775 qemu_mutex_lock(®ion.lock); 776 total = region.agg_size_full; 777 for (i = 0; i < n_ctxs; i++) { 778 const TCGContext *s = atomic_read(&tcg_ctxs[i]); 779 size_t size; 780 781 size = atomic_read(&s->code_gen_ptr) - s->code_gen_buffer; 782 g_assert(size <= s->code_gen_buffer_size); 783 total += size; 784 } 785 qemu_mutex_unlock(®ion.lock); 786 return total; 787 } 788 789 /* 790 * Returns the code capacity (in bytes) of the entire cache, i.e. including all 791 * regions. 792 * See also: tcg_code_size() 793 */ 794 size_t tcg_code_capacity(void) 795 { 796 size_t guard_size, capacity; 797 798 /* no need for synchronization; these variables are set at init time */ 799 guard_size = region.stride - region.size; 800 capacity = region.end + guard_size - region.start; 801 capacity -= region.n * (guard_size + TCG_HIGHWATER); 802 return capacity; 803 } 804 805 size_t tcg_tb_phys_invalidate_count(void) 806 { 807 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs); 808 unsigned int i; 809 size_t total = 0; 810 811 for (i = 0; i < n_ctxs; i++) { 812 const TCGContext *s = atomic_read(&tcg_ctxs[i]); 813 814 total += atomic_read(&s->tb_phys_invalidate_count); 815 } 816 return total; 817 } 818 819 /* pool based memory allocation */ 820 void *tcg_malloc_internal(TCGContext *s, int size) 821 { 822 TCGPool *p; 823 int pool_size; 824 825 if (size > TCG_POOL_CHUNK_SIZE) { 826 /* big malloc: insert a new pool (XXX: could optimize) */ 827 p = g_malloc(sizeof(TCGPool) + size); 828 p->size = size; 829 p->next = s->pool_first_large; 830 s->pool_first_large = p; 831 return p->data; 832 } else { 833 p = s->pool_current; 834 if (!p) { 835 p = s->pool_first; 836 if (!p) 837 goto new_pool; 838 } else { 839 if (!p->next) { 840 new_pool: 841 pool_size = TCG_POOL_CHUNK_SIZE; 842 p = g_malloc(sizeof(TCGPool) + pool_size); 843 p->size = pool_size; 844 p->next = NULL; 845 if (s->pool_current) 846 s->pool_current->next = p; 847 else 848 s->pool_first = p; 849 } else { 850 p = p->next; 851 } 852 } 853 } 854 s->pool_current = p; 855 s->pool_cur = p->data + size; 856 s->pool_end = p->data + p->size; 857 return p->data; 858 } 859 860 void tcg_pool_reset(TCGContext *s) 861 { 862 TCGPool *p, *t; 863 for (p = s->pool_first_large; p; p = t) { 864 t = p->next; 865 g_free(p); 866 } 867 s->pool_first_large = NULL; 868 s->pool_cur = s->pool_end = NULL; 869 s->pool_current = NULL; 870 } 871 872 typedef struct TCGHelperInfo { 873 void *func; 874 const char *name; 875 unsigned flags; 876 unsigned sizemask; 877 } TCGHelperInfo; 878 879 #include "exec/helper-proto.h" 880 881 static const TCGHelperInfo all_helpers[] = { 882 #include "exec/helper-tcg.h" 883 }; 884 static GHashTable *helper_table; 885 886 static int indirect_reg_alloc_order[ARRAY_SIZE(tcg_target_reg_alloc_order)]; 887 static void process_op_defs(TCGContext *s); 888 static TCGTemp *tcg_global_reg_new_internal(TCGContext *s, TCGType type, 889 TCGReg reg, const char *name); 890 891 void tcg_context_init(TCGContext *s) 892 { 893 int op, total_args, n, i; 894 TCGOpDef *def; 895 TCGArgConstraint *args_ct; 896 int *sorted_args; 897 TCGTemp *ts; 898 899 memset(s, 0, sizeof(*s)); 900 s->nb_globals = 0; 901 902 /* Count total number of arguments and allocate the corresponding 903 space */ 904 total_args = 0; 905 for(op = 0; op < NB_OPS; op++) { 906 def = &tcg_op_defs[op]; 907 n = def->nb_iargs + def->nb_oargs; 908 total_args += n; 909 } 910 911 args_ct = g_malloc(sizeof(TCGArgConstraint) * total_args); 912 sorted_args = g_malloc(sizeof(int) * total_args); 913 914 for(op = 0; op < NB_OPS; op++) { 915 def = &tcg_op_defs[op]; 916 def->args_ct = args_ct; 917 def->sorted_args = sorted_args; 918 n = def->nb_iargs + def->nb_oargs; 919 sorted_args += n; 920 args_ct += n; 921 } 922 923 /* Register helpers. */ 924 /* Use g_direct_hash/equal for direct pointer comparisons on func. */ 925 helper_table = g_hash_table_new(NULL, NULL); 926 927 for (i = 0; i < ARRAY_SIZE(all_helpers); ++i) { 928 g_hash_table_insert(helper_table, (gpointer)all_helpers[i].func, 929 (gpointer)&all_helpers[i]); 930 } 931 932 tcg_target_init(s); 933 process_op_defs(s); 934 935 /* Reverse the order of the saved registers, assuming they're all at 936 the start of tcg_target_reg_alloc_order. */ 937 for (n = 0; n < ARRAY_SIZE(tcg_target_reg_alloc_order); ++n) { 938 int r = tcg_target_reg_alloc_order[n]; 939 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, r)) { 940 break; 941 } 942 } 943 for (i = 0; i < n; ++i) { 944 indirect_reg_alloc_order[i] = tcg_target_reg_alloc_order[n - 1 - i]; 945 } 946 for (; i < ARRAY_SIZE(tcg_target_reg_alloc_order); ++i) { 947 indirect_reg_alloc_order[i] = tcg_target_reg_alloc_order[i]; 948 } 949 950 tcg_ctx = s; 951 /* 952 * In user-mode we simply share the init context among threads, since we 953 * use a single region. See the documentation tcg_region_init() for the 954 * reasoning behind this. 955 * In softmmu we will have at most max_cpus TCG threads. 956 */ 957 #ifdef CONFIG_USER_ONLY 958 tcg_ctxs = &tcg_ctx; 959 n_tcg_ctxs = 1; 960 #else 961 tcg_ctxs = g_new(TCGContext *, max_cpus); 962 #endif 963 964 tcg_debug_assert(!tcg_regset_test_reg(s->reserved_regs, TCG_AREG0)); 965 ts = tcg_global_reg_new_internal(s, TCG_TYPE_PTR, TCG_AREG0, "env"); 966 cpu_env = temp_tcgv_ptr(ts); 967 } 968 969 /* 970 * Allocate TBs right before their corresponding translated code, making 971 * sure that TBs and code are on different cache lines. 972 */ 973 TranslationBlock *tcg_tb_alloc(TCGContext *s) 974 { 975 uintptr_t align = qemu_icache_linesize; 976 TranslationBlock *tb; 977 void *next; 978 979 retry: 980 tb = (void *)ROUND_UP((uintptr_t)s->code_gen_ptr, align); 981 next = (void *)ROUND_UP((uintptr_t)(tb + 1), align); 982 983 if (unlikely(next > s->code_gen_highwater)) { 984 if (tcg_region_alloc(s)) { 985 return NULL; 986 } 987 goto retry; 988 } 989 atomic_set(&s->code_gen_ptr, next); 990 s->data_gen_ptr = NULL; 991 return tb; 992 } 993 994 void tcg_prologue_init(TCGContext *s) 995 { 996 size_t prologue_size, total_size; 997 void *buf0, *buf1; 998 999 /* Put the prologue at the beginning of code_gen_buffer. */ 1000 buf0 = s->code_gen_buffer; 1001 total_size = s->code_gen_buffer_size; 1002 s->code_ptr = buf0; 1003 s->code_buf = buf0; 1004 s->data_gen_ptr = NULL; 1005 s->code_gen_prologue = buf0; 1006 1007 /* Compute a high-water mark, at which we voluntarily flush the buffer 1008 and start over. The size here is arbitrary, significantly larger 1009 than we expect the code generation for any one opcode to require. */ 1010 s->code_gen_highwater = s->code_gen_buffer + (total_size - TCG_HIGHWATER); 1011 1012 #ifdef TCG_TARGET_NEED_POOL_LABELS 1013 s->pool_labels = NULL; 1014 #endif 1015 1016 /* Generate the prologue. */ 1017 tcg_target_qemu_prologue(s); 1018 1019 #ifdef TCG_TARGET_NEED_POOL_LABELS 1020 /* Allow the prologue to put e.g. guest_base into a pool entry. */ 1021 { 1022 bool ok = tcg_out_pool_finalize(s); 1023 tcg_debug_assert(ok); 1024 } 1025 #endif 1026 1027 buf1 = s->code_ptr; 1028 flush_icache_range((uintptr_t)buf0, (uintptr_t)buf1); 1029 1030 /* Deduct the prologue from the buffer. */ 1031 prologue_size = tcg_current_code_size(s); 1032 s->code_gen_ptr = buf1; 1033 s->code_gen_buffer = buf1; 1034 s->code_buf = buf1; 1035 total_size -= prologue_size; 1036 s->code_gen_buffer_size = total_size; 1037 1038 tcg_register_jit(s->code_gen_buffer, total_size); 1039 1040 #ifdef DEBUG_DISAS 1041 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) { 1042 qemu_log_lock(); 1043 qemu_log("PROLOGUE: [size=%zu]\n", prologue_size); 1044 if (s->data_gen_ptr) { 1045 size_t code_size = s->data_gen_ptr - buf0; 1046 size_t data_size = prologue_size - code_size; 1047 size_t i; 1048 1049 log_disas(buf0, code_size); 1050 1051 for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) { 1052 if (sizeof(tcg_target_ulong) == 8) { 1053 qemu_log("0x%08" PRIxPTR ": .quad 0x%016" PRIx64 "\n", 1054 (uintptr_t)s->data_gen_ptr + i, 1055 *(uint64_t *)(s->data_gen_ptr + i)); 1056 } else { 1057 qemu_log("0x%08" PRIxPTR ": .long 0x%08x\n", 1058 (uintptr_t)s->data_gen_ptr + i, 1059 *(uint32_t *)(s->data_gen_ptr + i)); 1060 } 1061 } 1062 } else { 1063 log_disas(buf0, prologue_size); 1064 } 1065 qemu_log("\n"); 1066 qemu_log_flush(); 1067 qemu_log_unlock(); 1068 } 1069 #endif 1070 1071 /* Assert that goto_ptr is implemented completely. */ 1072 if (TCG_TARGET_HAS_goto_ptr) { 1073 tcg_debug_assert(s->code_gen_epilogue != NULL); 1074 } 1075 } 1076 1077 void tcg_func_start(TCGContext *s) 1078 { 1079 tcg_pool_reset(s); 1080 s->nb_temps = s->nb_globals; 1081 1082 /* No temps have been previously allocated for size or locality. */ 1083 memset(s->free_temps, 0, sizeof(s->free_temps)); 1084 1085 s->nb_ops = 0; 1086 s->nb_labels = 0; 1087 s->current_frame_offset = s->frame_start; 1088 1089 #ifdef CONFIG_DEBUG_TCG 1090 s->goto_tb_issue_mask = 0; 1091 #endif 1092 1093 QTAILQ_INIT(&s->ops); 1094 QTAILQ_INIT(&s->free_ops); 1095 } 1096 1097 static inline TCGTemp *tcg_temp_alloc(TCGContext *s) 1098 { 1099 int n = s->nb_temps++; 1100 tcg_debug_assert(n < TCG_MAX_TEMPS); 1101 return memset(&s->temps[n], 0, sizeof(TCGTemp)); 1102 } 1103 1104 static inline TCGTemp *tcg_global_alloc(TCGContext *s) 1105 { 1106 TCGTemp *ts; 1107 1108 tcg_debug_assert(s->nb_globals == s->nb_temps); 1109 s->nb_globals++; 1110 ts = tcg_temp_alloc(s); 1111 ts->temp_global = 1; 1112 1113 return ts; 1114 } 1115 1116 static TCGTemp *tcg_global_reg_new_internal(TCGContext *s, TCGType type, 1117 TCGReg reg, const char *name) 1118 { 1119 TCGTemp *ts; 1120 1121 if (TCG_TARGET_REG_BITS == 32 && type != TCG_TYPE_I32) { 1122 tcg_abort(); 1123 } 1124 1125 ts = tcg_global_alloc(s); 1126 ts->base_type = type; 1127 ts->type = type; 1128 ts->fixed_reg = 1; 1129 ts->reg = reg; 1130 ts->name = name; 1131 tcg_regset_set_reg(s->reserved_regs, reg); 1132 1133 return ts; 1134 } 1135 1136 void tcg_set_frame(TCGContext *s, TCGReg reg, intptr_t start, intptr_t size) 1137 { 1138 s->frame_start = start; 1139 s->frame_end = start + size; 1140 s->frame_temp 1141 = tcg_global_reg_new_internal(s, TCG_TYPE_PTR, reg, "_frame"); 1142 } 1143 1144 TCGTemp *tcg_global_mem_new_internal(TCGType type, TCGv_ptr base, 1145 intptr_t offset, const char *name) 1146 { 1147 TCGContext *s = tcg_ctx; 1148 TCGTemp *base_ts = tcgv_ptr_temp(base); 1149 TCGTemp *ts = tcg_global_alloc(s); 1150 int indirect_reg = 0, bigendian = 0; 1151 #ifdef HOST_WORDS_BIGENDIAN 1152 bigendian = 1; 1153 #endif 1154 1155 if (!base_ts->fixed_reg) { 1156 /* We do not support double-indirect registers. */ 1157 tcg_debug_assert(!base_ts->indirect_reg); 1158 base_ts->indirect_base = 1; 1159 s->nb_indirects += (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64 1160 ? 2 : 1); 1161 indirect_reg = 1; 1162 } 1163 1164 if (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64) { 1165 TCGTemp *ts2 = tcg_global_alloc(s); 1166 char buf[64]; 1167 1168 ts->base_type = TCG_TYPE_I64; 1169 ts->type = TCG_TYPE_I32; 1170 ts->indirect_reg = indirect_reg; 1171 ts->mem_allocated = 1; 1172 ts->mem_base = base_ts; 1173 ts->mem_offset = offset + bigendian * 4; 1174 pstrcpy(buf, sizeof(buf), name); 1175 pstrcat(buf, sizeof(buf), "_0"); 1176 ts->name = strdup(buf); 1177 1178 tcg_debug_assert(ts2 == ts + 1); 1179 ts2->base_type = TCG_TYPE_I64; 1180 ts2->type = TCG_TYPE_I32; 1181 ts2->indirect_reg = indirect_reg; 1182 ts2->mem_allocated = 1; 1183 ts2->mem_base = base_ts; 1184 ts2->mem_offset = offset + (1 - bigendian) * 4; 1185 pstrcpy(buf, sizeof(buf), name); 1186 pstrcat(buf, sizeof(buf), "_1"); 1187 ts2->name = strdup(buf); 1188 } else { 1189 ts->base_type = type; 1190 ts->type = type; 1191 ts->indirect_reg = indirect_reg; 1192 ts->mem_allocated = 1; 1193 ts->mem_base = base_ts; 1194 ts->mem_offset = offset; 1195 ts->name = name; 1196 } 1197 return ts; 1198 } 1199 1200 TCGTemp *tcg_temp_new_internal(TCGType type, bool temp_local) 1201 { 1202 TCGContext *s = tcg_ctx; 1203 TCGTemp *ts; 1204 int idx, k; 1205 1206 k = type + (temp_local ? TCG_TYPE_COUNT : 0); 1207 idx = find_first_bit(s->free_temps[k].l, TCG_MAX_TEMPS); 1208 if (idx < TCG_MAX_TEMPS) { 1209 /* There is already an available temp with the right type. */ 1210 clear_bit(idx, s->free_temps[k].l); 1211 1212 ts = &s->temps[idx]; 1213 ts->temp_allocated = 1; 1214 tcg_debug_assert(ts->base_type == type); 1215 tcg_debug_assert(ts->temp_local == temp_local); 1216 } else { 1217 ts = tcg_temp_alloc(s); 1218 if (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64) { 1219 TCGTemp *ts2 = tcg_temp_alloc(s); 1220 1221 ts->base_type = type; 1222 ts->type = TCG_TYPE_I32; 1223 ts->temp_allocated = 1; 1224 ts->temp_local = temp_local; 1225 1226 tcg_debug_assert(ts2 == ts + 1); 1227 ts2->base_type = TCG_TYPE_I64; 1228 ts2->type = TCG_TYPE_I32; 1229 ts2->temp_allocated = 1; 1230 ts2->temp_local = temp_local; 1231 } else { 1232 ts->base_type = type; 1233 ts->type = type; 1234 ts->temp_allocated = 1; 1235 ts->temp_local = temp_local; 1236 } 1237 } 1238 1239 #if defined(CONFIG_DEBUG_TCG) 1240 s->temps_in_use++; 1241 #endif 1242 return ts; 1243 } 1244 1245 TCGv_vec tcg_temp_new_vec(TCGType type) 1246 { 1247 TCGTemp *t; 1248 1249 #ifdef CONFIG_DEBUG_TCG 1250 switch (type) { 1251 case TCG_TYPE_V64: 1252 assert(TCG_TARGET_HAS_v64); 1253 break; 1254 case TCG_TYPE_V128: 1255 assert(TCG_TARGET_HAS_v128); 1256 break; 1257 case TCG_TYPE_V256: 1258 assert(TCG_TARGET_HAS_v256); 1259 break; 1260 default: 1261 g_assert_not_reached(); 1262 } 1263 #endif 1264 1265 t = tcg_temp_new_internal(type, 0); 1266 return temp_tcgv_vec(t); 1267 } 1268 1269 /* Create a new temp of the same type as an existing temp. */ 1270 TCGv_vec tcg_temp_new_vec_matching(TCGv_vec match) 1271 { 1272 TCGTemp *t = tcgv_vec_temp(match); 1273 1274 tcg_debug_assert(t->temp_allocated != 0); 1275 1276 t = tcg_temp_new_internal(t->base_type, 0); 1277 return temp_tcgv_vec(t); 1278 } 1279 1280 void tcg_temp_free_internal(TCGTemp *ts) 1281 { 1282 TCGContext *s = tcg_ctx; 1283 int k, idx; 1284 1285 #if defined(CONFIG_DEBUG_TCG) 1286 s->temps_in_use--; 1287 if (s->temps_in_use < 0) { 1288 fprintf(stderr, "More temporaries freed than allocated!\n"); 1289 } 1290 #endif 1291 1292 tcg_debug_assert(ts->temp_global == 0); 1293 tcg_debug_assert(ts->temp_allocated != 0); 1294 ts->temp_allocated = 0; 1295 1296 idx = temp_idx(ts); 1297 k = ts->base_type + (ts->temp_local ? TCG_TYPE_COUNT : 0); 1298 set_bit(idx, s->free_temps[k].l); 1299 } 1300 1301 TCGv_i32 tcg_const_i32(int32_t val) 1302 { 1303 TCGv_i32 t0; 1304 t0 = tcg_temp_new_i32(); 1305 tcg_gen_movi_i32(t0, val); 1306 return t0; 1307 } 1308 1309 TCGv_i64 tcg_const_i64(int64_t val) 1310 { 1311 TCGv_i64 t0; 1312 t0 = tcg_temp_new_i64(); 1313 tcg_gen_movi_i64(t0, val); 1314 return t0; 1315 } 1316 1317 TCGv_i32 tcg_const_local_i32(int32_t val) 1318 { 1319 TCGv_i32 t0; 1320 t0 = tcg_temp_local_new_i32(); 1321 tcg_gen_movi_i32(t0, val); 1322 return t0; 1323 } 1324 1325 TCGv_i64 tcg_const_local_i64(int64_t val) 1326 { 1327 TCGv_i64 t0; 1328 t0 = tcg_temp_local_new_i64(); 1329 tcg_gen_movi_i64(t0, val); 1330 return t0; 1331 } 1332 1333 #if defined(CONFIG_DEBUG_TCG) 1334 void tcg_clear_temp_count(void) 1335 { 1336 TCGContext *s = tcg_ctx; 1337 s->temps_in_use = 0; 1338 } 1339 1340 int tcg_check_temp_count(void) 1341 { 1342 TCGContext *s = tcg_ctx; 1343 if (s->temps_in_use) { 1344 /* Clear the count so that we don't give another 1345 * warning immediately next time around. 1346 */ 1347 s->temps_in_use = 0; 1348 return 1; 1349 } 1350 return 0; 1351 } 1352 #endif 1353 1354 /* Return true if OP may appear in the opcode stream. 1355 Test the runtime variable that controls each opcode. */ 1356 bool tcg_op_supported(TCGOpcode op) 1357 { 1358 const bool have_vec 1359 = TCG_TARGET_HAS_v64 | TCG_TARGET_HAS_v128 | TCG_TARGET_HAS_v256; 1360 1361 switch (op) { 1362 case INDEX_op_discard: 1363 case INDEX_op_set_label: 1364 case INDEX_op_call: 1365 case INDEX_op_br: 1366 case INDEX_op_mb: 1367 case INDEX_op_insn_start: 1368 case INDEX_op_exit_tb: 1369 case INDEX_op_goto_tb: 1370 case INDEX_op_qemu_ld_i32: 1371 case INDEX_op_qemu_st_i32: 1372 case INDEX_op_qemu_ld_i64: 1373 case INDEX_op_qemu_st_i64: 1374 return true; 1375 1376 case INDEX_op_goto_ptr: 1377 return TCG_TARGET_HAS_goto_ptr; 1378 1379 case INDEX_op_mov_i32: 1380 case INDEX_op_movi_i32: 1381 case INDEX_op_setcond_i32: 1382 case INDEX_op_brcond_i32: 1383 case INDEX_op_ld8u_i32: 1384 case INDEX_op_ld8s_i32: 1385 case INDEX_op_ld16u_i32: 1386 case INDEX_op_ld16s_i32: 1387 case INDEX_op_ld_i32: 1388 case INDEX_op_st8_i32: 1389 case INDEX_op_st16_i32: 1390 case INDEX_op_st_i32: 1391 case INDEX_op_add_i32: 1392 case INDEX_op_sub_i32: 1393 case INDEX_op_mul_i32: 1394 case INDEX_op_and_i32: 1395 case INDEX_op_or_i32: 1396 case INDEX_op_xor_i32: 1397 case INDEX_op_shl_i32: 1398 case INDEX_op_shr_i32: 1399 case INDEX_op_sar_i32: 1400 return true; 1401 1402 case INDEX_op_movcond_i32: 1403 return TCG_TARGET_HAS_movcond_i32; 1404 case INDEX_op_div_i32: 1405 case INDEX_op_divu_i32: 1406 return TCG_TARGET_HAS_div_i32; 1407 case INDEX_op_rem_i32: 1408 case INDEX_op_remu_i32: 1409 return TCG_TARGET_HAS_rem_i32; 1410 case INDEX_op_div2_i32: 1411 case INDEX_op_divu2_i32: 1412 return TCG_TARGET_HAS_div2_i32; 1413 case INDEX_op_rotl_i32: 1414 case INDEX_op_rotr_i32: 1415 return TCG_TARGET_HAS_rot_i32; 1416 case INDEX_op_deposit_i32: 1417 return TCG_TARGET_HAS_deposit_i32; 1418 case INDEX_op_extract_i32: 1419 return TCG_TARGET_HAS_extract_i32; 1420 case INDEX_op_sextract_i32: 1421 return TCG_TARGET_HAS_sextract_i32; 1422 case INDEX_op_add2_i32: 1423 return TCG_TARGET_HAS_add2_i32; 1424 case INDEX_op_sub2_i32: 1425 return TCG_TARGET_HAS_sub2_i32; 1426 case INDEX_op_mulu2_i32: 1427 return TCG_TARGET_HAS_mulu2_i32; 1428 case INDEX_op_muls2_i32: 1429 return TCG_TARGET_HAS_muls2_i32; 1430 case INDEX_op_muluh_i32: 1431 return TCG_TARGET_HAS_muluh_i32; 1432 case INDEX_op_mulsh_i32: 1433 return TCG_TARGET_HAS_mulsh_i32; 1434 case INDEX_op_ext8s_i32: 1435 return TCG_TARGET_HAS_ext8s_i32; 1436 case INDEX_op_ext16s_i32: 1437 return TCG_TARGET_HAS_ext16s_i32; 1438 case INDEX_op_ext8u_i32: 1439 return TCG_TARGET_HAS_ext8u_i32; 1440 case INDEX_op_ext16u_i32: 1441 return TCG_TARGET_HAS_ext16u_i32; 1442 case INDEX_op_bswap16_i32: 1443 return TCG_TARGET_HAS_bswap16_i32; 1444 case INDEX_op_bswap32_i32: 1445 return TCG_TARGET_HAS_bswap32_i32; 1446 case INDEX_op_not_i32: 1447 return TCG_TARGET_HAS_not_i32; 1448 case INDEX_op_neg_i32: 1449 return TCG_TARGET_HAS_neg_i32; 1450 case INDEX_op_andc_i32: 1451 return TCG_TARGET_HAS_andc_i32; 1452 case INDEX_op_orc_i32: 1453 return TCG_TARGET_HAS_orc_i32; 1454 case INDEX_op_eqv_i32: 1455 return TCG_TARGET_HAS_eqv_i32; 1456 case INDEX_op_nand_i32: 1457 return TCG_TARGET_HAS_nand_i32; 1458 case INDEX_op_nor_i32: 1459 return TCG_TARGET_HAS_nor_i32; 1460 case INDEX_op_clz_i32: 1461 return TCG_TARGET_HAS_clz_i32; 1462 case INDEX_op_ctz_i32: 1463 return TCG_TARGET_HAS_ctz_i32; 1464 case INDEX_op_ctpop_i32: 1465 return TCG_TARGET_HAS_ctpop_i32; 1466 1467 case INDEX_op_brcond2_i32: 1468 case INDEX_op_setcond2_i32: 1469 return TCG_TARGET_REG_BITS == 32; 1470 1471 case INDEX_op_mov_i64: 1472 case INDEX_op_movi_i64: 1473 case INDEX_op_setcond_i64: 1474 case INDEX_op_brcond_i64: 1475 case INDEX_op_ld8u_i64: 1476 case INDEX_op_ld8s_i64: 1477 case INDEX_op_ld16u_i64: 1478 case INDEX_op_ld16s_i64: 1479 case INDEX_op_ld32u_i64: 1480 case INDEX_op_ld32s_i64: 1481 case INDEX_op_ld_i64: 1482 case INDEX_op_st8_i64: 1483 case INDEX_op_st16_i64: 1484 case INDEX_op_st32_i64: 1485 case INDEX_op_st_i64: 1486 case INDEX_op_add_i64: 1487 case INDEX_op_sub_i64: 1488 case INDEX_op_mul_i64: 1489 case INDEX_op_and_i64: 1490 case INDEX_op_or_i64: 1491 case INDEX_op_xor_i64: 1492 case INDEX_op_shl_i64: 1493 case INDEX_op_shr_i64: 1494 case INDEX_op_sar_i64: 1495 case INDEX_op_ext_i32_i64: 1496 case INDEX_op_extu_i32_i64: 1497 return TCG_TARGET_REG_BITS == 64; 1498 1499 case INDEX_op_movcond_i64: 1500 return TCG_TARGET_HAS_movcond_i64; 1501 case INDEX_op_div_i64: 1502 case INDEX_op_divu_i64: 1503 return TCG_TARGET_HAS_div_i64; 1504 case INDEX_op_rem_i64: 1505 case INDEX_op_remu_i64: 1506 return TCG_TARGET_HAS_rem_i64; 1507 case INDEX_op_div2_i64: 1508 case INDEX_op_divu2_i64: 1509 return TCG_TARGET_HAS_div2_i64; 1510 case INDEX_op_rotl_i64: 1511 case INDEX_op_rotr_i64: 1512 return TCG_TARGET_HAS_rot_i64; 1513 case INDEX_op_deposit_i64: 1514 return TCG_TARGET_HAS_deposit_i64; 1515 case INDEX_op_extract_i64: 1516 return TCG_TARGET_HAS_extract_i64; 1517 case INDEX_op_sextract_i64: 1518 return TCG_TARGET_HAS_sextract_i64; 1519 case INDEX_op_extrl_i64_i32: 1520 return TCG_TARGET_HAS_extrl_i64_i32; 1521 case INDEX_op_extrh_i64_i32: 1522 return TCG_TARGET_HAS_extrh_i64_i32; 1523 case INDEX_op_ext8s_i64: 1524 return TCG_TARGET_HAS_ext8s_i64; 1525 case INDEX_op_ext16s_i64: 1526 return TCG_TARGET_HAS_ext16s_i64; 1527 case INDEX_op_ext32s_i64: 1528 return TCG_TARGET_HAS_ext32s_i64; 1529 case INDEX_op_ext8u_i64: 1530 return TCG_TARGET_HAS_ext8u_i64; 1531 case INDEX_op_ext16u_i64: 1532 return TCG_TARGET_HAS_ext16u_i64; 1533 case INDEX_op_ext32u_i64: 1534 return TCG_TARGET_HAS_ext32u_i64; 1535 case INDEX_op_bswap16_i64: 1536 return TCG_TARGET_HAS_bswap16_i64; 1537 case INDEX_op_bswap32_i64: 1538 return TCG_TARGET_HAS_bswap32_i64; 1539 case INDEX_op_bswap64_i64: 1540 return TCG_TARGET_HAS_bswap64_i64; 1541 case INDEX_op_not_i64: 1542 return TCG_TARGET_HAS_not_i64; 1543 case INDEX_op_neg_i64: 1544 return TCG_TARGET_HAS_neg_i64; 1545 case INDEX_op_andc_i64: 1546 return TCG_TARGET_HAS_andc_i64; 1547 case INDEX_op_orc_i64: 1548 return TCG_TARGET_HAS_orc_i64; 1549 case INDEX_op_eqv_i64: 1550 return TCG_TARGET_HAS_eqv_i64; 1551 case INDEX_op_nand_i64: 1552 return TCG_TARGET_HAS_nand_i64; 1553 case INDEX_op_nor_i64: 1554 return TCG_TARGET_HAS_nor_i64; 1555 case INDEX_op_clz_i64: 1556 return TCG_TARGET_HAS_clz_i64; 1557 case INDEX_op_ctz_i64: 1558 return TCG_TARGET_HAS_ctz_i64; 1559 case INDEX_op_ctpop_i64: 1560 return TCG_TARGET_HAS_ctpop_i64; 1561 case INDEX_op_add2_i64: 1562 return TCG_TARGET_HAS_add2_i64; 1563 case INDEX_op_sub2_i64: 1564 return TCG_TARGET_HAS_sub2_i64; 1565 case INDEX_op_mulu2_i64: 1566 return TCG_TARGET_HAS_mulu2_i64; 1567 case INDEX_op_muls2_i64: 1568 return TCG_TARGET_HAS_muls2_i64; 1569 case INDEX_op_muluh_i64: 1570 return TCG_TARGET_HAS_muluh_i64; 1571 case INDEX_op_mulsh_i64: 1572 return TCG_TARGET_HAS_mulsh_i64; 1573 1574 case INDEX_op_mov_vec: 1575 case INDEX_op_dup_vec: 1576 case INDEX_op_dupi_vec: 1577 case INDEX_op_ld_vec: 1578 case INDEX_op_st_vec: 1579 case INDEX_op_add_vec: 1580 case INDEX_op_sub_vec: 1581 case INDEX_op_and_vec: 1582 case INDEX_op_or_vec: 1583 case INDEX_op_xor_vec: 1584 case INDEX_op_cmp_vec: 1585 return have_vec; 1586 case INDEX_op_dup2_vec: 1587 return have_vec && TCG_TARGET_REG_BITS == 32; 1588 case INDEX_op_not_vec: 1589 return have_vec && TCG_TARGET_HAS_not_vec; 1590 case INDEX_op_neg_vec: 1591 return have_vec && TCG_TARGET_HAS_neg_vec; 1592 case INDEX_op_andc_vec: 1593 return have_vec && TCG_TARGET_HAS_andc_vec; 1594 case INDEX_op_orc_vec: 1595 return have_vec && TCG_TARGET_HAS_orc_vec; 1596 case INDEX_op_mul_vec: 1597 return have_vec && TCG_TARGET_HAS_mul_vec; 1598 case INDEX_op_shli_vec: 1599 case INDEX_op_shri_vec: 1600 case INDEX_op_sari_vec: 1601 return have_vec && TCG_TARGET_HAS_shi_vec; 1602 case INDEX_op_shls_vec: 1603 case INDEX_op_shrs_vec: 1604 case INDEX_op_sars_vec: 1605 return have_vec && TCG_TARGET_HAS_shs_vec; 1606 case INDEX_op_shlv_vec: 1607 case INDEX_op_shrv_vec: 1608 case INDEX_op_sarv_vec: 1609 return have_vec && TCG_TARGET_HAS_shv_vec; 1610 case INDEX_op_ssadd_vec: 1611 case INDEX_op_usadd_vec: 1612 case INDEX_op_sssub_vec: 1613 case INDEX_op_ussub_vec: 1614 return have_vec && TCG_TARGET_HAS_sat_vec; 1615 case INDEX_op_smin_vec: 1616 case INDEX_op_umin_vec: 1617 case INDEX_op_smax_vec: 1618 case INDEX_op_umax_vec: 1619 return have_vec && TCG_TARGET_HAS_minmax_vec; 1620 1621 default: 1622 tcg_debug_assert(op > INDEX_op_last_generic && op < NB_OPS); 1623 return true; 1624 } 1625 } 1626 1627 /* Note: we convert the 64 bit args to 32 bit and do some alignment 1628 and endian swap. Maybe it would be better to do the alignment 1629 and endian swap in tcg_reg_alloc_call(). */ 1630 void tcg_gen_callN(void *func, TCGTemp *ret, int nargs, TCGTemp **args) 1631 { 1632 int i, real_args, nb_rets, pi; 1633 unsigned sizemask, flags; 1634 TCGHelperInfo *info; 1635 TCGOp *op; 1636 1637 info = g_hash_table_lookup(helper_table, (gpointer)func); 1638 flags = info->flags; 1639 sizemask = info->sizemask; 1640 1641 #if defined(__sparc__) && !defined(__arch64__) \ 1642 && !defined(CONFIG_TCG_INTERPRETER) 1643 /* We have 64-bit values in one register, but need to pass as two 1644 separate parameters. Split them. */ 1645 int orig_sizemask = sizemask; 1646 int orig_nargs = nargs; 1647 TCGv_i64 retl, reth; 1648 TCGTemp *split_args[MAX_OPC_PARAM]; 1649 1650 retl = NULL; 1651 reth = NULL; 1652 if (sizemask != 0) { 1653 for (i = real_args = 0; i < nargs; ++i) { 1654 int is_64bit = sizemask & (1 << (i+1)*2); 1655 if (is_64bit) { 1656 TCGv_i64 orig = temp_tcgv_i64(args[i]); 1657 TCGv_i32 h = tcg_temp_new_i32(); 1658 TCGv_i32 l = tcg_temp_new_i32(); 1659 tcg_gen_extr_i64_i32(l, h, orig); 1660 split_args[real_args++] = tcgv_i32_temp(h); 1661 split_args[real_args++] = tcgv_i32_temp(l); 1662 } else { 1663 split_args[real_args++] = args[i]; 1664 } 1665 } 1666 nargs = real_args; 1667 args = split_args; 1668 sizemask = 0; 1669 } 1670 #elif defined(TCG_TARGET_EXTEND_ARGS) && TCG_TARGET_REG_BITS == 64 1671 for (i = 0; i < nargs; ++i) { 1672 int is_64bit = sizemask & (1 << (i+1)*2); 1673 int is_signed = sizemask & (2 << (i+1)*2); 1674 if (!is_64bit) { 1675 TCGv_i64 temp = tcg_temp_new_i64(); 1676 TCGv_i64 orig = temp_tcgv_i64(args[i]); 1677 if (is_signed) { 1678 tcg_gen_ext32s_i64(temp, orig); 1679 } else { 1680 tcg_gen_ext32u_i64(temp, orig); 1681 } 1682 args[i] = tcgv_i64_temp(temp); 1683 } 1684 } 1685 #endif /* TCG_TARGET_EXTEND_ARGS */ 1686 1687 op = tcg_emit_op(INDEX_op_call); 1688 1689 pi = 0; 1690 if (ret != NULL) { 1691 #if defined(__sparc__) && !defined(__arch64__) \ 1692 && !defined(CONFIG_TCG_INTERPRETER) 1693 if (orig_sizemask & 1) { 1694 /* The 32-bit ABI is going to return the 64-bit value in 1695 the %o0/%o1 register pair. Prepare for this by using 1696 two return temporaries, and reassemble below. */ 1697 retl = tcg_temp_new_i64(); 1698 reth = tcg_temp_new_i64(); 1699 op->args[pi++] = tcgv_i64_arg(reth); 1700 op->args[pi++] = tcgv_i64_arg(retl); 1701 nb_rets = 2; 1702 } else { 1703 op->args[pi++] = temp_arg(ret); 1704 nb_rets = 1; 1705 } 1706 #else 1707 if (TCG_TARGET_REG_BITS < 64 && (sizemask & 1)) { 1708 #ifdef HOST_WORDS_BIGENDIAN 1709 op->args[pi++] = temp_arg(ret + 1); 1710 op->args[pi++] = temp_arg(ret); 1711 #else 1712 op->args[pi++] = temp_arg(ret); 1713 op->args[pi++] = temp_arg(ret + 1); 1714 #endif 1715 nb_rets = 2; 1716 } else { 1717 op->args[pi++] = temp_arg(ret); 1718 nb_rets = 1; 1719 } 1720 #endif 1721 } else { 1722 nb_rets = 0; 1723 } 1724 TCGOP_CALLO(op) = nb_rets; 1725 1726 real_args = 0; 1727 for (i = 0; i < nargs; i++) { 1728 int is_64bit = sizemask & (1 << (i+1)*2); 1729 if (TCG_TARGET_REG_BITS < 64 && is_64bit) { 1730 #ifdef TCG_TARGET_CALL_ALIGN_ARGS 1731 /* some targets want aligned 64 bit args */ 1732 if (real_args & 1) { 1733 op->args[pi++] = TCG_CALL_DUMMY_ARG; 1734 real_args++; 1735 } 1736 #endif 1737 /* If stack grows up, then we will be placing successive 1738 arguments at lower addresses, which means we need to 1739 reverse the order compared to how we would normally 1740 treat either big or little-endian. For those arguments 1741 that will wind up in registers, this still works for 1742 HPPA (the only current STACK_GROWSUP target) since the 1743 argument registers are *also* allocated in decreasing 1744 order. If another such target is added, this logic may 1745 have to get more complicated to differentiate between 1746 stack arguments and register arguments. */ 1747 #if defined(HOST_WORDS_BIGENDIAN) != defined(TCG_TARGET_STACK_GROWSUP) 1748 op->args[pi++] = temp_arg(args[i] + 1); 1749 op->args[pi++] = temp_arg(args[i]); 1750 #else 1751 op->args[pi++] = temp_arg(args[i]); 1752 op->args[pi++] = temp_arg(args[i] + 1); 1753 #endif 1754 real_args += 2; 1755 continue; 1756 } 1757 1758 op->args[pi++] = temp_arg(args[i]); 1759 real_args++; 1760 } 1761 op->args[pi++] = (uintptr_t)func; 1762 op->args[pi++] = flags; 1763 TCGOP_CALLI(op) = real_args; 1764 1765 /* Make sure the fields didn't overflow. */ 1766 tcg_debug_assert(TCGOP_CALLI(op) == real_args); 1767 tcg_debug_assert(pi <= ARRAY_SIZE(op->args)); 1768 1769 #if defined(__sparc__) && !defined(__arch64__) \ 1770 && !defined(CONFIG_TCG_INTERPRETER) 1771 /* Free all of the parts we allocated above. */ 1772 for (i = real_args = 0; i < orig_nargs; ++i) { 1773 int is_64bit = orig_sizemask & (1 << (i+1)*2); 1774 if (is_64bit) { 1775 tcg_temp_free_internal(args[real_args++]); 1776 tcg_temp_free_internal(args[real_args++]); 1777 } else { 1778 real_args++; 1779 } 1780 } 1781 if (orig_sizemask & 1) { 1782 /* The 32-bit ABI returned two 32-bit pieces. Re-assemble them. 1783 Note that describing these as TCGv_i64 eliminates an unnecessary 1784 zero-extension that tcg_gen_concat_i32_i64 would create. */ 1785 tcg_gen_concat32_i64(temp_tcgv_i64(ret), retl, reth); 1786 tcg_temp_free_i64(retl); 1787 tcg_temp_free_i64(reth); 1788 } 1789 #elif defined(TCG_TARGET_EXTEND_ARGS) && TCG_TARGET_REG_BITS == 64 1790 for (i = 0; i < nargs; ++i) { 1791 int is_64bit = sizemask & (1 << (i+1)*2); 1792 if (!is_64bit) { 1793 tcg_temp_free_internal(args[i]); 1794 } 1795 } 1796 #endif /* TCG_TARGET_EXTEND_ARGS */ 1797 } 1798 1799 static void tcg_reg_alloc_start(TCGContext *s) 1800 { 1801 int i, n; 1802 TCGTemp *ts; 1803 1804 for (i = 0, n = s->nb_globals; i < n; i++) { 1805 ts = &s->temps[i]; 1806 ts->val_type = (ts->fixed_reg ? TEMP_VAL_REG : TEMP_VAL_MEM); 1807 } 1808 for (n = s->nb_temps; i < n; i++) { 1809 ts = &s->temps[i]; 1810 ts->val_type = (ts->temp_local ? TEMP_VAL_MEM : TEMP_VAL_DEAD); 1811 ts->mem_allocated = 0; 1812 ts->fixed_reg = 0; 1813 } 1814 1815 memset(s->reg_to_temp, 0, sizeof(s->reg_to_temp)); 1816 } 1817 1818 static char *tcg_get_arg_str_ptr(TCGContext *s, char *buf, int buf_size, 1819 TCGTemp *ts) 1820 { 1821 int idx = temp_idx(ts); 1822 1823 if (ts->temp_global) { 1824 pstrcpy(buf, buf_size, ts->name); 1825 } else if (ts->temp_local) { 1826 snprintf(buf, buf_size, "loc%d", idx - s->nb_globals); 1827 } else { 1828 snprintf(buf, buf_size, "tmp%d", idx - s->nb_globals); 1829 } 1830 return buf; 1831 } 1832 1833 static char *tcg_get_arg_str(TCGContext *s, char *buf, 1834 int buf_size, TCGArg arg) 1835 { 1836 return tcg_get_arg_str_ptr(s, buf, buf_size, arg_temp(arg)); 1837 } 1838 1839 /* Find helper name. */ 1840 static inline const char *tcg_find_helper(TCGContext *s, uintptr_t val) 1841 { 1842 const char *ret = NULL; 1843 if (helper_table) { 1844 TCGHelperInfo *info = g_hash_table_lookup(helper_table, (gpointer)val); 1845 if (info) { 1846 ret = info->name; 1847 } 1848 } 1849 return ret; 1850 } 1851 1852 static const char * const cond_name[] = 1853 { 1854 [TCG_COND_NEVER] = "never", 1855 [TCG_COND_ALWAYS] = "always", 1856 [TCG_COND_EQ] = "eq", 1857 [TCG_COND_NE] = "ne", 1858 [TCG_COND_LT] = "lt", 1859 [TCG_COND_GE] = "ge", 1860 [TCG_COND_LE] = "le", 1861 [TCG_COND_GT] = "gt", 1862 [TCG_COND_LTU] = "ltu", 1863 [TCG_COND_GEU] = "geu", 1864 [TCG_COND_LEU] = "leu", 1865 [TCG_COND_GTU] = "gtu" 1866 }; 1867 1868 static const char * const ldst_name[] = 1869 { 1870 [MO_UB] = "ub", 1871 [MO_SB] = "sb", 1872 [MO_LEUW] = "leuw", 1873 [MO_LESW] = "lesw", 1874 [MO_LEUL] = "leul", 1875 [MO_LESL] = "lesl", 1876 [MO_LEQ] = "leq", 1877 [MO_BEUW] = "beuw", 1878 [MO_BESW] = "besw", 1879 [MO_BEUL] = "beul", 1880 [MO_BESL] = "besl", 1881 [MO_BEQ] = "beq", 1882 }; 1883 1884 static const char * const alignment_name[(MO_AMASK >> MO_ASHIFT) + 1] = { 1885 #ifdef ALIGNED_ONLY 1886 [MO_UNALN >> MO_ASHIFT] = "un+", 1887 [MO_ALIGN >> MO_ASHIFT] = "", 1888 #else 1889 [MO_UNALN >> MO_ASHIFT] = "", 1890 [MO_ALIGN >> MO_ASHIFT] = "al+", 1891 #endif 1892 [MO_ALIGN_2 >> MO_ASHIFT] = "al2+", 1893 [MO_ALIGN_4 >> MO_ASHIFT] = "al4+", 1894 [MO_ALIGN_8 >> MO_ASHIFT] = "al8+", 1895 [MO_ALIGN_16 >> MO_ASHIFT] = "al16+", 1896 [MO_ALIGN_32 >> MO_ASHIFT] = "al32+", 1897 [MO_ALIGN_64 >> MO_ASHIFT] = "al64+", 1898 }; 1899 1900 static inline bool tcg_regset_single(TCGRegSet d) 1901 { 1902 return (d & (d - 1)) == 0; 1903 } 1904 1905 static inline TCGReg tcg_regset_first(TCGRegSet d) 1906 { 1907 if (TCG_TARGET_NB_REGS <= 32) { 1908 return ctz32(d); 1909 } else { 1910 return ctz64(d); 1911 } 1912 } 1913 1914 static void tcg_dump_ops(TCGContext *s, bool have_prefs) 1915 { 1916 char buf[128]; 1917 TCGOp *op; 1918 1919 QTAILQ_FOREACH(op, &s->ops, link) { 1920 int i, k, nb_oargs, nb_iargs, nb_cargs; 1921 const TCGOpDef *def; 1922 TCGOpcode c; 1923 int col = 0; 1924 1925 c = op->opc; 1926 def = &tcg_op_defs[c]; 1927 1928 if (c == INDEX_op_insn_start) { 1929 nb_oargs = 0; 1930 col += qemu_log("\n ----"); 1931 1932 for (i = 0; i < TARGET_INSN_START_WORDS; ++i) { 1933 target_ulong a; 1934 #if TARGET_LONG_BITS > TCG_TARGET_REG_BITS 1935 a = deposit64(op->args[i * 2], 32, 32, op->args[i * 2 + 1]); 1936 #else 1937 a = op->args[i]; 1938 #endif 1939 col += qemu_log(" " TARGET_FMT_lx, a); 1940 } 1941 } else if (c == INDEX_op_call) { 1942 /* variable number of arguments */ 1943 nb_oargs = TCGOP_CALLO(op); 1944 nb_iargs = TCGOP_CALLI(op); 1945 nb_cargs = def->nb_cargs; 1946 1947 /* function name, flags, out args */ 1948 col += qemu_log(" %s %s,$0x%" TCG_PRIlx ",$%d", def->name, 1949 tcg_find_helper(s, op->args[nb_oargs + nb_iargs]), 1950 op->args[nb_oargs + nb_iargs + 1], nb_oargs); 1951 for (i = 0; i < nb_oargs; i++) { 1952 col += qemu_log(",%s", tcg_get_arg_str(s, buf, sizeof(buf), 1953 op->args[i])); 1954 } 1955 for (i = 0; i < nb_iargs; i++) { 1956 TCGArg arg = op->args[nb_oargs + i]; 1957 const char *t = "<dummy>"; 1958 if (arg != TCG_CALL_DUMMY_ARG) { 1959 t = tcg_get_arg_str(s, buf, sizeof(buf), arg); 1960 } 1961 col += qemu_log(",%s", t); 1962 } 1963 } else { 1964 col += qemu_log(" %s ", def->name); 1965 1966 nb_oargs = def->nb_oargs; 1967 nb_iargs = def->nb_iargs; 1968 nb_cargs = def->nb_cargs; 1969 1970 if (def->flags & TCG_OPF_VECTOR) { 1971 col += qemu_log("v%d,e%d,", 64 << TCGOP_VECL(op), 1972 8 << TCGOP_VECE(op)); 1973 } 1974 1975 k = 0; 1976 for (i = 0; i < nb_oargs; i++) { 1977 if (k != 0) { 1978 col += qemu_log(","); 1979 } 1980 col += qemu_log("%s", tcg_get_arg_str(s, buf, sizeof(buf), 1981 op->args[k++])); 1982 } 1983 for (i = 0; i < nb_iargs; i++) { 1984 if (k != 0) { 1985 col += qemu_log(","); 1986 } 1987 col += qemu_log("%s", tcg_get_arg_str(s, buf, sizeof(buf), 1988 op->args[k++])); 1989 } 1990 switch (c) { 1991 case INDEX_op_brcond_i32: 1992 case INDEX_op_setcond_i32: 1993 case INDEX_op_movcond_i32: 1994 case INDEX_op_brcond2_i32: 1995 case INDEX_op_setcond2_i32: 1996 case INDEX_op_brcond_i64: 1997 case INDEX_op_setcond_i64: 1998 case INDEX_op_movcond_i64: 1999 case INDEX_op_cmp_vec: 2000 if (op->args[k] < ARRAY_SIZE(cond_name) 2001 && cond_name[op->args[k]]) { 2002 col += qemu_log(",%s", cond_name[op->args[k++]]); 2003 } else { 2004 col += qemu_log(",$0x%" TCG_PRIlx, op->args[k++]); 2005 } 2006 i = 1; 2007 break; 2008 case INDEX_op_qemu_ld_i32: 2009 case INDEX_op_qemu_st_i32: 2010 case INDEX_op_qemu_ld_i64: 2011 case INDEX_op_qemu_st_i64: 2012 { 2013 TCGMemOpIdx oi = op->args[k++]; 2014 TCGMemOp op = get_memop(oi); 2015 unsigned ix = get_mmuidx(oi); 2016 2017 if (op & ~(MO_AMASK | MO_BSWAP | MO_SSIZE)) { 2018 col += qemu_log(",$0x%x,%u", op, ix); 2019 } else { 2020 const char *s_al, *s_op; 2021 s_al = alignment_name[(op & MO_AMASK) >> MO_ASHIFT]; 2022 s_op = ldst_name[op & (MO_BSWAP | MO_SSIZE)]; 2023 col += qemu_log(",%s%s,%u", s_al, s_op, ix); 2024 } 2025 i = 1; 2026 } 2027 break; 2028 default: 2029 i = 0; 2030 break; 2031 } 2032 switch (c) { 2033 case INDEX_op_set_label: 2034 case INDEX_op_br: 2035 case INDEX_op_brcond_i32: 2036 case INDEX_op_brcond_i64: 2037 case INDEX_op_brcond2_i32: 2038 col += qemu_log("%s$L%d", k ? "," : "", 2039 arg_label(op->args[k])->id); 2040 i++, k++; 2041 break; 2042 default: 2043 break; 2044 } 2045 for (; i < nb_cargs; i++, k++) { 2046 col += qemu_log("%s$0x%" TCG_PRIlx, k ? "," : "", op->args[k]); 2047 } 2048 } 2049 2050 if (have_prefs || op->life) { 2051 for (; col < 40; ++col) { 2052 putc(' ', qemu_logfile); 2053 } 2054 } 2055 2056 if (op->life) { 2057 unsigned life = op->life; 2058 2059 if (life & (SYNC_ARG * 3)) { 2060 qemu_log(" sync:"); 2061 for (i = 0; i < 2; ++i) { 2062 if (life & (SYNC_ARG << i)) { 2063 qemu_log(" %d", i); 2064 } 2065 } 2066 } 2067 life /= DEAD_ARG; 2068 if (life) { 2069 qemu_log(" dead:"); 2070 for (i = 0; life; ++i, life >>= 1) { 2071 if (life & 1) { 2072 qemu_log(" %d", i); 2073 } 2074 } 2075 } 2076 } 2077 2078 if (have_prefs) { 2079 for (i = 0; i < nb_oargs; ++i) { 2080 TCGRegSet set = op->output_pref[i]; 2081 2082 if (i == 0) { 2083 qemu_log(" pref="); 2084 } else { 2085 qemu_log(","); 2086 } 2087 if (set == 0) { 2088 qemu_log("none"); 2089 } else if (set == MAKE_64BIT_MASK(0, TCG_TARGET_NB_REGS)) { 2090 qemu_log("all"); 2091 #ifdef CONFIG_DEBUG_TCG 2092 } else if (tcg_regset_single(set)) { 2093 TCGReg reg = tcg_regset_first(set); 2094 qemu_log("%s", tcg_target_reg_names[reg]); 2095 #endif 2096 } else if (TCG_TARGET_NB_REGS <= 32) { 2097 qemu_log("%#x", (uint32_t)set); 2098 } else { 2099 qemu_log("%#" PRIx64, (uint64_t)set); 2100 } 2101 } 2102 } 2103 2104 qemu_log("\n"); 2105 } 2106 } 2107 2108 /* we give more priority to constraints with less registers */ 2109 static int get_constraint_priority(const TCGOpDef *def, int k) 2110 { 2111 const TCGArgConstraint *arg_ct; 2112 2113 int i, n; 2114 arg_ct = &def->args_ct[k]; 2115 if (arg_ct->ct & TCG_CT_ALIAS) { 2116 /* an alias is equivalent to a single register */ 2117 n = 1; 2118 } else { 2119 if (!(arg_ct->ct & TCG_CT_REG)) 2120 return 0; 2121 n = 0; 2122 for(i = 0; i < TCG_TARGET_NB_REGS; i++) { 2123 if (tcg_regset_test_reg(arg_ct->u.regs, i)) 2124 n++; 2125 } 2126 } 2127 return TCG_TARGET_NB_REGS - n + 1; 2128 } 2129 2130 /* sort from highest priority to lowest */ 2131 static void sort_constraints(TCGOpDef *def, int start, int n) 2132 { 2133 int i, j, p1, p2, tmp; 2134 2135 for(i = 0; i < n; i++) 2136 def->sorted_args[start + i] = start + i; 2137 if (n <= 1) 2138 return; 2139 for(i = 0; i < n - 1; i++) { 2140 for(j = i + 1; j < n; j++) { 2141 p1 = get_constraint_priority(def, def->sorted_args[start + i]); 2142 p2 = get_constraint_priority(def, def->sorted_args[start + j]); 2143 if (p1 < p2) { 2144 tmp = def->sorted_args[start + i]; 2145 def->sorted_args[start + i] = def->sorted_args[start + j]; 2146 def->sorted_args[start + j] = tmp; 2147 } 2148 } 2149 } 2150 } 2151 2152 static void process_op_defs(TCGContext *s) 2153 { 2154 TCGOpcode op; 2155 2156 for (op = 0; op < NB_OPS; op++) { 2157 TCGOpDef *def = &tcg_op_defs[op]; 2158 const TCGTargetOpDef *tdefs; 2159 TCGType type; 2160 int i, nb_args; 2161 2162 if (def->flags & TCG_OPF_NOT_PRESENT) { 2163 continue; 2164 } 2165 2166 nb_args = def->nb_iargs + def->nb_oargs; 2167 if (nb_args == 0) { 2168 continue; 2169 } 2170 2171 tdefs = tcg_target_op_def(op); 2172 /* Missing TCGTargetOpDef entry. */ 2173 tcg_debug_assert(tdefs != NULL); 2174 2175 type = (def->flags & TCG_OPF_64BIT ? TCG_TYPE_I64 : TCG_TYPE_I32); 2176 for (i = 0; i < nb_args; i++) { 2177 const char *ct_str = tdefs->args_ct_str[i]; 2178 /* Incomplete TCGTargetOpDef entry. */ 2179 tcg_debug_assert(ct_str != NULL); 2180 2181 def->args_ct[i].u.regs = 0; 2182 def->args_ct[i].ct = 0; 2183 while (*ct_str != '\0') { 2184 switch(*ct_str) { 2185 case '0' ... '9': 2186 { 2187 int oarg = *ct_str - '0'; 2188 tcg_debug_assert(ct_str == tdefs->args_ct_str[i]); 2189 tcg_debug_assert(oarg < def->nb_oargs); 2190 tcg_debug_assert(def->args_ct[oarg].ct & TCG_CT_REG); 2191 /* TCG_CT_ALIAS is for the output arguments. 2192 The input is tagged with TCG_CT_IALIAS. */ 2193 def->args_ct[i] = def->args_ct[oarg]; 2194 def->args_ct[oarg].ct |= TCG_CT_ALIAS; 2195 def->args_ct[oarg].alias_index = i; 2196 def->args_ct[i].ct |= TCG_CT_IALIAS; 2197 def->args_ct[i].alias_index = oarg; 2198 } 2199 ct_str++; 2200 break; 2201 case '&': 2202 def->args_ct[i].ct |= TCG_CT_NEWREG; 2203 ct_str++; 2204 break; 2205 case 'i': 2206 def->args_ct[i].ct |= TCG_CT_CONST; 2207 ct_str++; 2208 break; 2209 default: 2210 ct_str = target_parse_constraint(&def->args_ct[i], 2211 ct_str, type); 2212 /* Typo in TCGTargetOpDef constraint. */ 2213 tcg_debug_assert(ct_str != NULL); 2214 } 2215 } 2216 } 2217 2218 /* TCGTargetOpDef entry with too much information? */ 2219 tcg_debug_assert(i == TCG_MAX_OP_ARGS || tdefs->args_ct_str[i] == NULL); 2220 2221 /* sort the constraints (XXX: this is just an heuristic) */ 2222 sort_constraints(def, 0, def->nb_oargs); 2223 sort_constraints(def, def->nb_oargs, def->nb_iargs); 2224 } 2225 } 2226 2227 void tcg_op_remove(TCGContext *s, TCGOp *op) 2228 { 2229 TCGLabel *label; 2230 2231 switch (op->opc) { 2232 case INDEX_op_br: 2233 label = arg_label(op->args[0]); 2234 label->refs--; 2235 break; 2236 case INDEX_op_brcond_i32: 2237 case INDEX_op_brcond_i64: 2238 label = arg_label(op->args[3]); 2239 label->refs--; 2240 break; 2241 case INDEX_op_brcond2_i32: 2242 label = arg_label(op->args[5]); 2243 label->refs--; 2244 break; 2245 default: 2246 break; 2247 } 2248 2249 QTAILQ_REMOVE(&s->ops, op, link); 2250 QTAILQ_INSERT_TAIL(&s->free_ops, op, link); 2251 s->nb_ops--; 2252 2253 #ifdef CONFIG_PROFILER 2254 atomic_set(&s->prof.del_op_count, s->prof.del_op_count + 1); 2255 #endif 2256 } 2257 2258 static TCGOp *tcg_op_alloc(TCGOpcode opc) 2259 { 2260 TCGContext *s = tcg_ctx; 2261 TCGOp *op; 2262 2263 if (likely(QTAILQ_EMPTY(&s->free_ops))) { 2264 op = tcg_malloc(sizeof(TCGOp)); 2265 } else { 2266 op = QTAILQ_FIRST(&s->free_ops); 2267 QTAILQ_REMOVE(&s->free_ops, op, link); 2268 } 2269 memset(op, 0, offsetof(TCGOp, link)); 2270 op->opc = opc; 2271 s->nb_ops++; 2272 2273 return op; 2274 } 2275 2276 TCGOp *tcg_emit_op(TCGOpcode opc) 2277 { 2278 TCGOp *op = tcg_op_alloc(opc); 2279 QTAILQ_INSERT_TAIL(&tcg_ctx->ops, op, link); 2280 return op; 2281 } 2282 2283 TCGOp *tcg_op_insert_before(TCGContext *s, TCGOp *old_op, TCGOpcode opc) 2284 { 2285 TCGOp *new_op = tcg_op_alloc(opc); 2286 QTAILQ_INSERT_BEFORE(old_op, new_op, link); 2287 return new_op; 2288 } 2289 2290 TCGOp *tcg_op_insert_after(TCGContext *s, TCGOp *old_op, TCGOpcode opc) 2291 { 2292 TCGOp *new_op = tcg_op_alloc(opc); 2293 QTAILQ_INSERT_AFTER(&s->ops, old_op, new_op, link); 2294 return new_op; 2295 } 2296 2297 /* Reachable analysis : remove unreachable code. */ 2298 static void reachable_code_pass(TCGContext *s) 2299 { 2300 TCGOp *op, *op_next; 2301 bool dead = false; 2302 2303 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) { 2304 bool remove = dead; 2305 TCGLabel *label; 2306 int call_flags; 2307 2308 switch (op->opc) { 2309 case INDEX_op_set_label: 2310 label = arg_label(op->args[0]); 2311 if (label->refs == 0) { 2312 /* 2313 * While there is an occasional backward branch, virtually 2314 * all branches generated by the translators are forward. 2315 * Which means that generally we will have already removed 2316 * all references to the label that will be, and there is 2317 * little to be gained by iterating. 2318 */ 2319 remove = true; 2320 } else { 2321 /* Once we see a label, insns become live again. */ 2322 dead = false; 2323 remove = false; 2324 2325 /* 2326 * Optimization can fold conditional branches to unconditional. 2327 * If we find a label with one reference which is preceded by 2328 * an unconditional branch to it, remove both. This needed to 2329 * wait until the dead code in between them was removed. 2330 */ 2331 if (label->refs == 1) { 2332 TCGOp *op_prev = QTAILQ_PREV(op, link); 2333 if (op_prev->opc == INDEX_op_br && 2334 label == arg_label(op_prev->args[0])) { 2335 tcg_op_remove(s, op_prev); 2336 remove = true; 2337 } 2338 } 2339 } 2340 break; 2341 2342 case INDEX_op_br: 2343 case INDEX_op_exit_tb: 2344 case INDEX_op_goto_ptr: 2345 /* Unconditional branches; everything following is dead. */ 2346 dead = true; 2347 break; 2348 2349 case INDEX_op_call: 2350 /* Notice noreturn helper calls, raising exceptions. */ 2351 call_flags = op->args[TCGOP_CALLO(op) + TCGOP_CALLI(op) + 1]; 2352 if (call_flags & TCG_CALL_NO_RETURN) { 2353 dead = true; 2354 } 2355 break; 2356 2357 case INDEX_op_insn_start: 2358 /* Never remove -- we need to keep these for unwind. */ 2359 remove = false; 2360 break; 2361 2362 default: 2363 break; 2364 } 2365 2366 if (remove) { 2367 tcg_op_remove(s, op); 2368 } 2369 } 2370 } 2371 2372 #define TS_DEAD 1 2373 #define TS_MEM 2 2374 2375 #define IS_DEAD_ARG(n) (arg_life & (DEAD_ARG << (n))) 2376 #define NEED_SYNC_ARG(n) (arg_life & (SYNC_ARG << (n))) 2377 2378 /* For liveness_pass_1, the register preferences for a given temp. */ 2379 static inline TCGRegSet *la_temp_pref(TCGTemp *ts) 2380 { 2381 return ts->state_ptr; 2382 } 2383 2384 /* For liveness_pass_1, reset the preferences for a given temp to the 2385 * maximal regset for its type. 2386 */ 2387 static inline void la_reset_pref(TCGTemp *ts) 2388 { 2389 *la_temp_pref(ts) 2390 = (ts->state == TS_DEAD ? 0 : tcg_target_available_regs[ts->type]); 2391 } 2392 2393 /* liveness analysis: end of function: all temps are dead, and globals 2394 should be in memory. */ 2395 static void la_func_end(TCGContext *s, int ng, int nt) 2396 { 2397 int i; 2398 2399 for (i = 0; i < ng; ++i) { 2400 s->temps[i].state = TS_DEAD | TS_MEM; 2401 la_reset_pref(&s->temps[i]); 2402 } 2403 for (i = ng; i < nt; ++i) { 2404 s->temps[i].state = TS_DEAD; 2405 la_reset_pref(&s->temps[i]); 2406 } 2407 } 2408 2409 /* liveness analysis: end of basic block: all temps are dead, globals 2410 and local temps should be in memory. */ 2411 static void la_bb_end(TCGContext *s, int ng, int nt) 2412 { 2413 int i; 2414 2415 for (i = 0; i < ng; ++i) { 2416 s->temps[i].state = TS_DEAD | TS_MEM; 2417 la_reset_pref(&s->temps[i]); 2418 } 2419 for (i = ng; i < nt; ++i) { 2420 s->temps[i].state = (s->temps[i].temp_local 2421 ? TS_DEAD | TS_MEM 2422 : TS_DEAD); 2423 la_reset_pref(&s->temps[i]); 2424 } 2425 } 2426 2427 /* liveness analysis: sync globals back to memory. */ 2428 static void la_global_sync(TCGContext *s, int ng) 2429 { 2430 int i; 2431 2432 for (i = 0; i < ng; ++i) { 2433 int state = s->temps[i].state; 2434 s->temps[i].state = state | TS_MEM; 2435 if (state == TS_DEAD) { 2436 /* If the global was previously dead, reset prefs. */ 2437 la_reset_pref(&s->temps[i]); 2438 } 2439 } 2440 } 2441 2442 /* liveness analysis: sync globals back to memory and kill. */ 2443 static void la_global_kill(TCGContext *s, int ng) 2444 { 2445 int i; 2446 2447 for (i = 0; i < ng; i++) { 2448 s->temps[i].state = TS_DEAD | TS_MEM; 2449 la_reset_pref(&s->temps[i]); 2450 } 2451 } 2452 2453 /* liveness analysis: note live globals crossing calls. */ 2454 static void la_cross_call(TCGContext *s, int nt) 2455 { 2456 TCGRegSet mask = ~tcg_target_call_clobber_regs; 2457 int i; 2458 2459 for (i = 0; i < nt; i++) { 2460 TCGTemp *ts = &s->temps[i]; 2461 if (!(ts->state & TS_DEAD)) { 2462 TCGRegSet *pset = la_temp_pref(ts); 2463 TCGRegSet set = *pset; 2464 2465 set &= mask; 2466 /* If the combination is not possible, restart. */ 2467 if (set == 0) { 2468 set = tcg_target_available_regs[ts->type] & mask; 2469 } 2470 *pset = set; 2471 } 2472 } 2473 } 2474 2475 /* Liveness analysis : update the opc_arg_life array to tell if a 2476 given input arguments is dead. Instructions updating dead 2477 temporaries are removed. */ 2478 static void liveness_pass_1(TCGContext *s) 2479 { 2480 int nb_globals = s->nb_globals; 2481 int nb_temps = s->nb_temps; 2482 TCGOp *op, *op_prev; 2483 TCGRegSet *prefs; 2484 int i; 2485 2486 prefs = tcg_malloc(sizeof(TCGRegSet) * nb_temps); 2487 for (i = 0; i < nb_temps; ++i) { 2488 s->temps[i].state_ptr = prefs + i; 2489 } 2490 2491 /* ??? Should be redundant with the exit_tb that ends the TB. */ 2492 la_func_end(s, nb_globals, nb_temps); 2493 2494 QTAILQ_FOREACH_REVERSE_SAFE(op, &s->ops, link, op_prev) { 2495 int nb_iargs, nb_oargs; 2496 TCGOpcode opc_new, opc_new2; 2497 bool have_opc_new2; 2498 TCGLifeData arg_life = 0; 2499 TCGTemp *ts; 2500 TCGOpcode opc = op->opc; 2501 const TCGOpDef *def = &tcg_op_defs[opc]; 2502 2503 switch (opc) { 2504 case INDEX_op_call: 2505 { 2506 int call_flags; 2507 int nb_call_regs; 2508 2509 nb_oargs = TCGOP_CALLO(op); 2510 nb_iargs = TCGOP_CALLI(op); 2511 call_flags = op->args[nb_oargs + nb_iargs + 1]; 2512 2513 /* pure functions can be removed if their result is unused */ 2514 if (call_flags & TCG_CALL_NO_SIDE_EFFECTS) { 2515 for (i = 0; i < nb_oargs; i++) { 2516 ts = arg_temp(op->args[i]); 2517 if (ts->state != TS_DEAD) { 2518 goto do_not_remove_call; 2519 } 2520 } 2521 goto do_remove; 2522 } 2523 do_not_remove_call: 2524 2525 /* Output args are dead. */ 2526 for (i = 0; i < nb_oargs; i++) { 2527 ts = arg_temp(op->args[i]); 2528 if (ts->state & TS_DEAD) { 2529 arg_life |= DEAD_ARG << i; 2530 } 2531 if (ts->state & TS_MEM) { 2532 arg_life |= SYNC_ARG << i; 2533 } 2534 ts->state = TS_DEAD; 2535 la_reset_pref(ts); 2536 2537 /* Not used -- it will be tcg_target_call_oarg_regs[i]. */ 2538 op->output_pref[i] = 0; 2539 } 2540 2541 if (!(call_flags & (TCG_CALL_NO_WRITE_GLOBALS | 2542 TCG_CALL_NO_READ_GLOBALS))) { 2543 la_global_kill(s, nb_globals); 2544 } else if (!(call_flags & TCG_CALL_NO_READ_GLOBALS)) { 2545 la_global_sync(s, nb_globals); 2546 } 2547 2548 /* Record arguments that die in this helper. */ 2549 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) { 2550 ts = arg_temp(op->args[i]); 2551 if (ts && ts->state & TS_DEAD) { 2552 arg_life |= DEAD_ARG << i; 2553 } 2554 } 2555 2556 /* For all live registers, remove call-clobbered prefs. */ 2557 la_cross_call(s, nb_temps); 2558 2559 nb_call_regs = ARRAY_SIZE(tcg_target_call_iarg_regs); 2560 2561 /* Input arguments are live for preceding opcodes. */ 2562 for (i = 0; i < nb_iargs; i++) { 2563 ts = arg_temp(op->args[i + nb_oargs]); 2564 if (ts && ts->state & TS_DEAD) { 2565 /* For those arguments that die, and will be allocated 2566 * in registers, clear the register set for that arg, 2567 * to be filled in below. For args that will be on 2568 * the stack, reset to any available reg. 2569 */ 2570 *la_temp_pref(ts) 2571 = (i < nb_call_regs ? 0 : 2572 tcg_target_available_regs[ts->type]); 2573 ts->state &= ~TS_DEAD; 2574 } 2575 } 2576 2577 /* For each input argument, add its input register to prefs. 2578 If a temp is used once, this produces a single set bit. */ 2579 for (i = 0; i < MIN(nb_call_regs, nb_iargs); i++) { 2580 ts = arg_temp(op->args[i + nb_oargs]); 2581 if (ts) { 2582 tcg_regset_set_reg(*la_temp_pref(ts), 2583 tcg_target_call_iarg_regs[i]); 2584 } 2585 } 2586 } 2587 break; 2588 case INDEX_op_insn_start: 2589 break; 2590 case INDEX_op_discard: 2591 /* mark the temporary as dead */ 2592 ts = arg_temp(op->args[0]); 2593 ts->state = TS_DEAD; 2594 la_reset_pref(ts); 2595 break; 2596 2597 case INDEX_op_add2_i32: 2598 opc_new = INDEX_op_add_i32; 2599 goto do_addsub2; 2600 case INDEX_op_sub2_i32: 2601 opc_new = INDEX_op_sub_i32; 2602 goto do_addsub2; 2603 case INDEX_op_add2_i64: 2604 opc_new = INDEX_op_add_i64; 2605 goto do_addsub2; 2606 case INDEX_op_sub2_i64: 2607 opc_new = INDEX_op_sub_i64; 2608 do_addsub2: 2609 nb_iargs = 4; 2610 nb_oargs = 2; 2611 /* Test if the high part of the operation is dead, but not 2612 the low part. The result can be optimized to a simple 2613 add or sub. This happens often for x86_64 guest when the 2614 cpu mode is set to 32 bit. */ 2615 if (arg_temp(op->args[1])->state == TS_DEAD) { 2616 if (arg_temp(op->args[0])->state == TS_DEAD) { 2617 goto do_remove; 2618 } 2619 /* Replace the opcode and adjust the args in place, 2620 leaving 3 unused args at the end. */ 2621 op->opc = opc = opc_new; 2622 op->args[1] = op->args[2]; 2623 op->args[2] = op->args[4]; 2624 /* Fall through and mark the single-word operation live. */ 2625 nb_iargs = 2; 2626 nb_oargs = 1; 2627 } 2628 goto do_not_remove; 2629 2630 case INDEX_op_mulu2_i32: 2631 opc_new = INDEX_op_mul_i32; 2632 opc_new2 = INDEX_op_muluh_i32; 2633 have_opc_new2 = TCG_TARGET_HAS_muluh_i32; 2634 goto do_mul2; 2635 case INDEX_op_muls2_i32: 2636 opc_new = INDEX_op_mul_i32; 2637 opc_new2 = INDEX_op_mulsh_i32; 2638 have_opc_new2 = TCG_TARGET_HAS_mulsh_i32; 2639 goto do_mul2; 2640 case INDEX_op_mulu2_i64: 2641 opc_new = INDEX_op_mul_i64; 2642 opc_new2 = INDEX_op_muluh_i64; 2643 have_opc_new2 = TCG_TARGET_HAS_muluh_i64; 2644 goto do_mul2; 2645 case INDEX_op_muls2_i64: 2646 opc_new = INDEX_op_mul_i64; 2647 opc_new2 = INDEX_op_mulsh_i64; 2648 have_opc_new2 = TCG_TARGET_HAS_mulsh_i64; 2649 goto do_mul2; 2650 do_mul2: 2651 nb_iargs = 2; 2652 nb_oargs = 2; 2653 if (arg_temp(op->args[1])->state == TS_DEAD) { 2654 if (arg_temp(op->args[0])->state == TS_DEAD) { 2655 /* Both parts of the operation are dead. */ 2656 goto do_remove; 2657 } 2658 /* The high part of the operation is dead; generate the low. */ 2659 op->opc = opc = opc_new; 2660 op->args[1] = op->args[2]; 2661 op->args[2] = op->args[3]; 2662 } else if (arg_temp(op->args[0])->state == TS_DEAD && have_opc_new2) { 2663 /* The low part of the operation is dead; generate the high. */ 2664 op->opc = opc = opc_new2; 2665 op->args[0] = op->args[1]; 2666 op->args[1] = op->args[2]; 2667 op->args[2] = op->args[3]; 2668 } else { 2669 goto do_not_remove; 2670 } 2671 /* Mark the single-word operation live. */ 2672 nb_oargs = 1; 2673 goto do_not_remove; 2674 2675 default: 2676 /* XXX: optimize by hardcoding common cases (e.g. triadic ops) */ 2677 nb_iargs = def->nb_iargs; 2678 nb_oargs = def->nb_oargs; 2679 2680 /* Test if the operation can be removed because all 2681 its outputs are dead. We assume that nb_oargs == 0 2682 implies side effects */ 2683 if (!(def->flags & TCG_OPF_SIDE_EFFECTS) && nb_oargs != 0) { 2684 for (i = 0; i < nb_oargs; i++) { 2685 if (arg_temp(op->args[i])->state != TS_DEAD) { 2686 goto do_not_remove; 2687 } 2688 } 2689 goto do_remove; 2690 } 2691 goto do_not_remove; 2692 2693 do_remove: 2694 tcg_op_remove(s, op); 2695 break; 2696 2697 do_not_remove: 2698 for (i = 0; i < nb_oargs; i++) { 2699 ts = arg_temp(op->args[i]); 2700 2701 /* Remember the preference of the uses that followed. */ 2702 op->output_pref[i] = *la_temp_pref(ts); 2703 2704 /* Output args are dead. */ 2705 if (ts->state & TS_DEAD) { 2706 arg_life |= DEAD_ARG << i; 2707 } 2708 if (ts->state & TS_MEM) { 2709 arg_life |= SYNC_ARG << i; 2710 } 2711 ts->state = TS_DEAD; 2712 la_reset_pref(ts); 2713 } 2714 2715 /* If end of basic block, update. */ 2716 if (def->flags & TCG_OPF_BB_EXIT) { 2717 la_func_end(s, nb_globals, nb_temps); 2718 } else if (def->flags & TCG_OPF_BB_END) { 2719 la_bb_end(s, nb_globals, nb_temps); 2720 } else if (def->flags & TCG_OPF_SIDE_EFFECTS) { 2721 la_global_sync(s, nb_globals); 2722 if (def->flags & TCG_OPF_CALL_CLOBBER) { 2723 la_cross_call(s, nb_temps); 2724 } 2725 } 2726 2727 /* Record arguments that die in this opcode. */ 2728 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 2729 ts = arg_temp(op->args[i]); 2730 if (ts->state & TS_DEAD) { 2731 arg_life |= DEAD_ARG << i; 2732 } 2733 } 2734 2735 /* Input arguments are live for preceding opcodes. */ 2736 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 2737 ts = arg_temp(op->args[i]); 2738 if (ts->state & TS_DEAD) { 2739 /* For operands that were dead, initially allow 2740 all regs for the type. */ 2741 *la_temp_pref(ts) = tcg_target_available_regs[ts->type]; 2742 ts->state &= ~TS_DEAD; 2743 } 2744 } 2745 2746 /* Incorporate constraints for this operand. */ 2747 switch (opc) { 2748 case INDEX_op_mov_i32: 2749 case INDEX_op_mov_i64: 2750 /* Note that these are TCG_OPF_NOT_PRESENT and do not 2751 have proper constraints. That said, special case 2752 moves to propagate preferences backward. */ 2753 if (IS_DEAD_ARG(1)) { 2754 *la_temp_pref(arg_temp(op->args[0])) 2755 = *la_temp_pref(arg_temp(op->args[1])); 2756 } 2757 break; 2758 2759 default: 2760 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 2761 const TCGArgConstraint *ct = &def->args_ct[i]; 2762 TCGRegSet set, *pset; 2763 2764 ts = arg_temp(op->args[i]); 2765 pset = la_temp_pref(ts); 2766 set = *pset; 2767 2768 set &= ct->u.regs; 2769 if (ct->ct & TCG_CT_IALIAS) { 2770 set &= op->output_pref[ct->alias_index]; 2771 } 2772 /* If the combination is not possible, restart. */ 2773 if (set == 0) { 2774 set = ct->u.regs; 2775 } 2776 *pset = set; 2777 } 2778 break; 2779 } 2780 break; 2781 } 2782 op->life = arg_life; 2783 } 2784 } 2785 2786 /* Liveness analysis: Convert indirect regs to direct temporaries. */ 2787 static bool liveness_pass_2(TCGContext *s) 2788 { 2789 int nb_globals = s->nb_globals; 2790 int nb_temps, i; 2791 bool changes = false; 2792 TCGOp *op, *op_next; 2793 2794 /* Create a temporary for each indirect global. */ 2795 for (i = 0; i < nb_globals; ++i) { 2796 TCGTemp *its = &s->temps[i]; 2797 if (its->indirect_reg) { 2798 TCGTemp *dts = tcg_temp_alloc(s); 2799 dts->type = its->type; 2800 dts->base_type = its->base_type; 2801 its->state_ptr = dts; 2802 } else { 2803 its->state_ptr = NULL; 2804 } 2805 /* All globals begin dead. */ 2806 its->state = TS_DEAD; 2807 } 2808 for (nb_temps = s->nb_temps; i < nb_temps; ++i) { 2809 TCGTemp *its = &s->temps[i]; 2810 its->state_ptr = NULL; 2811 its->state = TS_DEAD; 2812 } 2813 2814 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) { 2815 TCGOpcode opc = op->opc; 2816 const TCGOpDef *def = &tcg_op_defs[opc]; 2817 TCGLifeData arg_life = op->life; 2818 int nb_iargs, nb_oargs, call_flags; 2819 TCGTemp *arg_ts, *dir_ts; 2820 2821 if (opc == INDEX_op_call) { 2822 nb_oargs = TCGOP_CALLO(op); 2823 nb_iargs = TCGOP_CALLI(op); 2824 call_flags = op->args[nb_oargs + nb_iargs + 1]; 2825 } else { 2826 nb_iargs = def->nb_iargs; 2827 nb_oargs = def->nb_oargs; 2828 2829 /* Set flags similar to how calls require. */ 2830 if (def->flags & TCG_OPF_BB_END) { 2831 /* Like writing globals: save_globals */ 2832 call_flags = 0; 2833 } else if (def->flags & TCG_OPF_SIDE_EFFECTS) { 2834 /* Like reading globals: sync_globals */ 2835 call_flags = TCG_CALL_NO_WRITE_GLOBALS; 2836 } else { 2837 /* No effect on globals. */ 2838 call_flags = (TCG_CALL_NO_READ_GLOBALS | 2839 TCG_CALL_NO_WRITE_GLOBALS); 2840 } 2841 } 2842 2843 /* Make sure that input arguments are available. */ 2844 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) { 2845 arg_ts = arg_temp(op->args[i]); 2846 if (arg_ts) { 2847 dir_ts = arg_ts->state_ptr; 2848 if (dir_ts && arg_ts->state == TS_DEAD) { 2849 TCGOpcode lopc = (arg_ts->type == TCG_TYPE_I32 2850 ? INDEX_op_ld_i32 2851 : INDEX_op_ld_i64); 2852 TCGOp *lop = tcg_op_insert_before(s, op, lopc); 2853 2854 lop->args[0] = temp_arg(dir_ts); 2855 lop->args[1] = temp_arg(arg_ts->mem_base); 2856 lop->args[2] = arg_ts->mem_offset; 2857 2858 /* Loaded, but synced with memory. */ 2859 arg_ts->state = TS_MEM; 2860 } 2861 } 2862 } 2863 2864 /* Perform input replacement, and mark inputs that became dead. 2865 No action is required except keeping temp_state up to date 2866 so that we reload when needed. */ 2867 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) { 2868 arg_ts = arg_temp(op->args[i]); 2869 if (arg_ts) { 2870 dir_ts = arg_ts->state_ptr; 2871 if (dir_ts) { 2872 op->args[i] = temp_arg(dir_ts); 2873 changes = true; 2874 if (IS_DEAD_ARG(i)) { 2875 arg_ts->state = TS_DEAD; 2876 } 2877 } 2878 } 2879 } 2880 2881 /* Liveness analysis should ensure that the following are 2882 all correct, for call sites and basic block end points. */ 2883 if (call_flags & TCG_CALL_NO_READ_GLOBALS) { 2884 /* Nothing to do */ 2885 } else if (call_flags & TCG_CALL_NO_WRITE_GLOBALS) { 2886 for (i = 0; i < nb_globals; ++i) { 2887 /* Liveness should see that globals are synced back, 2888 that is, either TS_DEAD or TS_MEM. */ 2889 arg_ts = &s->temps[i]; 2890 tcg_debug_assert(arg_ts->state_ptr == 0 2891 || arg_ts->state != 0); 2892 } 2893 } else { 2894 for (i = 0; i < nb_globals; ++i) { 2895 /* Liveness should see that globals are saved back, 2896 that is, TS_DEAD, waiting to be reloaded. */ 2897 arg_ts = &s->temps[i]; 2898 tcg_debug_assert(arg_ts->state_ptr == 0 2899 || arg_ts->state == TS_DEAD); 2900 } 2901 } 2902 2903 /* Outputs become available. */ 2904 for (i = 0; i < nb_oargs; i++) { 2905 arg_ts = arg_temp(op->args[i]); 2906 dir_ts = arg_ts->state_ptr; 2907 if (!dir_ts) { 2908 continue; 2909 } 2910 op->args[i] = temp_arg(dir_ts); 2911 changes = true; 2912 2913 /* The output is now live and modified. */ 2914 arg_ts->state = 0; 2915 2916 /* Sync outputs upon their last write. */ 2917 if (NEED_SYNC_ARG(i)) { 2918 TCGOpcode sopc = (arg_ts->type == TCG_TYPE_I32 2919 ? INDEX_op_st_i32 2920 : INDEX_op_st_i64); 2921 TCGOp *sop = tcg_op_insert_after(s, op, sopc); 2922 2923 sop->args[0] = temp_arg(dir_ts); 2924 sop->args[1] = temp_arg(arg_ts->mem_base); 2925 sop->args[2] = arg_ts->mem_offset; 2926 2927 arg_ts->state = TS_MEM; 2928 } 2929 /* Drop outputs that are dead. */ 2930 if (IS_DEAD_ARG(i)) { 2931 arg_ts->state = TS_DEAD; 2932 } 2933 } 2934 } 2935 2936 return changes; 2937 } 2938 2939 #ifdef CONFIG_DEBUG_TCG 2940 static void dump_regs(TCGContext *s) 2941 { 2942 TCGTemp *ts; 2943 int i; 2944 char buf[64]; 2945 2946 for(i = 0; i < s->nb_temps; i++) { 2947 ts = &s->temps[i]; 2948 printf(" %10s: ", tcg_get_arg_str_ptr(s, buf, sizeof(buf), ts)); 2949 switch(ts->val_type) { 2950 case TEMP_VAL_REG: 2951 printf("%s", tcg_target_reg_names[ts->reg]); 2952 break; 2953 case TEMP_VAL_MEM: 2954 printf("%d(%s)", (int)ts->mem_offset, 2955 tcg_target_reg_names[ts->mem_base->reg]); 2956 break; 2957 case TEMP_VAL_CONST: 2958 printf("$0x%" TCG_PRIlx, ts->val); 2959 break; 2960 case TEMP_VAL_DEAD: 2961 printf("D"); 2962 break; 2963 default: 2964 printf("???"); 2965 break; 2966 } 2967 printf("\n"); 2968 } 2969 2970 for(i = 0; i < TCG_TARGET_NB_REGS; i++) { 2971 if (s->reg_to_temp[i] != NULL) { 2972 printf("%s: %s\n", 2973 tcg_target_reg_names[i], 2974 tcg_get_arg_str_ptr(s, buf, sizeof(buf), s->reg_to_temp[i])); 2975 } 2976 } 2977 } 2978 2979 static void check_regs(TCGContext *s) 2980 { 2981 int reg; 2982 int k; 2983 TCGTemp *ts; 2984 char buf[64]; 2985 2986 for (reg = 0; reg < TCG_TARGET_NB_REGS; reg++) { 2987 ts = s->reg_to_temp[reg]; 2988 if (ts != NULL) { 2989 if (ts->val_type != TEMP_VAL_REG || ts->reg != reg) { 2990 printf("Inconsistency for register %s:\n", 2991 tcg_target_reg_names[reg]); 2992 goto fail; 2993 } 2994 } 2995 } 2996 for (k = 0; k < s->nb_temps; k++) { 2997 ts = &s->temps[k]; 2998 if (ts->val_type == TEMP_VAL_REG && !ts->fixed_reg 2999 && s->reg_to_temp[ts->reg] != ts) { 3000 printf("Inconsistency for temp %s:\n", 3001 tcg_get_arg_str_ptr(s, buf, sizeof(buf), ts)); 3002 fail: 3003 printf("reg state:\n"); 3004 dump_regs(s); 3005 tcg_abort(); 3006 } 3007 } 3008 } 3009 #endif 3010 3011 static void temp_allocate_frame(TCGContext *s, TCGTemp *ts) 3012 { 3013 #if !(defined(__sparc__) && TCG_TARGET_REG_BITS == 64) 3014 /* Sparc64 stack is accessed with offset of 2047 */ 3015 s->current_frame_offset = (s->current_frame_offset + 3016 (tcg_target_long)sizeof(tcg_target_long) - 1) & 3017 ~(sizeof(tcg_target_long) - 1); 3018 #endif 3019 if (s->current_frame_offset + (tcg_target_long)sizeof(tcg_target_long) > 3020 s->frame_end) { 3021 tcg_abort(); 3022 } 3023 ts->mem_offset = s->current_frame_offset; 3024 ts->mem_base = s->frame_temp; 3025 ts->mem_allocated = 1; 3026 s->current_frame_offset += sizeof(tcg_target_long); 3027 } 3028 3029 static void temp_load(TCGContext *, TCGTemp *, TCGRegSet, TCGRegSet, TCGRegSet); 3030 3031 /* Mark a temporary as free or dead. If 'free_or_dead' is negative, 3032 mark it free; otherwise mark it dead. */ 3033 static void temp_free_or_dead(TCGContext *s, TCGTemp *ts, int free_or_dead) 3034 { 3035 if (ts->fixed_reg) { 3036 return; 3037 } 3038 if (ts->val_type == TEMP_VAL_REG) { 3039 s->reg_to_temp[ts->reg] = NULL; 3040 } 3041 ts->val_type = (free_or_dead < 0 3042 || ts->temp_local 3043 || ts->temp_global 3044 ? TEMP_VAL_MEM : TEMP_VAL_DEAD); 3045 } 3046 3047 /* Mark a temporary as dead. */ 3048 static inline void temp_dead(TCGContext *s, TCGTemp *ts) 3049 { 3050 temp_free_or_dead(s, ts, 1); 3051 } 3052 3053 /* Sync a temporary to memory. 'allocated_regs' is used in case a temporary 3054 registers needs to be allocated to store a constant. If 'free_or_dead' 3055 is non-zero, subsequently release the temporary; if it is positive, the 3056 temp is dead; if it is negative, the temp is free. */ 3057 static void temp_sync(TCGContext *s, TCGTemp *ts, TCGRegSet allocated_regs, 3058 TCGRegSet preferred_regs, int free_or_dead) 3059 { 3060 if (ts->fixed_reg) { 3061 return; 3062 } 3063 if (!ts->mem_coherent) { 3064 if (!ts->mem_allocated) { 3065 temp_allocate_frame(s, ts); 3066 } 3067 switch (ts->val_type) { 3068 case TEMP_VAL_CONST: 3069 /* If we're going to free the temp immediately, then we won't 3070 require it later in a register, so attempt to store the 3071 constant to memory directly. */ 3072 if (free_or_dead 3073 && tcg_out_sti(s, ts->type, ts->val, 3074 ts->mem_base->reg, ts->mem_offset)) { 3075 break; 3076 } 3077 temp_load(s, ts, tcg_target_available_regs[ts->type], 3078 allocated_regs, preferred_regs); 3079 /* fallthrough */ 3080 3081 case TEMP_VAL_REG: 3082 tcg_out_st(s, ts->type, ts->reg, 3083 ts->mem_base->reg, ts->mem_offset); 3084 break; 3085 3086 case TEMP_VAL_MEM: 3087 break; 3088 3089 case TEMP_VAL_DEAD: 3090 default: 3091 tcg_abort(); 3092 } 3093 ts->mem_coherent = 1; 3094 } 3095 if (free_or_dead) { 3096 temp_free_or_dead(s, ts, free_or_dead); 3097 } 3098 } 3099 3100 /* free register 'reg' by spilling the corresponding temporary if necessary */ 3101 static void tcg_reg_free(TCGContext *s, TCGReg reg, TCGRegSet allocated_regs) 3102 { 3103 TCGTemp *ts = s->reg_to_temp[reg]; 3104 if (ts != NULL) { 3105 temp_sync(s, ts, allocated_regs, 0, -1); 3106 } 3107 } 3108 3109 /** 3110 * tcg_reg_alloc: 3111 * @required_regs: Set of registers in which we must allocate. 3112 * @allocated_regs: Set of registers which must be avoided. 3113 * @preferred_regs: Set of registers we should prefer. 3114 * @rev: True if we search the registers in "indirect" order. 3115 * 3116 * The allocated register must be in @required_regs & ~@allocated_regs, 3117 * but if we can put it in @preferred_regs we may save a move later. 3118 */ 3119 static TCGReg tcg_reg_alloc(TCGContext *s, TCGRegSet required_regs, 3120 TCGRegSet allocated_regs, 3121 TCGRegSet preferred_regs, bool rev) 3122 { 3123 int i, j, f, n = ARRAY_SIZE(tcg_target_reg_alloc_order); 3124 TCGRegSet reg_ct[2]; 3125 const int *order; 3126 3127 reg_ct[1] = required_regs & ~allocated_regs; 3128 tcg_debug_assert(reg_ct[1] != 0); 3129 reg_ct[0] = reg_ct[1] & preferred_regs; 3130 3131 /* Skip the preferred_regs option if it cannot be satisfied, 3132 or if the preference made no difference. */ 3133 f = reg_ct[0] == 0 || reg_ct[0] == reg_ct[1]; 3134 3135 order = rev ? indirect_reg_alloc_order : tcg_target_reg_alloc_order; 3136 3137 /* Try free registers, preferences first. */ 3138 for (j = f; j < 2; j++) { 3139 TCGRegSet set = reg_ct[j]; 3140 3141 if (tcg_regset_single(set)) { 3142 /* One register in the set. */ 3143 TCGReg reg = tcg_regset_first(set); 3144 if (s->reg_to_temp[reg] == NULL) { 3145 return reg; 3146 } 3147 } else { 3148 for (i = 0; i < n; i++) { 3149 TCGReg reg = order[i]; 3150 if (s->reg_to_temp[reg] == NULL && 3151 tcg_regset_test_reg(set, reg)) { 3152 return reg; 3153 } 3154 } 3155 } 3156 } 3157 3158 /* We must spill something. */ 3159 for (j = f; j < 2; j++) { 3160 TCGRegSet set = reg_ct[j]; 3161 3162 if (tcg_regset_single(set)) { 3163 /* One register in the set. */ 3164 TCGReg reg = tcg_regset_first(set); 3165 tcg_reg_free(s, reg, allocated_regs); 3166 return reg; 3167 } else { 3168 for (i = 0; i < n; i++) { 3169 TCGReg reg = order[i]; 3170 if (tcg_regset_test_reg(set, reg)) { 3171 tcg_reg_free(s, reg, allocated_regs); 3172 return reg; 3173 } 3174 } 3175 } 3176 } 3177 3178 tcg_abort(); 3179 } 3180 3181 /* Make sure the temporary is in a register. If needed, allocate the register 3182 from DESIRED while avoiding ALLOCATED. */ 3183 static void temp_load(TCGContext *s, TCGTemp *ts, TCGRegSet desired_regs, 3184 TCGRegSet allocated_regs, TCGRegSet preferred_regs) 3185 { 3186 TCGReg reg; 3187 3188 switch (ts->val_type) { 3189 case TEMP_VAL_REG: 3190 return; 3191 case TEMP_VAL_CONST: 3192 reg = tcg_reg_alloc(s, desired_regs, allocated_regs, 3193 preferred_regs, ts->indirect_base); 3194 tcg_out_movi(s, ts->type, reg, ts->val); 3195 ts->mem_coherent = 0; 3196 break; 3197 case TEMP_VAL_MEM: 3198 reg = tcg_reg_alloc(s, desired_regs, allocated_regs, 3199 preferred_regs, ts->indirect_base); 3200 tcg_out_ld(s, ts->type, reg, ts->mem_base->reg, ts->mem_offset); 3201 ts->mem_coherent = 1; 3202 break; 3203 case TEMP_VAL_DEAD: 3204 default: 3205 tcg_abort(); 3206 } 3207 ts->reg = reg; 3208 ts->val_type = TEMP_VAL_REG; 3209 s->reg_to_temp[reg] = ts; 3210 } 3211 3212 /* Save a temporary to memory. 'allocated_regs' is used in case a 3213 temporary registers needs to be allocated to store a constant. */ 3214 static void temp_save(TCGContext *s, TCGTemp *ts, TCGRegSet allocated_regs) 3215 { 3216 /* The liveness analysis already ensures that globals are back 3217 in memory. Keep an tcg_debug_assert for safety. */ 3218 tcg_debug_assert(ts->val_type == TEMP_VAL_MEM || ts->fixed_reg); 3219 } 3220 3221 /* save globals to their canonical location and assume they can be 3222 modified be the following code. 'allocated_regs' is used in case a 3223 temporary registers needs to be allocated to store a constant. */ 3224 static void save_globals(TCGContext *s, TCGRegSet allocated_regs) 3225 { 3226 int i, n; 3227 3228 for (i = 0, n = s->nb_globals; i < n; i++) { 3229 temp_save(s, &s->temps[i], allocated_regs); 3230 } 3231 } 3232 3233 /* sync globals to their canonical location and assume they can be 3234 read by the following code. 'allocated_regs' is used in case a 3235 temporary registers needs to be allocated to store a constant. */ 3236 static void sync_globals(TCGContext *s, TCGRegSet allocated_regs) 3237 { 3238 int i, n; 3239 3240 for (i = 0, n = s->nb_globals; i < n; i++) { 3241 TCGTemp *ts = &s->temps[i]; 3242 tcg_debug_assert(ts->val_type != TEMP_VAL_REG 3243 || ts->fixed_reg 3244 || ts->mem_coherent); 3245 } 3246 } 3247 3248 /* at the end of a basic block, we assume all temporaries are dead and 3249 all globals are stored at their canonical location. */ 3250 static void tcg_reg_alloc_bb_end(TCGContext *s, TCGRegSet allocated_regs) 3251 { 3252 int i; 3253 3254 for (i = s->nb_globals; i < s->nb_temps; i++) { 3255 TCGTemp *ts = &s->temps[i]; 3256 if (ts->temp_local) { 3257 temp_save(s, ts, allocated_regs); 3258 } else { 3259 /* The liveness analysis already ensures that temps are dead. 3260 Keep an tcg_debug_assert for safety. */ 3261 tcg_debug_assert(ts->val_type == TEMP_VAL_DEAD); 3262 } 3263 } 3264 3265 save_globals(s, allocated_regs); 3266 } 3267 3268 static void tcg_reg_alloc_do_movi(TCGContext *s, TCGTemp *ots, 3269 tcg_target_ulong val, TCGLifeData arg_life, 3270 TCGRegSet preferred_regs) 3271 { 3272 if (ots->fixed_reg) { 3273 /* For fixed registers, we do not do any constant propagation. */ 3274 tcg_out_movi(s, ots->type, ots->reg, val); 3275 return; 3276 } 3277 3278 /* The movi is not explicitly generated here. */ 3279 if (ots->val_type == TEMP_VAL_REG) { 3280 s->reg_to_temp[ots->reg] = NULL; 3281 } 3282 ots->val_type = TEMP_VAL_CONST; 3283 ots->val = val; 3284 ots->mem_coherent = 0; 3285 if (NEED_SYNC_ARG(0)) { 3286 temp_sync(s, ots, s->reserved_regs, preferred_regs, IS_DEAD_ARG(0)); 3287 } else if (IS_DEAD_ARG(0)) { 3288 temp_dead(s, ots); 3289 } 3290 } 3291 3292 static void tcg_reg_alloc_movi(TCGContext *s, const TCGOp *op) 3293 { 3294 TCGTemp *ots = arg_temp(op->args[0]); 3295 tcg_target_ulong val = op->args[1]; 3296 3297 tcg_reg_alloc_do_movi(s, ots, val, op->life, op->output_pref[0]); 3298 } 3299 3300 static void tcg_reg_alloc_mov(TCGContext *s, const TCGOp *op) 3301 { 3302 const TCGLifeData arg_life = op->life; 3303 TCGRegSet allocated_regs, preferred_regs; 3304 TCGTemp *ts, *ots; 3305 TCGType otype, itype; 3306 3307 allocated_regs = s->reserved_regs; 3308 preferred_regs = op->output_pref[0]; 3309 ots = arg_temp(op->args[0]); 3310 ts = arg_temp(op->args[1]); 3311 3312 /* Note that otype != itype for no-op truncation. */ 3313 otype = ots->type; 3314 itype = ts->type; 3315 3316 if (ts->val_type == TEMP_VAL_CONST) { 3317 /* propagate constant or generate sti */ 3318 tcg_target_ulong val = ts->val; 3319 if (IS_DEAD_ARG(1)) { 3320 temp_dead(s, ts); 3321 } 3322 tcg_reg_alloc_do_movi(s, ots, val, arg_life, preferred_regs); 3323 return; 3324 } 3325 3326 /* If the source value is in memory we're going to be forced 3327 to have it in a register in order to perform the copy. Copy 3328 the SOURCE value into its own register first, that way we 3329 don't have to reload SOURCE the next time it is used. */ 3330 if (ts->val_type == TEMP_VAL_MEM) { 3331 temp_load(s, ts, tcg_target_available_regs[itype], 3332 allocated_regs, preferred_regs); 3333 } 3334 3335 tcg_debug_assert(ts->val_type == TEMP_VAL_REG); 3336 if (IS_DEAD_ARG(0) && !ots->fixed_reg) { 3337 /* mov to a non-saved dead register makes no sense (even with 3338 liveness analysis disabled). */ 3339 tcg_debug_assert(NEED_SYNC_ARG(0)); 3340 if (!ots->mem_allocated) { 3341 temp_allocate_frame(s, ots); 3342 } 3343 tcg_out_st(s, otype, ts->reg, ots->mem_base->reg, ots->mem_offset); 3344 if (IS_DEAD_ARG(1)) { 3345 temp_dead(s, ts); 3346 } 3347 temp_dead(s, ots); 3348 } else { 3349 if (IS_DEAD_ARG(1) && !ts->fixed_reg && !ots->fixed_reg) { 3350 /* the mov can be suppressed */ 3351 if (ots->val_type == TEMP_VAL_REG) { 3352 s->reg_to_temp[ots->reg] = NULL; 3353 } 3354 ots->reg = ts->reg; 3355 temp_dead(s, ts); 3356 } else { 3357 if (ots->val_type != TEMP_VAL_REG) { 3358 /* When allocating a new register, make sure to not spill the 3359 input one. */ 3360 tcg_regset_set_reg(allocated_regs, ts->reg); 3361 ots->reg = tcg_reg_alloc(s, tcg_target_available_regs[otype], 3362 allocated_regs, preferred_regs, 3363 ots->indirect_base); 3364 } 3365 tcg_out_mov(s, otype, ots->reg, ts->reg); 3366 } 3367 ots->val_type = TEMP_VAL_REG; 3368 ots->mem_coherent = 0; 3369 s->reg_to_temp[ots->reg] = ots; 3370 if (NEED_SYNC_ARG(0)) { 3371 temp_sync(s, ots, allocated_regs, 0, 0); 3372 } 3373 } 3374 } 3375 3376 static void tcg_reg_alloc_op(TCGContext *s, const TCGOp *op) 3377 { 3378 const TCGLifeData arg_life = op->life; 3379 const TCGOpDef * const def = &tcg_op_defs[op->opc]; 3380 TCGRegSet i_allocated_regs; 3381 TCGRegSet o_allocated_regs; 3382 int i, k, nb_iargs, nb_oargs; 3383 TCGReg reg; 3384 TCGArg arg; 3385 const TCGArgConstraint *arg_ct; 3386 TCGTemp *ts; 3387 TCGArg new_args[TCG_MAX_OP_ARGS]; 3388 int const_args[TCG_MAX_OP_ARGS]; 3389 3390 nb_oargs = def->nb_oargs; 3391 nb_iargs = def->nb_iargs; 3392 3393 /* copy constants */ 3394 memcpy(new_args + nb_oargs + nb_iargs, 3395 op->args + nb_oargs + nb_iargs, 3396 sizeof(TCGArg) * def->nb_cargs); 3397 3398 i_allocated_regs = s->reserved_regs; 3399 o_allocated_regs = s->reserved_regs; 3400 3401 /* satisfy input constraints */ 3402 for (k = 0; k < nb_iargs; k++) { 3403 TCGRegSet i_preferred_regs, o_preferred_regs; 3404 3405 i = def->sorted_args[nb_oargs + k]; 3406 arg = op->args[i]; 3407 arg_ct = &def->args_ct[i]; 3408 ts = arg_temp(arg); 3409 3410 if (ts->val_type == TEMP_VAL_CONST 3411 && tcg_target_const_match(ts->val, ts->type, arg_ct)) { 3412 /* constant is OK for instruction */ 3413 const_args[i] = 1; 3414 new_args[i] = ts->val; 3415 continue; 3416 } 3417 3418 i_preferred_regs = o_preferred_regs = 0; 3419 if (arg_ct->ct & TCG_CT_IALIAS) { 3420 o_preferred_regs = op->output_pref[arg_ct->alias_index]; 3421 if (ts->fixed_reg) { 3422 /* if fixed register, we must allocate a new register 3423 if the alias is not the same register */ 3424 if (arg != op->args[arg_ct->alias_index]) { 3425 goto allocate_in_reg; 3426 } 3427 } else { 3428 /* if the input is aliased to an output and if it is 3429 not dead after the instruction, we must allocate 3430 a new register and move it */ 3431 if (!IS_DEAD_ARG(i)) { 3432 goto allocate_in_reg; 3433 } 3434 3435 /* check if the current register has already been allocated 3436 for another input aliased to an output */ 3437 if (ts->val_type == TEMP_VAL_REG) { 3438 int k2, i2; 3439 reg = ts->reg; 3440 for (k2 = 0 ; k2 < k ; k2++) { 3441 i2 = def->sorted_args[nb_oargs + k2]; 3442 if ((def->args_ct[i2].ct & TCG_CT_IALIAS) && 3443 reg == new_args[i2]) { 3444 goto allocate_in_reg; 3445 } 3446 } 3447 } 3448 i_preferred_regs = o_preferred_regs; 3449 } 3450 } 3451 3452 temp_load(s, ts, arg_ct->u.regs, i_allocated_regs, i_preferred_regs); 3453 reg = ts->reg; 3454 3455 if (tcg_regset_test_reg(arg_ct->u.regs, reg)) { 3456 /* nothing to do : the constraint is satisfied */ 3457 } else { 3458 allocate_in_reg: 3459 /* allocate a new register matching the constraint 3460 and move the temporary register into it */ 3461 temp_load(s, ts, tcg_target_available_regs[ts->type], 3462 i_allocated_regs, 0); 3463 reg = tcg_reg_alloc(s, arg_ct->u.regs, i_allocated_regs, 3464 o_preferred_regs, ts->indirect_base); 3465 tcg_out_mov(s, ts->type, reg, ts->reg); 3466 } 3467 new_args[i] = reg; 3468 const_args[i] = 0; 3469 tcg_regset_set_reg(i_allocated_regs, reg); 3470 } 3471 3472 /* mark dead temporaries and free the associated registers */ 3473 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 3474 if (IS_DEAD_ARG(i)) { 3475 temp_dead(s, arg_temp(op->args[i])); 3476 } 3477 } 3478 3479 if (def->flags & TCG_OPF_BB_END) { 3480 tcg_reg_alloc_bb_end(s, i_allocated_regs); 3481 } else { 3482 if (def->flags & TCG_OPF_CALL_CLOBBER) { 3483 /* XXX: permit generic clobber register list ? */ 3484 for (i = 0; i < TCG_TARGET_NB_REGS; i++) { 3485 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, i)) { 3486 tcg_reg_free(s, i, i_allocated_regs); 3487 } 3488 } 3489 } 3490 if (def->flags & TCG_OPF_SIDE_EFFECTS) { 3491 /* sync globals if the op has side effects and might trigger 3492 an exception. */ 3493 sync_globals(s, i_allocated_regs); 3494 } 3495 3496 /* satisfy the output constraints */ 3497 for(k = 0; k < nb_oargs; k++) { 3498 i = def->sorted_args[k]; 3499 arg = op->args[i]; 3500 arg_ct = &def->args_ct[i]; 3501 ts = arg_temp(arg); 3502 if ((arg_ct->ct & TCG_CT_ALIAS) 3503 && !const_args[arg_ct->alias_index]) { 3504 reg = new_args[arg_ct->alias_index]; 3505 } else if (arg_ct->ct & TCG_CT_NEWREG) { 3506 reg = tcg_reg_alloc(s, arg_ct->u.regs, 3507 i_allocated_regs | o_allocated_regs, 3508 op->output_pref[k], ts->indirect_base); 3509 } else { 3510 /* if fixed register, we try to use it */ 3511 reg = ts->reg; 3512 if (ts->fixed_reg && 3513 tcg_regset_test_reg(arg_ct->u.regs, reg)) { 3514 goto oarg_end; 3515 } 3516 reg = tcg_reg_alloc(s, arg_ct->u.regs, o_allocated_regs, 3517 op->output_pref[k], ts->indirect_base); 3518 } 3519 tcg_regset_set_reg(o_allocated_regs, reg); 3520 /* if a fixed register is used, then a move will be done afterwards */ 3521 if (!ts->fixed_reg) { 3522 if (ts->val_type == TEMP_VAL_REG) { 3523 s->reg_to_temp[ts->reg] = NULL; 3524 } 3525 ts->val_type = TEMP_VAL_REG; 3526 ts->reg = reg; 3527 /* temp value is modified, so the value kept in memory is 3528 potentially not the same */ 3529 ts->mem_coherent = 0; 3530 s->reg_to_temp[reg] = ts; 3531 } 3532 oarg_end: 3533 new_args[i] = reg; 3534 } 3535 } 3536 3537 /* emit instruction */ 3538 if (def->flags & TCG_OPF_VECTOR) { 3539 tcg_out_vec_op(s, op->opc, TCGOP_VECL(op), TCGOP_VECE(op), 3540 new_args, const_args); 3541 } else { 3542 tcg_out_op(s, op->opc, new_args, const_args); 3543 } 3544 3545 /* move the outputs in the correct register if needed */ 3546 for(i = 0; i < nb_oargs; i++) { 3547 ts = arg_temp(op->args[i]); 3548 reg = new_args[i]; 3549 if (ts->fixed_reg && ts->reg != reg) { 3550 tcg_out_mov(s, ts->type, ts->reg, reg); 3551 } 3552 if (NEED_SYNC_ARG(i)) { 3553 temp_sync(s, ts, o_allocated_regs, 0, IS_DEAD_ARG(i)); 3554 } else if (IS_DEAD_ARG(i)) { 3555 temp_dead(s, ts); 3556 } 3557 } 3558 } 3559 3560 #ifdef TCG_TARGET_STACK_GROWSUP 3561 #define STACK_DIR(x) (-(x)) 3562 #else 3563 #define STACK_DIR(x) (x) 3564 #endif 3565 3566 static void tcg_reg_alloc_call(TCGContext *s, TCGOp *op) 3567 { 3568 const int nb_oargs = TCGOP_CALLO(op); 3569 const int nb_iargs = TCGOP_CALLI(op); 3570 const TCGLifeData arg_life = op->life; 3571 int flags, nb_regs, i; 3572 TCGReg reg; 3573 TCGArg arg; 3574 TCGTemp *ts; 3575 intptr_t stack_offset; 3576 size_t call_stack_size; 3577 tcg_insn_unit *func_addr; 3578 int allocate_args; 3579 TCGRegSet allocated_regs; 3580 3581 func_addr = (tcg_insn_unit *)(intptr_t)op->args[nb_oargs + nb_iargs]; 3582 flags = op->args[nb_oargs + nb_iargs + 1]; 3583 3584 nb_regs = ARRAY_SIZE(tcg_target_call_iarg_regs); 3585 if (nb_regs > nb_iargs) { 3586 nb_regs = nb_iargs; 3587 } 3588 3589 /* assign stack slots first */ 3590 call_stack_size = (nb_iargs - nb_regs) * sizeof(tcg_target_long); 3591 call_stack_size = (call_stack_size + TCG_TARGET_STACK_ALIGN - 1) & 3592 ~(TCG_TARGET_STACK_ALIGN - 1); 3593 allocate_args = (call_stack_size > TCG_STATIC_CALL_ARGS_SIZE); 3594 if (allocate_args) { 3595 /* XXX: if more than TCG_STATIC_CALL_ARGS_SIZE is needed, 3596 preallocate call stack */ 3597 tcg_abort(); 3598 } 3599 3600 stack_offset = TCG_TARGET_CALL_STACK_OFFSET; 3601 for (i = nb_regs; i < nb_iargs; i++) { 3602 arg = op->args[nb_oargs + i]; 3603 #ifdef TCG_TARGET_STACK_GROWSUP 3604 stack_offset -= sizeof(tcg_target_long); 3605 #endif 3606 if (arg != TCG_CALL_DUMMY_ARG) { 3607 ts = arg_temp(arg); 3608 temp_load(s, ts, tcg_target_available_regs[ts->type], 3609 s->reserved_regs, 0); 3610 tcg_out_st(s, ts->type, ts->reg, TCG_REG_CALL_STACK, stack_offset); 3611 } 3612 #ifndef TCG_TARGET_STACK_GROWSUP 3613 stack_offset += sizeof(tcg_target_long); 3614 #endif 3615 } 3616 3617 /* assign input registers */ 3618 allocated_regs = s->reserved_regs; 3619 for (i = 0; i < nb_regs; i++) { 3620 arg = op->args[nb_oargs + i]; 3621 if (arg != TCG_CALL_DUMMY_ARG) { 3622 ts = arg_temp(arg); 3623 reg = tcg_target_call_iarg_regs[i]; 3624 3625 if (ts->val_type == TEMP_VAL_REG) { 3626 if (ts->reg != reg) { 3627 tcg_reg_free(s, reg, allocated_regs); 3628 tcg_out_mov(s, ts->type, reg, ts->reg); 3629 } 3630 } else { 3631 TCGRegSet arg_set = 0; 3632 3633 tcg_reg_free(s, reg, allocated_regs); 3634 tcg_regset_set_reg(arg_set, reg); 3635 temp_load(s, ts, arg_set, allocated_regs, 0); 3636 } 3637 3638 tcg_regset_set_reg(allocated_regs, reg); 3639 } 3640 } 3641 3642 /* mark dead temporaries and free the associated registers */ 3643 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) { 3644 if (IS_DEAD_ARG(i)) { 3645 temp_dead(s, arg_temp(op->args[i])); 3646 } 3647 } 3648 3649 /* clobber call registers */ 3650 for (i = 0; i < TCG_TARGET_NB_REGS; i++) { 3651 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, i)) { 3652 tcg_reg_free(s, i, allocated_regs); 3653 } 3654 } 3655 3656 /* Save globals if they might be written by the helper, sync them if 3657 they might be read. */ 3658 if (flags & TCG_CALL_NO_READ_GLOBALS) { 3659 /* Nothing to do */ 3660 } else if (flags & TCG_CALL_NO_WRITE_GLOBALS) { 3661 sync_globals(s, allocated_regs); 3662 } else { 3663 save_globals(s, allocated_regs); 3664 } 3665 3666 tcg_out_call(s, func_addr); 3667 3668 /* assign output registers and emit moves if needed */ 3669 for(i = 0; i < nb_oargs; i++) { 3670 arg = op->args[i]; 3671 ts = arg_temp(arg); 3672 reg = tcg_target_call_oarg_regs[i]; 3673 tcg_debug_assert(s->reg_to_temp[reg] == NULL); 3674 3675 if (ts->fixed_reg) { 3676 if (ts->reg != reg) { 3677 tcg_out_mov(s, ts->type, ts->reg, reg); 3678 } 3679 } else { 3680 if (ts->val_type == TEMP_VAL_REG) { 3681 s->reg_to_temp[ts->reg] = NULL; 3682 } 3683 ts->val_type = TEMP_VAL_REG; 3684 ts->reg = reg; 3685 ts->mem_coherent = 0; 3686 s->reg_to_temp[reg] = ts; 3687 if (NEED_SYNC_ARG(i)) { 3688 temp_sync(s, ts, allocated_regs, 0, IS_DEAD_ARG(i)); 3689 } else if (IS_DEAD_ARG(i)) { 3690 temp_dead(s, ts); 3691 } 3692 } 3693 } 3694 } 3695 3696 #ifdef CONFIG_PROFILER 3697 3698 /* avoid copy/paste errors */ 3699 #define PROF_ADD(to, from, field) \ 3700 do { \ 3701 (to)->field += atomic_read(&((from)->field)); \ 3702 } while (0) 3703 3704 #define PROF_MAX(to, from, field) \ 3705 do { \ 3706 typeof((from)->field) val__ = atomic_read(&((from)->field)); \ 3707 if (val__ > (to)->field) { \ 3708 (to)->field = val__; \ 3709 } \ 3710 } while (0) 3711 3712 /* Pass in a zero'ed @prof */ 3713 static inline 3714 void tcg_profile_snapshot(TCGProfile *prof, bool counters, bool table) 3715 { 3716 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs); 3717 unsigned int i; 3718 3719 for (i = 0; i < n_ctxs; i++) { 3720 TCGContext *s = atomic_read(&tcg_ctxs[i]); 3721 const TCGProfile *orig = &s->prof; 3722 3723 if (counters) { 3724 PROF_ADD(prof, orig, cpu_exec_time); 3725 PROF_ADD(prof, orig, tb_count1); 3726 PROF_ADD(prof, orig, tb_count); 3727 PROF_ADD(prof, orig, op_count); 3728 PROF_MAX(prof, orig, op_count_max); 3729 PROF_ADD(prof, orig, temp_count); 3730 PROF_MAX(prof, orig, temp_count_max); 3731 PROF_ADD(prof, orig, del_op_count); 3732 PROF_ADD(prof, orig, code_in_len); 3733 PROF_ADD(prof, orig, code_out_len); 3734 PROF_ADD(prof, orig, search_out_len); 3735 PROF_ADD(prof, orig, interm_time); 3736 PROF_ADD(prof, orig, code_time); 3737 PROF_ADD(prof, orig, la_time); 3738 PROF_ADD(prof, orig, opt_time); 3739 PROF_ADD(prof, orig, restore_count); 3740 PROF_ADD(prof, orig, restore_time); 3741 } 3742 if (table) { 3743 int i; 3744 3745 for (i = 0; i < NB_OPS; i++) { 3746 PROF_ADD(prof, orig, table_op_count[i]); 3747 } 3748 } 3749 } 3750 } 3751 3752 #undef PROF_ADD 3753 #undef PROF_MAX 3754 3755 static void tcg_profile_snapshot_counters(TCGProfile *prof) 3756 { 3757 tcg_profile_snapshot(prof, true, false); 3758 } 3759 3760 static void tcg_profile_snapshot_table(TCGProfile *prof) 3761 { 3762 tcg_profile_snapshot(prof, false, true); 3763 } 3764 3765 void tcg_dump_op_count(FILE *f, fprintf_function cpu_fprintf) 3766 { 3767 TCGProfile prof = {}; 3768 int i; 3769 3770 tcg_profile_snapshot_table(&prof); 3771 for (i = 0; i < NB_OPS; i++) { 3772 cpu_fprintf(f, "%s %" PRId64 "\n", tcg_op_defs[i].name, 3773 prof.table_op_count[i]); 3774 } 3775 } 3776 3777 int64_t tcg_cpu_exec_time(void) 3778 { 3779 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs); 3780 unsigned int i; 3781 int64_t ret = 0; 3782 3783 for (i = 0; i < n_ctxs; i++) { 3784 const TCGContext *s = atomic_read(&tcg_ctxs[i]); 3785 const TCGProfile *prof = &s->prof; 3786 3787 ret += atomic_read(&prof->cpu_exec_time); 3788 } 3789 return ret; 3790 } 3791 #else 3792 void tcg_dump_op_count(FILE *f, fprintf_function cpu_fprintf) 3793 { 3794 cpu_fprintf(f, "[TCG profiler not compiled]\n"); 3795 } 3796 3797 int64_t tcg_cpu_exec_time(void) 3798 { 3799 error_report("%s: TCG profiler not compiled", __func__); 3800 exit(EXIT_FAILURE); 3801 } 3802 #endif 3803 3804 3805 int tcg_gen_code(TCGContext *s, TranslationBlock *tb) 3806 { 3807 #ifdef CONFIG_PROFILER 3808 TCGProfile *prof = &s->prof; 3809 #endif 3810 int i, num_insns; 3811 TCGOp *op; 3812 3813 #ifdef CONFIG_PROFILER 3814 { 3815 int n = 0; 3816 3817 QTAILQ_FOREACH(op, &s->ops, link) { 3818 n++; 3819 } 3820 atomic_set(&prof->op_count, prof->op_count + n); 3821 if (n > prof->op_count_max) { 3822 atomic_set(&prof->op_count_max, n); 3823 } 3824 3825 n = s->nb_temps; 3826 atomic_set(&prof->temp_count, prof->temp_count + n); 3827 if (n > prof->temp_count_max) { 3828 atomic_set(&prof->temp_count_max, n); 3829 } 3830 } 3831 #endif 3832 3833 #ifdef DEBUG_DISAS 3834 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP) 3835 && qemu_log_in_addr_range(tb->pc))) { 3836 qemu_log_lock(); 3837 qemu_log("OP:\n"); 3838 tcg_dump_ops(s, false); 3839 qemu_log("\n"); 3840 qemu_log_unlock(); 3841 } 3842 #endif 3843 3844 #ifdef CONFIG_PROFILER 3845 atomic_set(&prof->opt_time, prof->opt_time - profile_getclock()); 3846 #endif 3847 3848 #ifdef USE_TCG_OPTIMIZATIONS 3849 tcg_optimize(s); 3850 #endif 3851 3852 #ifdef CONFIG_PROFILER 3853 atomic_set(&prof->opt_time, prof->opt_time + profile_getclock()); 3854 atomic_set(&prof->la_time, prof->la_time - profile_getclock()); 3855 #endif 3856 3857 reachable_code_pass(s); 3858 liveness_pass_1(s); 3859 3860 if (s->nb_indirects > 0) { 3861 #ifdef DEBUG_DISAS 3862 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP_IND) 3863 && qemu_log_in_addr_range(tb->pc))) { 3864 qemu_log_lock(); 3865 qemu_log("OP before indirect lowering:\n"); 3866 tcg_dump_ops(s, false); 3867 qemu_log("\n"); 3868 qemu_log_unlock(); 3869 } 3870 #endif 3871 /* Replace indirect temps with direct temps. */ 3872 if (liveness_pass_2(s)) { 3873 /* If changes were made, re-run liveness. */ 3874 liveness_pass_1(s); 3875 } 3876 } 3877 3878 #ifdef CONFIG_PROFILER 3879 atomic_set(&prof->la_time, prof->la_time + profile_getclock()); 3880 #endif 3881 3882 #ifdef DEBUG_DISAS 3883 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP_OPT) 3884 && qemu_log_in_addr_range(tb->pc))) { 3885 qemu_log_lock(); 3886 qemu_log("OP after optimization and liveness analysis:\n"); 3887 tcg_dump_ops(s, true); 3888 qemu_log("\n"); 3889 qemu_log_unlock(); 3890 } 3891 #endif 3892 3893 tcg_reg_alloc_start(s); 3894 3895 s->code_buf = tb->tc.ptr; 3896 s->code_ptr = tb->tc.ptr; 3897 3898 #ifdef TCG_TARGET_NEED_LDST_LABELS 3899 QSIMPLEQ_INIT(&s->ldst_labels); 3900 #endif 3901 #ifdef TCG_TARGET_NEED_POOL_LABELS 3902 s->pool_labels = NULL; 3903 #endif 3904 3905 num_insns = -1; 3906 QTAILQ_FOREACH(op, &s->ops, link) { 3907 TCGOpcode opc = op->opc; 3908 3909 #ifdef CONFIG_PROFILER 3910 atomic_set(&prof->table_op_count[opc], prof->table_op_count[opc] + 1); 3911 #endif 3912 3913 switch (opc) { 3914 case INDEX_op_mov_i32: 3915 case INDEX_op_mov_i64: 3916 case INDEX_op_mov_vec: 3917 tcg_reg_alloc_mov(s, op); 3918 break; 3919 case INDEX_op_movi_i32: 3920 case INDEX_op_movi_i64: 3921 case INDEX_op_dupi_vec: 3922 tcg_reg_alloc_movi(s, op); 3923 break; 3924 case INDEX_op_insn_start: 3925 if (num_insns >= 0) { 3926 size_t off = tcg_current_code_size(s); 3927 s->gen_insn_end_off[num_insns] = off; 3928 /* Assert that we do not overflow our stored offset. */ 3929 assert(s->gen_insn_end_off[num_insns] == off); 3930 } 3931 num_insns++; 3932 for (i = 0; i < TARGET_INSN_START_WORDS; ++i) { 3933 target_ulong a; 3934 #if TARGET_LONG_BITS > TCG_TARGET_REG_BITS 3935 a = deposit64(op->args[i * 2], 32, 32, op->args[i * 2 + 1]); 3936 #else 3937 a = op->args[i]; 3938 #endif 3939 s->gen_insn_data[num_insns][i] = a; 3940 } 3941 break; 3942 case INDEX_op_discard: 3943 temp_dead(s, arg_temp(op->args[0])); 3944 break; 3945 case INDEX_op_set_label: 3946 tcg_reg_alloc_bb_end(s, s->reserved_regs); 3947 tcg_out_label(s, arg_label(op->args[0]), s->code_ptr); 3948 break; 3949 case INDEX_op_call: 3950 tcg_reg_alloc_call(s, op); 3951 break; 3952 default: 3953 /* Sanity check that we've not introduced any unhandled opcodes. */ 3954 tcg_debug_assert(tcg_op_supported(opc)); 3955 /* Note: in order to speed up the code, it would be much 3956 faster to have specialized register allocator functions for 3957 some common argument patterns */ 3958 tcg_reg_alloc_op(s, op); 3959 break; 3960 } 3961 #ifdef CONFIG_DEBUG_TCG 3962 check_regs(s); 3963 #endif 3964 /* Test for (pending) buffer overflow. The assumption is that any 3965 one operation beginning below the high water mark cannot overrun 3966 the buffer completely. Thus we can test for overflow after 3967 generating code without having to check during generation. */ 3968 if (unlikely((void *)s->code_ptr > s->code_gen_highwater)) { 3969 return -1; 3970 } 3971 } 3972 tcg_debug_assert(num_insns >= 0); 3973 s->gen_insn_end_off[num_insns] = tcg_current_code_size(s); 3974 3975 /* Generate TB finalization at the end of block */ 3976 #ifdef TCG_TARGET_NEED_LDST_LABELS 3977 if (!tcg_out_ldst_finalize(s)) { 3978 return -1; 3979 } 3980 #endif 3981 #ifdef TCG_TARGET_NEED_POOL_LABELS 3982 if (!tcg_out_pool_finalize(s)) { 3983 return -1; 3984 } 3985 #endif 3986 3987 /* flush instruction cache */ 3988 flush_icache_range((uintptr_t)s->code_buf, (uintptr_t)s->code_ptr); 3989 3990 return tcg_current_code_size(s); 3991 } 3992 3993 #ifdef CONFIG_PROFILER 3994 void tcg_dump_info(FILE *f, fprintf_function cpu_fprintf) 3995 { 3996 TCGProfile prof = {}; 3997 const TCGProfile *s; 3998 int64_t tb_count; 3999 int64_t tb_div_count; 4000 int64_t tot; 4001 4002 tcg_profile_snapshot_counters(&prof); 4003 s = &prof; 4004 tb_count = s->tb_count; 4005 tb_div_count = tb_count ? tb_count : 1; 4006 tot = s->interm_time + s->code_time; 4007 4008 cpu_fprintf(f, "JIT cycles %" PRId64 " (%0.3f s at 2.4 GHz)\n", 4009 tot, tot / 2.4e9); 4010 cpu_fprintf(f, "translated TBs %" PRId64 " (aborted=%" PRId64 " %0.1f%%)\n", 4011 tb_count, s->tb_count1 - tb_count, 4012 (double)(s->tb_count1 - s->tb_count) 4013 / (s->tb_count1 ? s->tb_count1 : 1) * 100.0); 4014 cpu_fprintf(f, "avg ops/TB %0.1f max=%d\n", 4015 (double)s->op_count / tb_div_count, s->op_count_max); 4016 cpu_fprintf(f, "deleted ops/TB %0.2f\n", 4017 (double)s->del_op_count / tb_div_count); 4018 cpu_fprintf(f, "avg temps/TB %0.2f max=%d\n", 4019 (double)s->temp_count / tb_div_count, s->temp_count_max); 4020 cpu_fprintf(f, "avg host code/TB %0.1f\n", 4021 (double)s->code_out_len / tb_div_count); 4022 cpu_fprintf(f, "avg search data/TB %0.1f\n", 4023 (double)s->search_out_len / tb_div_count); 4024 4025 cpu_fprintf(f, "cycles/op %0.1f\n", 4026 s->op_count ? (double)tot / s->op_count : 0); 4027 cpu_fprintf(f, "cycles/in byte %0.1f\n", 4028 s->code_in_len ? (double)tot / s->code_in_len : 0); 4029 cpu_fprintf(f, "cycles/out byte %0.1f\n", 4030 s->code_out_len ? (double)tot / s->code_out_len : 0); 4031 cpu_fprintf(f, "cycles/search byte %0.1f\n", 4032 s->search_out_len ? (double)tot / s->search_out_len : 0); 4033 if (tot == 0) { 4034 tot = 1; 4035 } 4036 cpu_fprintf(f, " gen_interm time %0.1f%%\n", 4037 (double)s->interm_time / tot * 100.0); 4038 cpu_fprintf(f, " gen_code time %0.1f%%\n", 4039 (double)s->code_time / tot * 100.0); 4040 cpu_fprintf(f, "optim./code time %0.1f%%\n", 4041 (double)s->opt_time / (s->code_time ? s->code_time : 1) 4042 * 100.0); 4043 cpu_fprintf(f, "liveness/code time %0.1f%%\n", 4044 (double)s->la_time / (s->code_time ? s->code_time : 1) * 100.0); 4045 cpu_fprintf(f, "cpu_restore count %" PRId64 "\n", 4046 s->restore_count); 4047 cpu_fprintf(f, " avg cycles %0.1f\n", 4048 s->restore_count ? (double)s->restore_time / s->restore_count : 0); 4049 } 4050 #else 4051 void tcg_dump_info(FILE *f, fprintf_function cpu_fprintf) 4052 { 4053 cpu_fprintf(f, "[TCG profiler not compiled]\n"); 4054 } 4055 #endif 4056 4057 #ifdef ELF_HOST_MACHINE 4058 /* In order to use this feature, the backend needs to do three things: 4059 4060 (1) Define ELF_HOST_MACHINE to indicate both what value to 4061 put into the ELF image and to indicate support for the feature. 4062 4063 (2) Define tcg_register_jit. This should create a buffer containing 4064 the contents of a .debug_frame section that describes the post- 4065 prologue unwind info for the tcg machine. 4066 4067 (3) Call tcg_register_jit_int, with the constructed .debug_frame. 4068 */ 4069 4070 /* Begin GDB interface. THE FOLLOWING MUST MATCH GDB DOCS. */ 4071 typedef enum { 4072 JIT_NOACTION = 0, 4073 JIT_REGISTER_FN, 4074 JIT_UNREGISTER_FN 4075 } jit_actions_t; 4076 4077 struct jit_code_entry { 4078 struct jit_code_entry *next_entry; 4079 struct jit_code_entry *prev_entry; 4080 const void *symfile_addr; 4081 uint64_t symfile_size; 4082 }; 4083 4084 struct jit_descriptor { 4085 uint32_t version; 4086 uint32_t action_flag; 4087 struct jit_code_entry *relevant_entry; 4088 struct jit_code_entry *first_entry; 4089 }; 4090 4091 void __jit_debug_register_code(void) __attribute__((noinline)); 4092 void __jit_debug_register_code(void) 4093 { 4094 asm(""); 4095 } 4096 4097 /* Must statically initialize the version, because GDB may check 4098 the version before we can set it. */ 4099 struct jit_descriptor __jit_debug_descriptor = { 1, 0, 0, 0 }; 4100 4101 /* End GDB interface. */ 4102 4103 static int find_string(const char *strtab, const char *str) 4104 { 4105 const char *p = strtab + 1; 4106 4107 while (1) { 4108 if (strcmp(p, str) == 0) { 4109 return p - strtab; 4110 } 4111 p += strlen(p) + 1; 4112 } 4113 } 4114 4115 static void tcg_register_jit_int(void *buf_ptr, size_t buf_size, 4116 const void *debug_frame, 4117 size_t debug_frame_size) 4118 { 4119 struct __attribute__((packed)) DebugInfo { 4120 uint32_t len; 4121 uint16_t version; 4122 uint32_t abbrev; 4123 uint8_t ptr_size; 4124 uint8_t cu_die; 4125 uint16_t cu_lang; 4126 uintptr_t cu_low_pc; 4127 uintptr_t cu_high_pc; 4128 uint8_t fn_die; 4129 char fn_name[16]; 4130 uintptr_t fn_low_pc; 4131 uintptr_t fn_high_pc; 4132 uint8_t cu_eoc; 4133 }; 4134 4135 struct ElfImage { 4136 ElfW(Ehdr) ehdr; 4137 ElfW(Phdr) phdr; 4138 ElfW(Shdr) shdr[7]; 4139 ElfW(Sym) sym[2]; 4140 struct DebugInfo di; 4141 uint8_t da[24]; 4142 char str[80]; 4143 }; 4144 4145 struct ElfImage *img; 4146 4147 static const struct ElfImage img_template = { 4148 .ehdr = { 4149 .e_ident[EI_MAG0] = ELFMAG0, 4150 .e_ident[EI_MAG1] = ELFMAG1, 4151 .e_ident[EI_MAG2] = ELFMAG2, 4152 .e_ident[EI_MAG3] = ELFMAG3, 4153 .e_ident[EI_CLASS] = ELF_CLASS, 4154 .e_ident[EI_DATA] = ELF_DATA, 4155 .e_ident[EI_VERSION] = EV_CURRENT, 4156 .e_type = ET_EXEC, 4157 .e_machine = ELF_HOST_MACHINE, 4158 .e_version = EV_CURRENT, 4159 .e_phoff = offsetof(struct ElfImage, phdr), 4160 .e_shoff = offsetof(struct ElfImage, shdr), 4161 .e_ehsize = sizeof(ElfW(Shdr)), 4162 .e_phentsize = sizeof(ElfW(Phdr)), 4163 .e_phnum = 1, 4164 .e_shentsize = sizeof(ElfW(Shdr)), 4165 .e_shnum = ARRAY_SIZE(img->shdr), 4166 .e_shstrndx = ARRAY_SIZE(img->shdr) - 1, 4167 #ifdef ELF_HOST_FLAGS 4168 .e_flags = ELF_HOST_FLAGS, 4169 #endif 4170 #ifdef ELF_OSABI 4171 .e_ident[EI_OSABI] = ELF_OSABI, 4172 #endif 4173 }, 4174 .phdr = { 4175 .p_type = PT_LOAD, 4176 .p_flags = PF_X, 4177 }, 4178 .shdr = { 4179 [0] = { .sh_type = SHT_NULL }, 4180 /* Trick: The contents of code_gen_buffer are not present in 4181 this fake ELF file; that got allocated elsewhere. Therefore 4182 we mark .text as SHT_NOBITS (similar to .bss) so that readers 4183 will not look for contents. We can record any address. */ 4184 [1] = { /* .text */ 4185 .sh_type = SHT_NOBITS, 4186 .sh_flags = SHF_EXECINSTR | SHF_ALLOC, 4187 }, 4188 [2] = { /* .debug_info */ 4189 .sh_type = SHT_PROGBITS, 4190 .sh_offset = offsetof(struct ElfImage, di), 4191 .sh_size = sizeof(struct DebugInfo), 4192 }, 4193 [3] = { /* .debug_abbrev */ 4194 .sh_type = SHT_PROGBITS, 4195 .sh_offset = offsetof(struct ElfImage, da), 4196 .sh_size = sizeof(img->da), 4197 }, 4198 [4] = { /* .debug_frame */ 4199 .sh_type = SHT_PROGBITS, 4200 .sh_offset = sizeof(struct ElfImage), 4201 }, 4202 [5] = { /* .symtab */ 4203 .sh_type = SHT_SYMTAB, 4204 .sh_offset = offsetof(struct ElfImage, sym), 4205 .sh_size = sizeof(img->sym), 4206 .sh_info = 1, 4207 .sh_link = ARRAY_SIZE(img->shdr) - 1, 4208 .sh_entsize = sizeof(ElfW(Sym)), 4209 }, 4210 [6] = { /* .strtab */ 4211 .sh_type = SHT_STRTAB, 4212 .sh_offset = offsetof(struct ElfImage, str), 4213 .sh_size = sizeof(img->str), 4214 } 4215 }, 4216 .sym = { 4217 [1] = { /* code_gen_buffer */ 4218 .st_info = ELF_ST_INFO(STB_GLOBAL, STT_FUNC), 4219 .st_shndx = 1, 4220 } 4221 }, 4222 .di = { 4223 .len = sizeof(struct DebugInfo) - 4, 4224 .version = 2, 4225 .ptr_size = sizeof(void *), 4226 .cu_die = 1, 4227 .cu_lang = 0x8001, /* DW_LANG_Mips_Assembler */ 4228 .fn_die = 2, 4229 .fn_name = "code_gen_buffer" 4230 }, 4231 .da = { 4232 1, /* abbrev number (the cu) */ 4233 0x11, 1, /* DW_TAG_compile_unit, has children */ 4234 0x13, 0x5, /* DW_AT_language, DW_FORM_data2 */ 4235 0x11, 0x1, /* DW_AT_low_pc, DW_FORM_addr */ 4236 0x12, 0x1, /* DW_AT_high_pc, DW_FORM_addr */ 4237 0, 0, /* end of abbrev */ 4238 2, /* abbrev number (the fn) */ 4239 0x2e, 0, /* DW_TAG_subprogram, no children */ 4240 0x3, 0x8, /* DW_AT_name, DW_FORM_string */ 4241 0x11, 0x1, /* DW_AT_low_pc, DW_FORM_addr */ 4242 0x12, 0x1, /* DW_AT_high_pc, DW_FORM_addr */ 4243 0, 0, /* end of abbrev */ 4244 0 /* no more abbrev */ 4245 }, 4246 .str = "\0" ".text\0" ".debug_info\0" ".debug_abbrev\0" 4247 ".debug_frame\0" ".symtab\0" ".strtab\0" "code_gen_buffer", 4248 }; 4249 4250 /* We only need a single jit entry; statically allocate it. */ 4251 static struct jit_code_entry one_entry; 4252 4253 uintptr_t buf = (uintptr_t)buf_ptr; 4254 size_t img_size = sizeof(struct ElfImage) + debug_frame_size; 4255 DebugFrameHeader *dfh; 4256 4257 img = g_malloc(img_size); 4258 *img = img_template; 4259 4260 img->phdr.p_vaddr = buf; 4261 img->phdr.p_paddr = buf; 4262 img->phdr.p_memsz = buf_size; 4263 4264 img->shdr[1].sh_name = find_string(img->str, ".text"); 4265 img->shdr[1].sh_addr = buf; 4266 img->shdr[1].sh_size = buf_size; 4267 4268 img->shdr[2].sh_name = find_string(img->str, ".debug_info"); 4269 img->shdr[3].sh_name = find_string(img->str, ".debug_abbrev"); 4270 4271 img->shdr[4].sh_name = find_string(img->str, ".debug_frame"); 4272 img->shdr[4].sh_size = debug_frame_size; 4273 4274 img->shdr[5].sh_name = find_string(img->str, ".symtab"); 4275 img->shdr[6].sh_name = find_string(img->str, ".strtab"); 4276 4277 img->sym[1].st_name = find_string(img->str, "code_gen_buffer"); 4278 img->sym[1].st_value = buf; 4279 img->sym[1].st_size = buf_size; 4280 4281 img->di.cu_low_pc = buf; 4282 img->di.cu_high_pc = buf + buf_size; 4283 img->di.fn_low_pc = buf; 4284 img->di.fn_high_pc = buf + buf_size; 4285 4286 dfh = (DebugFrameHeader *)(img + 1); 4287 memcpy(dfh, debug_frame, debug_frame_size); 4288 dfh->fde.func_start = buf; 4289 dfh->fde.func_len = buf_size; 4290 4291 #ifdef DEBUG_JIT 4292 /* Enable this block to be able to debug the ELF image file creation. 4293 One can use readelf, objdump, or other inspection utilities. */ 4294 { 4295 FILE *f = fopen("/tmp/qemu.jit", "w+b"); 4296 if (f) { 4297 if (fwrite(img, img_size, 1, f) != img_size) { 4298 /* Avoid stupid unused return value warning for fwrite. */ 4299 } 4300 fclose(f); 4301 } 4302 } 4303 #endif 4304 4305 one_entry.symfile_addr = img; 4306 one_entry.symfile_size = img_size; 4307 4308 __jit_debug_descriptor.action_flag = JIT_REGISTER_FN; 4309 __jit_debug_descriptor.relevant_entry = &one_entry; 4310 __jit_debug_descriptor.first_entry = &one_entry; 4311 __jit_debug_register_code(); 4312 } 4313 #else 4314 /* No support for the feature. Provide the entry point expected by exec.c, 4315 and implement the internal function we declared earlier. */ 4316 4317 static void tcg_register_jit_int(void *buf, size_t size, 4318 const void *debug_frame, 4319 size_t debug_frame_size) 4320 { 4321 } 4322 4323 void tcg_register_jit(void *buf, size_t buf_size) 4324 { 4325 } 4326 #endif /* ELF_HOST_MACHINE */ 4327 4328 #if !TCG_TARGET_MAYBE_vec 4329 void tcg_expand_vec_op(TCGOpcode o, TCGType t, unsigned e, TCGArg a0, ...) 4330 { 4331 g_assert_not_reached(); 4332 } 4333 #endif 4334