xref: /openbmc/qemu/target/sparc/ldst_helper.c (revision 8e6fe6b8bab4716b4adf99a9ab52eaa82464b37e)
1 /*
2  * Helpers for loads and stores
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "tcg.h"
23 #include "exec/helper-proto.h"
24 #include "exec/exec-all.h"
25 #include "exec/cpu_ldst.h"
26 #include "asi.h"
27 
28 //#define DEBUG_MMU
29 //#define DEBUG_MXCC
30 //#define DEBUG_UNALIGNED
31 //#define DEBUG_UNASSIGNED
32 //#define DEBUG_ASI
33 //#define DEBUG_CACHE_CONTROL
34 
35 #ifdef DEBUG_MMU
36 #define DPRINTF_MMU(fmt, ...)                                   \
37     do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
38 #else
39 #define DPRINTF_MMU(fmt, ...) do {} while (0)
40 #endif
41 
42 #ifdef DEBUG_MXCC
43 #define DPRINTF_MXCC(fmt, ...)                                  \
44     do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
45 #else
46 #define DPRINTF_MXCC(fmt, ...) do {} while (0)
47 #endif
48 
49 #ifdef DEBUG_ASI
50 #define DPRINTF_ASI(fmt, ...)                                   \
51     do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
52 #endif
53 
54 #ifdef DEBUG_CACHE_CONTROL
55 #define DPRINTF_CACHE_CONTROL(fmt, ...)                                 \
56     do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
57 #else
58 #define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
59 #endif
60 
61 #ifdef TARGET_SPARC64
62 #ifndef TARGET_ABI32
63 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
64 #else
65 #define AM_CHECK(env1) (1)
66 #endif
67 #endif
68 
69 #define QT0 (env->qt0)
70 #define QT1 (env->qt1)
71 
72 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
73 /* Calculates TSB pointer value for fault page size
74  * UltraSPARC IIi has fixed sizes (8k or 64k) for the page pointers
75  * UA2005 holds the page size configuration in mmu_ctx registers */
76 static uint64_t ultrasparc_tsb_pointer(CPUSPARCState *env,
77                                        const SparcV9MMU *mmu, const int idx)
78 {
79     uint64_t tsb_register;
80     int page_size;
81     if (cpu_has_hypervisor(env)) {
82         int tsb_index = 0;
83         int ctx = mmu->tag_access & 0x1fffULL;
84         uint64_t ctx_register = mmu->sun4v_ctx_config[ctx ? 1 : 0];
85         tsb_index = idx;
86         tsb_index |= ctx ? 2 : 0;
87         page_size = idx ? ctx_register >> 8 : ctx_register;
88         page_size &= 7;
89         tsb_register = mmu->sun4v_tsb_pointers[tsb_index];
90     } else {
91         page_size = idx;
92         tsb_register = mmu->tsb;
93     }
94     int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
95     int tsb_size  = tsb_register & 0xf;
96 
97     uint64_t tsb_base_mask = (~0x1fffULL) << tsb_size;
98 
99     /* move va bits to correct position,
100      * the context bits will be masked out later */
101     uint64_t va = mmu->tag_access >> (3 * page_size + 9);
102 
103     /* calculate tsb_base mask and adjust va if split is in use */
104     if (tsb_split) {
105         if (idx == 0) {
106             va &= ~(1ULL << (13 + tsb_size));
107         } else {
108             va |= (1ULL << (13 + tsb_size));
109         }
110         tsb_base_mask <<= 1;
111     }
112 
113     return ((tsb_register & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
114 }
115 
116 /* Calculates tag target register value by reordering bits
117    in tag access register */
118 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
119 {
120     return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
121 }
122 
123 static void replace_tlb_entry(SparcTLBEntry *tlb,
124                               uint64_t tlb_tag, uint64_t tlb_tte,
125                               CPUSPARCState *env)
126 {
127     target_ulong mask, size, va, offset;
128 
129     /* flush page range if translation is valid */
130     if (TTE_IS_VALID(tlb->tte)) {
131         CPUState *cs = env_cpu(env);
132 
133         size = 8192ULL << 3 * TTE_PGSIZE(tlb->tte);
134         mask = 1ULL + ~size;
135 
136         va = tlb->tag & mask;
137 
138         for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
139             tlb_flush_page(cs, va + offset);
140         }
141     }
142 
143     tlb->tag = tlb_tag;
144     tlb->tte = tlb_tte;
145 }
146 
147 static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
148                       const char *strmmu, CPUSPARCState *env1)
149 {
150     unsigned int i;
151     target_ulong mask;
152     uint64_t context;
153 
154     int is_demap_context = (demap_addr >> 6) & 1;
155 
156     /* demap context */
157     switch ((demap_addr >> 4) & 3) {
158     case 0: /* primary */
159         context = env1->dmmu.mmu_primary_context;
160         break;
161     case 1: /* secondary */
162         context = env1->dmmu.mmu_secondary_context;
163         break;
164     case 2: /* nucleus */
165         context = 0;
166         break;
167     case 3: /* reserved */
168     default:
169         return;
170     }
171 
172     for (i = 0; i < 64; i++) {
173         if (TTE_IS_VALID(tlb[i].tte)) {
174 
175             if (is_demap_context) {
176                 /* will remove non-global entries matching context value */
177                 if (TTE_IS_GLOBAL(tlb[i].tte) ||
178                     !tlb_compare_context(&tlb[i], context)) {
179                     continue;
180                 }
181             } else {
182                 /* demap page
183                    will remove any entry matching VA */
184                 mask = 0xffffffffffffe000ULL;
185                 mask <<= 3 * ((tlb[i].tte >> 61) & 3);
186 
187                 if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
188                     continue;
189                 }
190 
191                 /* entry should be global or matching context value */
192                 if (!TTE_IS_GLOBAL(tlb[i].tte) &&
193                     !tlb_compare_context(&tlb[i], context)) {
194                     continue;
195                 }
196             }
197 
198             replace_tlb_entry(&tlb[i], 0, 0, env1);
199 #ifdef DEBUG_MMU
200             DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
201             dump_mmu(env1);
202 #endif
203         }
204     }
205 }
206 
207 static uint64_t sun4v_tte_to_sun4u(CPUSPARCState *env, uint64_t tag,
208                                    uint64_t sun4v_tte)
209 {
210     uint64_t sun4u_tte;
211     if (!(cpu_has_hypervisor(env) && (tag & TLB_UST1_IS_SUN4V_BIT))) {
212         /* is already in the sun4u format */
213         return sun4v_tte;
214     }
215     sun4u_tte = TTE_PA(sun4v_tte) | (sun4v_tte & TTE_VALID_BIT);
216     sun4u_tte |= (sun4v_tte & 3ULL) << 61; /* TTE_PGSIZE */
217     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_NFO_BIT_UA2005, TTE_NFO_BIT);
218     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_USED_BIT_UA2005, TTE_USED_BIT);
219     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_W_OK_BIT_UA2005, TTE_W_OK_BIT);
220     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_SIDEEFFECT_BIT_UA2005,
221                              TTE_SIDEEFFECT_BIT);
222     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_PRIV_BIT_UA2005, TTE_PRIV_BIT);
223     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_LOCKED_BIT_UA2005, TTE_LOCKED_BIT);
224     return sun4u_tte;
225 }
226 
227 static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
228                                  uint64_t tlb_tag, uint64_t tlb_tte,
229                                  const char *strmmu, CPUSPARCState *env1,
230                                  uint64_t addr)
231 {
232     unsigned int i, replace_used;
233 
234     tlb_tte = sun4v_tte_to_sun4u(env1, addr, tlb_tte);
235     if (cpu_has_hypervisor(env1)) {
236         uint64_t new_vaddr = tlb_tag & ~0x1fffULL;
237         uint64_t new_size = 8192ULL << 3 * TTE_PGSIZE(tlb_tte);
238         uint32_t new_ctx = tlb_tag & 0x1fffU;
239         for (i = 0; i < 64; i++) {
240             uint32_t ctx = tlb[i].tag & 0x1fffU;
241             /* check if new mapping overlaps an existing one */
242             if (new_ctx == ctx) {
243                 uint64_t vaddr = tlb[i].tag & ~0x1fffULL;
244                 uint64_t size = 8192ULL << 3 * TTE_PGSIZE(tlb[i].tte);
245                 if (new_vaddr == vaddr
246                     || (new_vaddr < vaddr + size
247                         && vaddr < new_vaddr + new_size)) {
248                     DPRINTF_MMU("auto demap entry [%d] %lx->%lx\n", i, vaddr,
249                                 new_vaddr);
250                     replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
251                     return;
252                 }
253             }
254 
255         }
256     }
257     /* Try replacing invalid entry */
258     for (i = 0; i < 64; i++) {
259         if (!TTE_IS_VALID(tlb[i].tte)) {
260             replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
261 #ifdef DEBUG_MMU
262             DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
263             dump_mmu(env1);
264 #endif
265             return;
266         }
267     }
268 
269     /* All entries are valid, try replacing unlocked entry */
270 
271     for (replace_used = 0; replace_used < 2; ++replace_used) {
272 
273         /* Used entries are not replaced on first pass */
274 
275         for (i = 0; i < 64; i++) {
276             if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
277 
278                 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
279 #ifdef DEBUG_MMU
280                 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
281                             strmmu, (replace_used ? "used" : "unused"), i);
282                 dump_mmu(env1);
283 #endif
284                 return;
285             }
286         }
287 
288         /* Now reset used bit and search for unused entries again */
289 
290         for (i = 0; i < 64; i++) {
291             TTE_SET_UNUSED(tlb[i].tte);
292         }
293     }
294 
295 #ifdef DEBUG_MMU
296     DPRINTF_MMU("%s lru replacement: no free entries available, "
297                 "replacing the last one\n", strmmu);
298 #endif
299     /* corner case: the last entry is replaced anyway */
300     replace_tlb_entry(&tlb[63], tlb_tag, tlb_tte, env1);
301 }
302 
303 #endif
304 
305 #ifdef TARGET_SPARC64
306 /* returns true if access using this ASI is to have address translated by MMU
307    otherwise access is to raw physical address */
308 /* TODO: check sparc32 bits */
309 static inline int is_translating_asi(int asi)
310 {
311     /* Ultrasparc IIi translating asi
312        - note this list is defined by cpu implementation
313     */
314     switch (asi) {
315     case 0x04 ... 0x11:
316     case 0x16 ... 0x19:
317     case 0x1E ... 0x1F:
318     case 0x24 ... 0x2C:
319     case 0x70 ... 0x73:
320     case 0x78 ... 0x79:
321     case 0x80 ... 0xFF:
322         return 1;
323 
324     default:
325         return 0;
326     }
327 }
328 
329 static inline target_ulong address_mask(CPUSPARCState *env1, target_ulong addr)
330 {
331     if (AM_CHECK(env1)) {
332         addr &= 0xffffffffULL;
333     }
334     return addr;
335 }
336 
337 static inline target_ulong asi_address_mask(CPUSPARCState *env,
338                                             int asi, target_ulong addr)
339 {
340     if (is_translating_asi(asi)) {
341         addr = address_mask(env, addr);
342     }
343     return addr;
344 }
345 
346 #ifndef CONFIG_USER_ONLY
347 static inline void do_check_asi(CPUSPARCState *env, int asi, uintptr_t ra)
348 {
349     /* ASIs >= 0x80 are user mode.
350      * ASIs >= 0x30 are hyper mode (or super if hyper is not available).
351      * ASIs <= 0x2f are super mode.
352      */
353     if (asi < 0x80
354         && !cpu_hypervisor_mode(env)
355         && (!cpu_supervisor_mode(env)
356             || (asi >= 0x30 && cpu_has_hypervisor(env)))) {
357         cpu_raise_exception_ra(env, TT_PRIV_ACT, ra);
358     }
359 }
360 #endif /* !CONFIG_USER_ONLY */
361 #endif
362 
363 static void do_check_align(CPUSPARCState *env, target_ulong addr,
364                            uint32_t align, uintptr_t ra)
365 {
366     if (addr & align) {
367 #ifdef DEBUG_UNALIGNED
368         printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
369                "\n", addr, env->pc);
370 #endif
371         cpu_raise_exception_ra(env, TT_UNALIGNED, ra);
372     }
373 }
374 
375 void helper_check_align(CPUSPARCState *env, target_ulong addr, uint32_t align)
376 {
377     do_check_align(env, addr, align, GETPC());
378 }
379 
380 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) &&   \
381     defined(DEBUG_MXCC)
382 static void dump_mxcc(CPUSPARCState *env)
383 {
384     printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
385            "\n",
386            env->mxccdata[0], env->mxccdata[1],
387            env->mxccdata[2], env->mxccdata[3]);
388     printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
389            "\n"
390            "          %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
391            "\n",
392            env->mxccregs[0], env->mxccregs[1],
393            env->mxccregs[2], env->mxccregs[3],
394            env->mxccregs[4], env->mxccregs[5],
395            env->mxccregs[6], env->mxccregs[7]);
396 }
397 #endif
398 
399 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY))     \
400     && defined(DEBUG_ASI)
401 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
402                      uint64_t r1)
403 {
404     switch (size) {
405     case 1:
406         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
407                     addr, asi, r1 & 0xff);
408         break;
409     case 2:
410         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
411                     addr, asi, r1 & 0xffff);
412         break;
413     case 4:
414         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
415                     addr, asi, r1 & 0xffffffff);
416         break;
417     case 8:
418         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
419                     addr, asi, r1);
420         break;
421     }
422 }
423 #endif
424 
425 #ifndef TARGET_SPARC64
426 #ifndef CONFIG_USER_ONLY
427 
428 
429 /* Leon3 cache control */
430 
431 static void leon3_cache_control_st(CPUSPARCState *env, target_ulong addr,
432                                    uint64_t val, int size)
433 {
434     DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
435                           addr, val, size);
436 
437     if (size != 4) {
438         DPRINTF_CACHE_CONTROL("32bits only\n");
439         return;
440     }
441 
442     switch (addr) {
443     case 0x00:              /* Cache control */
444 
445         /* These values must always be read as zeros */
446         val &= ~CACHE_CTRL_FD;
447         val &= ~CACHE_CTRL_FI;
448         val &= ~CACHE_CTRL_IB;
449         val &= ~CACHE_CTRL_IP;
450         val &= ~CACHE_CTRL_DP;
451 
452         env->cache_control = val;
453         break;
454     case 0x04:              /* Instruction cache configuration */
455     case 0x08:              /* Data cache configuration */
456         /* Read Only */
457         break;
458     default:
459         DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
460         break;
461     };
462 }
463 
464 static uint64_t leon3_cache_control_ld(CPUSPARCState *env, target_ulong addr,
465                                        int size)
466 {
467     uint64_t ret = 0;
468 
469     if (size != 4) {
470         DPRINTF_CACHE_CONTROL("32bits only\n");
471         return 0;
472     }
473 
474     switch (addr) {
475     case 0x00:              /* Cache control */
476         ret = env->cache_control;
477         break;
478 
479         /* Configuration registers are read and only always keep those
480            predefined values */
481 
482     case 0x04:              /* Instruction cache configuration */
483         ret = 0x10220000;
484         break;
485     case 0x08:              /* Data cache configuration */
486         ret = 0x18220000;
487         break;
488     default:
489         DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
490         break;
491     };
492     DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
493                           addr, ret, size);
494     return ret;
495 }
496 
497 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
498                        int asi, uint32_t memop)
499 {
500     int size = 1 << (memop & MO_SIZE);
501     int sign = memop & MO_SIGN;
502     CPUState *cs = env_cpu(env);
503     uint64_t ret = 0;
504 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
505     uint32_t last_addr = addr;
506 #endif
507 
508     do_check_align(env, addr, size - 1, GETPC());
509     switch (asi) {
510     case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
511     /* case ASI_LEON_CACHEREGS:  Leon3 cache control */
512         switch (addr) {
513         case 0x00:          /* Leon3 Cache Control */
514         case 0x08:          /* Leon3 Instruction Cache config */
515         case 0x0C:          /* Leon3 Date Cache config */
516             if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
517                 ret = leon3_cache_control_ld(env, addr, size);
518             }
519             break;
520         case 0x01c00a00: /* MXCC control register */
521             if (size == 8) {
522                 ret = env->mxccregs[3];
523             } else {
524                 qemu_log_mask(LOG_UNIMP,
525                               "%08x: unimplemented access size: %d\n", addr,
526                               size);
527             }
528             break;
529         case 0x01c00a04: /* MXCC control register */
530             if (size == 4) {
531                 ret = env->mxccregs[3];
532             } else {
533                 qemu_log_mask(LOG_UNIMP,
534                               "%08x: unimplemented access size: %d\n", addr,
535                               size);
536             }
537             break;
538         case 0x01c00c00: /* Module reset register */
539             if (size == 8) {
540                 ret = env->mxccregs[5];
541                 /* should we do something here? */
542             } else {
543                 qemu_log_mask(LOG_UNIMP,
544                               "%08x: unimplemented access size: %d\n", addr,
545                               size);
546             }
547             break;
548         case 0x01c00f00: /* MBus port address register */
549             if (size == 8) {
550                 ret = env->mxccregs[7];
551             } else {
552                 qemu_log_mask(LOG_UNIMP,
553                               "%08x: unimplemented access size: %d\n", addr,
554                               size);
555             }
556             break;
557         default:
558             qemu_log_mask(LOG_UNIMP,
559                           "%08x: unimplemented address, size: %d\n", addr,
560                           size);
561             break;
562         }
563         DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
564                      "addr = %08x -> ret = %" PRIx64 ","
565                      "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
566 #ifdef DEBUG_MXCC
567         dump_mxcc(env);
568 #endif
569         break;
570     case ASI_M_FLUSH_PROBE: /* SuperSparc MMU probe */
571     case ASI_LEON_MMUFLUSH: /* LEON3 MMU probe */
572         {
573             int mmulev;
574 
575             mmulev = (addr >> 8) & 15;
576             if (mmulev > 4) {
577                 ret = 0;
578             } else {
579                 ret = mmu_probe(env, addr, mmulev);
580             }
581             DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
582                         addr, mmulev, ret);
583         }
584         break;
585     case ASI_M_MMUREGS: /* SuperSparc MMU regs */
586     case ASI_LEON_MMUREGS: /* LEON3 MMU regs */
587         {
588             int reg = (addr >> 8) & 0x1f;
589 
590             ret = env->mmuregs[reg];
591             if (reg == 3) { /* Fault status cleared on read */
592                 env->mmuregs[3] = 0;
593             } else if (reg == 0x13) { /* Fault status read */
594                 ret = env->mmuregs[3];
595             } else if (reg == 0x14) { /* Fault address read */
596                 ret = env->mmuregs[4];
597             }
598             DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
599         }
600         break;
601     case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
602     case ASI_M_DIAGS:   /* Turbosparc DTLB Diagnostic */
603     case ASI_M_IODIAG:  /* Turbosparc IOTLB Diagnostic */
604         break;
605     case ASI_KERNELTXT: /* Supervisor code access */
606         switch (size) {
607         case 1:
608             ret = cpu_ldub_code(env, addr);
609             break;
610         case 2:
611             ret = cpu_lduw_code(env, addr);
612             break;
613         default:
614         case 4:
615             ret = cpu_ldl_code(env, addr);
616             break;
617         case 8:
618             ret = cpu_ldq_code(env, addr);
619             break;
620         }
621         break;
622     case ASI_M_TXTC_TAG:   /* SparcStation 5 I-cache tag */
623     case ASI_M_TXTC_DATA:  /* SparcStation 5 I-cache data */
624     case ASI_M_DATAC_TAG:  /* SparcStation 5 D-cache tag */
625     case ASI_M_DATAC_DATA: /* SparcStation 5 D-cache data */
626         break;
627     case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
628         switch (size) {
629         case 1:
630             ret = ldub_phys(cs->as, (hwaddr)addr
631                             | ((hwaddr)(asi & 0xf) << 32));
632             break;
633         case 2:
634             ret = lduw_phys(cs->as, (hwaddr)addr
635                             | ((hwaddr)(asi & 0xf) << 32));
636             break;
637         default:
638         case 4:
639             ret = ldl_phys(cs->as, (hwaddr)addr
640                            | ((hwaddr)(asi & 0xf) << 32));
641             break;
642         case 8:
643             ret = ldq_phys(cs->as, (hwaddr)addr
644                            | ((hwaddr)(asi & 0xf) << 32));
645             break;
646         }
647         break;
648     case 0x30: /* Turbosparc secondary cache diagnostic */
649     case 0x31: /* Turbosparc RAM snoop */
650     case 0x32: /* Turbosparc page table descriptor diagnostic */
651     case 0x39: /* data cache diagnostic register */
652         ret = 0;
653         break;
654     case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
655         {
656             int reg = (addr >> 8) & 3;
657 
658             switch (reg) {
659             case 0: /* Breakpoint Value (Addr) */
660                 ret = env->mmubpregs[reg];
661                 break;
662             case 1: /* Breakpoint Mask */
663                 ret = env->mmubpregs[reg];
664                 break;
665             case 2: /* Breakpoint Control */
666                 ret = env->mmubpregs[reg];
667                 break;
668             case 3: /* Breakpoint Status */
669                 ret = env->mmubpregs[reg];
670                 env->mmubpregs[reg] = 0ULL;
671                 break;
672             }
673             DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
674                         ret);
675         }
676         break;
677     case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
678         ret = env->mmubpctrv;
679         break;
680     case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
681         ret = env->mmubpctrc;
682         break;
683     case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
684         ret = env->mmubpctrs;
685         break;
686     case 0x4c: /* SuperSPARC MMU Breakpoint Action */
687         ret = env->mmubpaction;
688         break;
689     case ASI_USERTXT: /* User code access, XXX */
690     default:
691         cpu_unassigned_access(cs, addr, false, false, asi, size);
692         ret = 0;
693         break;
694 
695     case ASI_USERDATA: /* User data access */
696     case ASI_KERNELDATA: /* Supervisor data access */
697     case ASI_P: /* Implicit primary context data access (v9 only?) */
698     case ASI_M_BYPASS:    /* MMU passthrough */
699     case ASI_LEON_BYPASS: /* LEON MMU passthrough */
700         /* These are always handled inline.  */
701         g_assert_not_reached();
702     }
703     if (sign) {
704         switch (size) {
705         case 1:
706             ret = (int8_t) ret;
707             break;
708         case 2:
709             ret = (int16_t) ret;
710             break;
711         case 4:
712             ret = (int32_t) ret;
713             break;
714         default:
715             break;
716         }
717     }
718 #ifdef DEBUG_ASI
719     dump_asi("read ", last_addr, asi, size, ret);
720 #endif
721     return ret;
722 }
723 
724 void helper_st_asi(CPUSPARCState *env, target_ulong addr, uint64_t val,
725                    int asi, uint32_t memop)
726 {
727     int size = 1 << (memop & MO_SIZE);
728     CPUState *cs = env_cpu(env);
729 
730     do_check_align(env, addr, size - 1, GETPC());
731     switch (asi) {
732     case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
733     /* case ASI_LEON_CACHEREGS:  Leon3 cache control */
734         switch (addr) {
735         case 0x00:          /* Leon3 Cache Control */
736         case 0x08:          /* Leon3 Instruction Cache config */
737         case 0x0C:          /* Leon3 Date Cache config */
738             if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
739                 leon3_cache_control_st(env, addr, val, size);
740             }
741             break;
742 
743         case 0x01c00000: /* MXCC stream data register 0 */
744             if (size == 8) {
745                 env->mxccdata[0] = val;
746             } else {
747                 qemu_log_mask(LOG_UNIMP,
748                               "%08x: unimplemented access size: %d\n", addr,
749                               size);
750             }
751             break;
752         case 0x01c00008: /* MXCC stream data register 1 */
753             if (size == 8) {
754                 env->mxccdata[1] = val;
755             } else {
756                 qemu_log_mask(LOG_UNIMP,
757                               "%08x: unimplemented access size: %d\n", addr,
758                               size);
759             }
760             break;
761         case 0x01c00010: /* MXCC stream data register 2 */
762             if (size == 8) {
763                 env->mxccdata[2] = val;
764             } else {
765                 qemu_log_mask(LOG_UNIMP,
766                               "%08x: unimplemented access size: %d\n", addr,
767                               size);
768             }
769             break;
770         case 0x01c00018: /* MXCC stream data register 3 */
771             if (size == 8) {
772                 env->mxccdata[3] = val;
773             } else {
774                 qemu_log_mask(LOG_UNIMP,
775                               "%08x: unimplemented access size: %d\n", addr,
776                               size);
777             }
778             break;
779         case 0x01c00100: /* MXCC stream source */
780             if (size == 8) {
781                 env->mxccregs[0] = val;
782             } else {
783                 qemu_log_mask(LOG_UNIMP,
784                               "%08x: unimplemented access size: %d\n", addr,
785                               size);
786             }
787             env->mxccdata[0] = ldq_phys(cs->as,
788                                         (env->mxccregs[0] & 0xffffffffULL) +
789                                         0);
790             env->mxccdata[1] = ldq_phys(cs->as,
791                                         (env->mxccregs[0] & 0xffffffffULL) +
792                                         8);
793             env->mxccdata[2] = ldq_phys(cs->as,
794                                         (env->mxccregs[0] & 0xffffffffULL) +
795                                         16);
796             env->mxccdata[3] = ldq_phys(cs->as,
797                                         (env->mxccregs[0] & 0xffffffffULL) +
798                                         24);
799             break;
800         case 0x01c00200: /* MXCC stream destination */
801             if (size == 8) {
802                 env->mxccregs[1] = val;
803             } else {
804                 qemu_log_mask(LOG_UNIMP,
805                               "%08x: unimplemented access size: %d\n", addr,
806                               size);
807             }
808             stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) +  0,
809                      env->mxccdata[0]);
810             stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) +  8,
811                      env->mxccdata[1]);
812             stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 16,
813                      env->mxccdata[2]);
814             stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 24,
815                      env->mxccdata[3]);
816             break;
817         case 0x01c00a00: /* MXCC control register */
818             if (size == 8) {
819                 env->mxccregs[3] = val;
820             } else {
821                 qemu_log_mask(LOG_UNIMP,
822                               "%08x: unimplemented access size: %d\n", addr,
823                               size);
824             }
825             break;
826         case 0x01c00a04: /* MXCC control register */
827             if (size == 4) {
828                 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
829                     | val;
830             } else {
831                 qemu_log_mask(LOG_UNIMP,
832                               "%08x: unimplemented access size: %d\n", addr,
833                               size);
834             }
835             break;
836         case 0x01c00e00: /* MXCC error register  */
837             /* writing a 1 bit clears the error */
838             if (size == 8) {
839                 env->mxccregs[6] &= ~val;
840             } else {
841                 qemu_log_mask(LOG_UNIMP,
842                               "%08x: unimplemented access size: %d\n", addr,
843                               size);
844             }
845             break;
846         case 0x01c00f00: /* MBus port address register */
847             if (size == 8) {
848                 env->mxccregs[7] = val;
849             } else {
850                 qemu_log_mask(LOG_UNIMP,
851                               "%08x: unimplemented access size: %d\n", addr,
852                               size);
853             }
854             break;
855         default:
856             qemu_log_mask(LOG_UNIMP,
857                           "%08x: unimplemented address, size: %d\n", addr,
858                           size);
859             break;
860         }
861         DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
862                      asi, size, addr, val);
863 #ifdef DEBUG_MXCC
864         dump_mxcc(env);
865 #endif
866         break;
867     case ASI_M_FLUSH_PROBE: /* SuperSparc MMU flush */
868     case ASI_LEON_MMUFLUSH: /* LEON3 MMU flush */
869         {
870             int mmulev;
871 
872             mmulev = (addr >> 8) & 15;
873             DPRINTF_MMU("mmu flush level %d\n", mmulev);
874             switch (mmulev) {
875             case 0: /* flush page */
876                 tlb_flush_page(cs, addr & 0xfffff000);
877                 break;
878             case 1: /* flush segment (256k) */
879             case 2: /* flush region (16M) */
880             case 3: /* flush context (4G) */
881             case 4: /* flush entire */
882                 tlb_flush(cs);
883                 break;
884             default:
885                 break;
886             }
887 #ifdef DEBUG_MMU
888             dump_mmu(env);
889 #endif
890         }
891         break;
892     case ASI_M_MMUREGS: /* write MMU regs */
893     case ASI_LEON_MMUREGS: /* LEON3 write MMU regs */
894         {
895             int reg = (addr >> 8) & 0x1f;
896             uint32_t oldreg;
897 
898             oldreg = env->mmuregs[reg];
899             switch (reg) {
900             case 0: /* Control Register */
901                 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
902                     (val & 0x00ffffff);
903                 /* Mappings generated during no-fault mode
904                    are invalid in normal mode.  */
905                 if ((oldreg ^ env->mmuregs[reg])
906                     & (MMU_NF | env->def.mmu_bm)) {
907                     tlb_flush(cs);
908                 }
909                 break;
910             case 1: /* Context Table Pointer Register */
911                 env->mmuregs[reg] = val & env->def.mmu_ctpr_mask;
912                 break;
913             case 2: /* Context Register */
914                 env->mmuregs[reg] = val & env->def.mmu_cxr_mask;
915                 if (oldreg != env->mmuregs[reg]) {
916                     /* we flush when the MMU context changes because
917                        QEMU has no MMU context support */
918                     tlb_flush(cs);
919                 }
920                 break;
921             case 3: /* Synchronous Fault Status Register with Clear */
922             case 4: /* Synchronous Fault Address Register */
923                 break;
924             case 0x10: /* TLB Replacement Control Register */
925                 env->mmuregs[reg] = val & env->def.mmu_trcr_mask;
926                 break;
927             case 0x13: /* Synchronous Fault Status Register with Read
928                           and Clear */
929                 env->mmuregs[3] = val & env->def.mmu_sfsr_mask;
930                 break;
931             case 0x14: /* Synchronous Fault Address Register */
932                 env->mmuregs[4] = val;
933                 break;
934             default:
935                 env->mmuregs[reg] = val;
936                 break;
937             }
938             if (oldreg != env->mmuregs[reg]) {
939                 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
940                             reg, oldreg, env->mmuregs[reg]);
941             }
942 #ifdef DEBUG_MMU
943             dump_mmu(env);
944 #endif
945         }
946         break;
947     case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
948     case ASI_M_DIAGS:   /* Turbosparc DTLB Diagnostic */
949     case ASI_M_IODIAG:  /* Turbosparc IOTLB Diagnostic */
950         break;
951     case ASI_M_TXTC_TAG:   /* I-cache tag */
952     case ASI_M_TXTC_DATA:  /* I-cache data */
953     case ASI_M_DATAC_TAG:  /* D-cache tag */
954     case ASI_M_DATAC_DATA: /* D-cache data */
955     case ASI_M_FLUSH_PAGE:   /* I/D-cache flush page */
956     case ASI_M_FLUSH_SEG:    /* I/D-cache flush segment */
957     case ASI_M_FLUSH_REGION: /* I/D-cache flush region */
958     case ASI_M_FLUSH_CTX:    /* I/D-cache flush context */
959     case ASI_M_FLUSH_USER:   /* I/D-cache flush user */
960         break;
961     case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
962         {
963             switch (size) {
964             case 1:
965                 stb_phys(cs->as, (hwaddr)addr
966                          | ((hwaddr)(asi & 0xf) << 32), val);
967                 break;
968             case 2:
969                 stw_phys(cs->as, (hwaddr)addr
970                          | ((hwaddr)(asi & 0xf) << 32), val);
971                 break;
972             case 4:
973             default:
974                 stl_phys(cs->as, (hwaddr)addr
975                          | ((hwaddr)(asi & 0xf) << 32), val);
976                 break;
977             case 8:
978                 stq_phys(cs->as, (hwaddr)addr
979                          | ((hwaddr)(asi & 0xf) << 32), val);
980                 break;
981             }
982         }
983         break;
984     case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
985     case 0x31: /* store buffer data, Ross RT620 I-cache flush or
986                   Turbosparc snoop RAM */
987     case 0x32: /* store buffer control or Turbosparc page table
988                   descriptor diagnostic */
989     case 0x36: /* I-cache flash clear */
990     case 0x37: /* D-cache flash clear */
991         break;
992     case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
993         {
994             int reg = (addr >> 8) & 3;
995 
996             switch (reg) {
997             case 0: /* Breakpoint Value (Addr) */
998                 env->mmubpregs[reg] = (val & 0xfffffffffULL);
999                 break;
1000             case 1: /* Breakpoint Mask */
1001                 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1002                 break;
1003             case 2: /* Breakpoint Control */
1004                 env->mmubpregs[reg] = (val & 0x7fULL);
1005                 break;
1006             case 3: /* Breakpoint Status */
1007                 env->mmubpregs[reg] = (val & 0xfULL);
1008                 break;
1009             }
1010             DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
1011                         env->mmuregs[reg]);
1012         }
1013         break;
1014     case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
1015         env->mmubpctrv = val & 0xffffffff;
1016         break;
1017     case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
1018         env->mmubpctrc = val & 0x3;
1019         break;
1020     case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
1021         env->mmubpctrs = val & 0x3;
1022         break;
1023     case 0x4c: /* SuperSPARC MMU Breakpoint Action */
1024         env->mmubpaction = val & 0x1fff;
1025         break;
1026     case ASI_USERTXT: /* User code access, XXX */
1027     case ASI_KERNELTXT: /* Supervisor code access, XXX */
1028     default:
1029         cpu_unassigned_access(cs, addr, true, false, asi, size);
1030         break;
1031 
1032     case ASI_USERDATA: /* User data access */
1033     case ASI_KERNELDATA: /* Supervisor data access */
1034     case ASI_P:
1035     case ASI_M_BYPASS:    /* MMU passthrough */
1036     case ASI_LEON_BYPASS: /* LEON MMU passthrough */
1037     case ASI_M_BCOPY: /* Block copy, sta access */
1038     case ASI_M_BFILL: /* Block fill, stda access */
1039         /* These are always handled inline.  */
1040         g_assert_not_reached();
1041     }
1042 #ifdef DEBUG_ASI
1043     dump_asi("write", addr, asi, size, val);
1044 #endif
1045 }
1046 
1047 #endif /* CONFIG_USER_ONLY */
1048 #else /* TARGET_SPARC64 */
1049 
1050 #ifdef CONFIG_USER_ONLY
1051 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1052                        int asi, uint32_t memop)
1053 {
1054     int size = 1 << (memop & MO_SIZE);
1055     int sign = memop & MO_SIGN;
1056     uint64_t ret = 0;
1057 
1058     if (asi < 0x80) {
1059         cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1060     }
1061     do_check_align(env, addr, size - 1, GETPC());
1062     addr = asi_address_mask(env, asi, addr);
1063 
1064     switch (asi) {
1065     case ASI_PNF:  /* Primary no-fault */
1066     case ASI_PNFL: /* Primary no-fault LE */
1067     case ASI_SNF:  /* Secondary no-fault */
1068     case ASI_SNFL: /* Secondary no-fault LE */
1069         if (page_check_range(addr, size, PAGE_READ) == -1) {
1070             ret = 0;
1071             break;
1072         }
1073         switch (size) {
1074         case 1:
1075             ret = cpu_ldub_data(env, addr);
1076             break;
1077         case 2:
1078             ret = cpu_lduw_data(env, addr);
1079             break;
1080         case 4:
1081             ret = cpu_ldl_data(env, addr);
1082             break;
1083         case 8:
1084             ret = cpu_ldq_data(env, addr);
1085             break;
1086         default:
1087             g_assert_not_reached();
1088         }
1089         break;
1090         break;
1091 
1092     case ASI_P: /* Primary */
1093     case ASI_PL: /* Primary LE */
1094     case ASI_S:  /* Secondary */
1095     case ASI_SL: /* Secondary LE */
1096         /* These are always handled inline.  */
1097         g_assert_not_reached();
1098 
1099     default:
1100         cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1101     }
1102 
1103     /* Convert from little endian */
1104     switch (asi) {
1105     case ASI_PNFL: /* Primary no-fault LE */
1106     case ASI_SNFL: /* Secondary no-fault LE */
1107         switch (size) {
1108         case 2:
1109             ret = bswap16(ret);
1110             break;
1111         case 4:
1112             ret = bswap32(ret);
1113             break;
1114         case 8:
1115             ret = bswap64(ret);
1116             break;
1117         }
1118     }
1119 
1120     /* Convert to signed number */
1121     if (sign) {
1122         switch (size) {
1123         case 1:
1124             ret = (int8_t) ret;
1125             break;
1126         case 2:
1127             ret = (int16_t) ret;
1128             break;
1129         case 4:
1130             ret = (int32_t) ret;
1131             break;
1132         }
1133     }
1134 #ifdef DEBUG_ASI
1135     dump_asi("read", addr, asi, size, ret);
1136 #endif
1137     return ret;
1138 }
1139 
1140 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1141                    int asi, uint32_t memop)
1142 {
1143     int size = 1 << (memop & MO_SIZE);
1144 #ifdef DEBUG_ASI
1145     dump_asi("write", addr, asi, size, val);
1146 #endif
1147     if (asi < 0x80) {
1148         cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1149     }
1150     do_check_align(env, addr, size - 1, GETPC());
1151 
1152     switch (asi) {
1153     case ASI_P:  /* Primary */
1154     case ASI_PL: /* Primary LE */
1155     case ASI_S:  /* Secondary */
1156     case ASI_SL: /* Secondary LE */
1157         /* These are always handled inline.  */
1158         g_assert_not_reached();
1159 
1160     case ASI_PNF:  /* Primary no-fault, RO */
1161     case ASI_SNF:  /* Secondary no-fault, RO */
1162     case ASI_PNFL: /* Primary no-fault LE, RO */
1163     case ASI_SNFL: /* Secondary no-fault LE, RO */
1164     default:
1165         cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1166     }
1167 }
1168 
1169 #else /* CONFIG_USER_ONLY */
1170 
1171 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1172                        int asi, uint32_t memop)
1173 {
1174     int size = 1 << (memop & MO_SIZE);
1175     int sign = memop & MO_SIGN;
1176     CPUState *cs = env_cpu(env);
1177     uint64_t ret = 0;
1178 #if defined(DEBUG_ASI)
1179     target_ulong last_addr = addr;
1180 #endif
1181 
1182     asi &= 0xff;
1183 
1184     do_check_asi(env, asi, GETPC());
1185     do_check_align(env, addr, size - 1, GETPC());
1186     addr = asi_address_mask(env, asi, addr);
1187 
1188     switch (asi) {
1189     case ASI_PNF:
1190     case ASI_PNFL:
1191     case ASI_SNF:
1192     case ASI_SNFL:
1193         {
1194             TCGMemOpIdx oi;
1195             int idx = (env->pstate & PS_PRIV
1196                        ? (asi & 1 ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX)
1197                        : (asi & 1 ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX));
1198 
1199             if (cpu_get_phys_page_nofault(env, addr, idx) == -1ULL) {
1200 #ifdef DEBUG_ASI
1201                 dump_asi("read ", last_addr, asi, size, ret);
1202 #endif
1203                 /* exception_index is set in get_physical_address_data. */
1204                 cpu_raise_exception_ra(env, cs->exception_index, GETPC());
1205             }
1206             oi = make_memop_idx(memop, idx);
1207             switch (size) {
1208             case 1:
1209                 ret = helper_ret_ldub_mmu(env, addr, oi, GETPC());
1210                 break;
1211             case 2:
1212                 if (asi & 8) {
1213                     ret = helper_le_lduw_mmu(env, addr, oi, GETPC());
1214                 } else {
1215                     ret = helper_be_lduw_mmu(env, addr, oi, GETPC());
1216                 }
1217                 break;
1218             case 4:
1219                 if (asi & 8) {
1220                     ret = helper_le_ldul_mmu(env, addr, oi, GETPC());
1221                 } else {
1222                     ret = helper_be_ldul_mmu(env, addr, oi, GETPC());
1223                 }
1224                 break;
1225             case 8:
1226                 if (asi & 8) {
1227                     ret = helper_le_ldq_mmu(env, addr, oi, GETPC());
1228                 } else {
1229                     ret = helper_be_ldq_mmu(env, addr, oi, GETPC());
1230                 }
1231                 break;
1232             default:
1233                 g_assert_not_reached();
1234             }
1235         }
1236         break;
1237 
1238     case ASI_AIUP:  /* As if user primary */
1239     case ASI_AIUS:  /* As if user secondary */
1240     case ASI_AIUPL: /* As if user primary LE */
1241     case ASI_AIUSL: /* As if user secondary LE */
1242     case ASI_P:  /* Primary */
1243     case ASI_S:  /* Secondary */
1244     case ASI_PL: /* Primary LE */
1245     case ASI_SL: /* Secondary LE */
1246     case ASI_REAL:      /* Bypass */
1247     case ASI_REAL_IO:   /* Bypass, non-cacheable */
1248     case ASI_REAL_L:    /* Bypass LE */
1249     case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1250     case ASI_N:  /* Nucleus */
1251     case ASI_NL: /* Nucleus Little Endian (LE) */
1252     case ASI_NUCLEUS_QUAD_LDD:   /* Nucleus quad LDD 128 bit atomic */
1253     case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1254     case ASI_TWINX_AIUP:   /* As if user primary, twinx */
1255     case ASI_TWINX_AIUS:   /* As if user secondary, twinx */
1256     case ASI_TWINX_REAL:   /* Real address, twinx */
1257     case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1258     case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1259     case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1260     case ASI_TWINX_N:  /* Nucleus, twinx */
1261     case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1262     /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1263     case ASI_TWINX_P:  /* Primary, twinx */
1264     case ASI_TWINX_PL: /* Primary, twinx, LE */
1265     case ASI_TWINX_S:  /* Secondary, twinx */
1266     case ASI_TWINX_SL: /* Secondary, twinx, LE */
1267         /* These are always handled inline.  */
1268         g_assert_not_reached();
1269 
1270     case ASI_UPA_CONFIG: /* UPA config */
1271         /* XXX */
1272         break;
1273     case ASI_LSU_CONTROL: /* LSU */
1274         ret = env->lsu;
1275         break;
1276     case ASI_IMMU: /* I-MMU regs */
1277         {
1278             int reg = (addr >> 3) & 0xf;
1279             switch (reg) {
1280             case 0:
1281                 /* 0x00 I-TSB Tag Target register */
1282                 ret = ultrasparc_tag_target(env->immu.tag_access);
1283                 break;
1284             case 3: /* SFSR */
1285                 ret = env->immu.sfsr;
1286                 break;
1287             case 5: /* TSB access */
1288                 ret = env->immu.tsb;
1289                 break;
1290             case 6:
1291                 /* 0x30 I-TSB Tag Access register */
1292                 ret = env->immu.tag_access;
1293                 break;
1294             default:
1295                 cpu_unassigned_access(cs, addr, false, false, 1, size);
1296                 ret = 0;
1297             }
1298             break;
1299         }
1300     case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer */
1301         {
1302             /* env->immuregs[5] holds I-MMU TSB register value
1303                env->immuregs[6] holds I-MMU Tag Access register value */
1304             ret = ultrasparc_tsb_pointer(env, &env->immu, 0);
1305             break;
1306         }
1307     case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer */
1308         {
1309             /* env->immuregs[5] holds I-MMU TSB register value
1310                env->immuregs[6] holds I-MMU Tag Access register value */
1311             ret = ultrasparc_tsb_pointer(env, &env->immu, 1);
1312             break;
1313         }
1314     case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1315         {
1316             int reg = (addr >> 3) & 0x3f;
1317 
1318             ret = env->itlb[reg].tte;
1319             break;
1320         }
1321     case ASI_ITLB_TAG_READ: /* I-MMU tag read */
1322         {
1323             int reg = (addr >> 3) & 0x3f;
1324 
1325             ret = env->itlb[reg].tag;
1326             break;
1327         }
1328     case ASI_DMMU: /* D-MMU regs */
1329         {
1330             int reg = (addr >> 3) & 0xf;
1331             switch (reg) {
1332             case 0:
1333                 /* 0x00 D-TSB Tag Target register */
1334                 ret = ultrasparc_tag_target(env->dmmu.tag_access);
1335                 break;
1336             case 1: /* 0x08 Primary Context */
1337                 ret = env->dmmu.mmu_primary_context;
1338                 break;
1339             case 2: /* 0x10 Secondary Context */
1340                 ret = env->dmmu.mmu_secondary_context;
1341                 break;
1342             case 3: /* SFSR */
1343                 ret = env->dmmu.sfsr;
1344                 break;
1345             case 4: /* 0x20 SFAR */
1346                 ret = env->dmmu.sfar;
1347                 break;
1348             case 5: /* 0x28 TSB access */
1349                 ret = env->dmmu.tsb;
1350                 break;
1351             case 6: /* 0x30 D-TSB Tag Access register */
1352                 ret = env->dmmu.tag_access;
1353                 break;
1354             case 7:
1355                 ret = env->dmmu.virtual_watchpoint;
1356                 break;
1357             case 8:
1358                 ret = env->dmmu.physical_watchpoint;
1359                 break;
1360             default:
1361                 cpu_unassigned_access(cs, addr, false, false, 1, size);
1362                 ret = 0;
1363             }
1364             break;
1365         }
1366     case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer */
1367         {
1368             /* env->dmmuregs[5] holds D-MMU TSB register value
1369                env->dmmuregs[6] holds D-MMU Tag Access register value */
1370             ret = ultrasparc_tsb_pointer(env, &env->dmmu, 0);
1371             break;
1372         }
1373     case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer */
1374         {
1375             /* env->dmmuregs[5] holds D-MMU TSB register value
1376                env->dmmuregs[6] holds D-MMU Tag Access register value */
1377             ret = ultrasparc_tsb_pointer(env, &env->dmmu, 1);
1378             break;
1379         }
1380     case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1381         {
1382             int reg = (addr >> 3) & 0x3f;
1383 
1384             ret = env->dtlb[reg].tte;
1385             break;
1386         }
1387     case ASI_DTLB_TAG_READ: /* D-MMU tag read */
1388         {
1389             int reg = (addr >> 3) & 0x3f;
1390 
1391             ret = env->dtlb[reg].tag;
1392             break;
1393         }
1394     case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1395         break;
1396     case ASI_INTR_RECEIVE: /* Interrupt data receive */
1397         ret = env->ivec_status;
1398         break;
1399     case ASI_INTR_R: /* Incoming interrupt vector, RO */
1400         {
1401             int reg = (addr >> 4) & 0x3;
1402             if (reg < 3) {
1403                 ret = env->ivec_data[reg];
1404             }
1405             break;
1406         }
1407     case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1408         if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1409             /* Hyperprivileged access only */
1410             cpu_unassigned_access(cs, addr, false, false, 1, size);
1411         }
1412         /* fall through */
1413     case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1414         {
1415             unsigned int i = (addr >> 3) & 0x7;
1416             ret = env->scratch[i];
1417             break;
1418         }
1419     case ASI_MMU: /* UA2005 Context ID registers */
1420         switch ((addr >> 3) & 0x3) {
1421         case 1:
1422             ret = env->dmmu.mmu_primary_context;
1423             break;
1424         case 2:
1425             ret = env->dmmu.mmu_secondary_context;
1426             break;
1427         default:
1428           cpu_unassigned_access(cs, addr, true, false, 1, size);
1429         }
1430         break;
1431     case ASI_DCACHE_DATA:     /* D-cache data */
1432     case ASI_DCACHE_TAG:      /* D-cache tag access */
1433     case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1434     case ASI_AFSR:            /* E-cache asynchronous fault status */
1435     case ASI_AFAR:            /* E-cache asynchronous fault address */
1436     case ASI_EC_TAG_DATA:     /* E-cache tag data */
1437     case ASI_IC_INSTR:        /* I-cache instruction access */
1438     case ASI_IC_TAG:          /* I-cache tag access */
1439     case ASI_IC_PRE_DECODE:   /* I-cache predecode */
1440     case ASI_IC_NEXT_FIELD:   /* I-cache LRU etc. */
1441     case ASI_EC_W:            /* E-cache tag */
1442     case ASI_EC_R:            /* E-cache tag */
1443         break;
1444     case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer */
1445     case ASI_ITLB_DATA_IN:        /* I-MMU data in, WO */
1446     case ASI_IMMU_DEMAP:          /* I-MMU demap, WO */
1447     case ASI_DTLB_DATA_IN:        /* D-MMU data in, WO */
1448     case ASI_DMMU_DEMAP:          /* D-MMU demap, WO */
1449     case ASI_INTR_W:              /* Interrupt vector, WO */
1450     default:
1451         cpu_unassigned_access(cs, addr, false, false, 1, size);
1452         ret = 0;
1453         break;
1454     }
1455 
1456     /* Convert to signed number */
1457     if (sign) {
1458         switch (size) {
1459         case 1:
1460             ret = (int8_t) ret;
1461             break;
1462         case 2:
1463             ret = (int16_t) ret;
1464             break;
1465         case 4:
1466             ret = (int32_t) ret;
1467             break;
1468         default:
1469             break;
1470         }
1471     }
1472 #ifdef DEBUG_ASI
1473     dump_asi("read ", last_addr, asi, size, ret);
1474 #endif
1475     return ret;
1476 }
1477 
1478 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1479                    int asi, uint32_t memop)
1480 {
1481     int size = 1 << (memop & MO_SIZE);
1482     CPUState *cs = env_cpu(env);
1483 
1484 #ifdef DEBUG_ASI
1485     dump_asi("write", addr, asi, size, val);
1486 #endif
1487 
1488     asi &= 0xff;
1489 
1490     do_check_asi(env, asi, GETPC());
1491     do_check_align(env, addr, size - 1, GETPC());
1492     addr = asi_address_mask(env, asi, addr);
1493 
1494     switch (asi) {
1495     case ASI_AIUP:  /* As if user primary */
1496     case ASI_AIUS:  /* As if user secondary */
1497     case ASI_AIUPL: /* As if user primary LE */
1498     case ASI_AIUSL: /* As if user secondary LE */
1499     case ASI_P:  /* Primary */
1500     case ASI_S:  /* Secondary */
1501     case ASI_PL: /* Primary LE */
1502     case ASI_SL: /* Secondary LE */
1503     case ASI_REAL:      /* Bypass */
1504     case ASI_REAL_IO:   /* Bypass, non-cacheable */
1505     case ASI_REAL_L:    /* Bypass LE */
1506     case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1507     case ASI_N:  /* Nucleus */
1508     case ASI_NL: /* Nucleus Little Endian (LE) */
1509     case ASI_NUCLEUS_QUAD_LDD:   /* Nucleus quad LDD 128 bit atomic */
1510     case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1511     case ASI_TWINX_AIUP:   /* As if user primary, twinx */
1512     case ASI_TWINX_AIUS:   /* As if user secondary, twinx */
1513     case ASI_TWINX_REAL:   /* Real address, twinx */
1514     case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1515     case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1516     case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1517     case ASI_TWINX_N:  /* Nucleus, twinx */
1518     case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1519     /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1520     case ASI_TWINX_P:  /* Primary, twinx */
1521     case ASI_TWINX_PL: /* Primary, twinx, LE */
1522     case ASI_TWINX_S:  /* Secondary, twinx */
1523     case ASI_TWINX_SL: /* Secondary, twinx, LE */
1524         /* These are always handled inline.  */
1525         g_assert_not_reached();
1526     /* these ASIs have different functions on UltraSPARC-IIIi
1527      * and UA2005 CPUs. Use the explicit numbers to avoid confusion
1528      */
1529     case 0x31:
1530     case 0x32:
1531     case 0x39:
1532     case 0x3a:
1533         if (cpu_has_hypervisor(env)) {
1534             /* UA2005
1535              * ASI_DMMU_CTX_ZERO_TSB_BASE_PS0
1536              * ASI_DMMU_CTX_ZERO_TSB_BASE_PS1
1537              * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS0
1538              * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS1
1539              */
1540             int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1541             env->dmmu.sun4v_tsb_pointers[idx] = val;
1542         } else {
1543             helper_raise_exception(env, TT_ILL_INSN);
1544         }
1545         break;
1546     case 0x33:
1547     case 0x3b:
1548         if (cpu_has_hypervisor(env)) {
1549             /* UA2005
1550              * ASI_DMMU_CTX_ZERO_CONFIG
1551              * ASI_DMMU_CTX_NONZERO_CONFIG
1552              */
1553             env->dmmu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1554         } else {
1555             helper_raise_exception(env, TT_ILL_INSN);
1556         }
1557         break;
1558     case 0x35:
1559     case 0x36:
1560     case 0x3d:
1561     case 0x3e:
1562         if (cpu_has_hypervisor(env)) {
1563             /* UA2005
1564              * ASI_IMMU_CTX_ZERO_TSB_BASE_PS0
1565              * ASI_IMMU_CTX_ZERO_TSB_BASE_PS1
1566              * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS0
1567              * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS1
1568              */
1569             int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1570             env->immu.sun4v_tsb_pointers[idx] = val;
1571         } else {
1572             helper_raise_exception(env, TT_ILL_INSN);
1573         }
1574       break;
1575     case 0x37:
1576     case 0x3f:
1577         if (cpu_has_hypervisor(env)) {
1578             /* UA2005
1579              * ASI_IMMU_CTX_ZERO_CONFIG
1580              * ASI_IMMU_CTX_NONZERO_CONFIG
1581              */
1582             env->immu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1583         } else {
1584           helper_raise_exception(env, TT_ILL_INSN);
1585         }
1586         break;
1587     case ASI_UPA_CONFIG: /* UPA config */
1588         /* XXX */
1589         return;
1590     case ASI_LSU_CONTROL: /* LSU */
1591         env->lsu = val & (DMMU_E | IMMU_E);
1592         return;
1593     case ASI_IMMU: /* I-MMU regs */
1594         {
1595             int reg = (addr >> 3) & 0xf;
1596             uint64_t oldreg;
1597 
1598             oldreg = env->immu.mmuregs[reg];
1599             switch (reg) {
1600             case 0: /* RO */
1601                 return;
1602             case 1: /* Not in I-MMU */
1603             case 2:
1604                 return;
1605             case 3: /* SFSR */
1606                 if ((val & 1) == 0) {
1607                     val = 0; /* Clear SFSR */
1608                 }
1609                 env->immu.sfsr = val;
1610                 break;
1611             case 4: /* RO */
1612                 return;
1613             case 5: /* TSB access */
1614                 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
1615                             PRIx64 "\n", env->immu.tsb, val);
1616                 env->immu.tsb = val;
1617                 break;
1618             case 6: /* Tag access */
1619                 env->immu.tag_access = val;
1620                 break;
1621             case 7:
1622             case 8:
1623                 return;
1624             default:
1625                 cpu_unassigned_access(cs, addr, true, false, 1, size);
1626                 break;
1627             }
1628 
1629             if (oldreg != env->immu.mmuregs[reg]) {
1630                 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1631                             PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1632             }
1633 #ifdef DEBUG_MMU
1634             dump_mmu(env);
1635 #endif
1636             return;
1637         }
1638     case ASI_ITLB_DATA_IN: /* I-MMU data in */
1639         /* ignore real translation entries */
1640         if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1641             replace_tlb_1bit_lru(env->itlb, env->immu.tag_access,
1642                                  val, "immu", env, addr);
1643         }
1644         return;
1645     case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1646         {
1647             /* TODO: auto demap */
1648 
1649             unsigned int i = (addr >> 3) & 0x3f;
1650 
1651             /* ignore real translation entries */
1652             if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1653                 replace_tlb_entry(&env->itlb[i], env->immu.tag_access,
1654                                   sun4v_tte_to_sun4u(env, addr, val), env);
1655             }
1656 #ifdef DEBUG_MMU
1657             DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
1658             dump_mmu(env);
1659 #endif
1660             return;
1661         }
1662     case ASI_IMMU_DEMAP: /* I-MMU demap */
1663         demap_tlb(env->itlb, addr, "immu", env);
1664         return;
1665     case ASI_DMMU: /* D-MMU regs */
1666         {
1667             int reg = (addr >> 3) & 0xf;
1668             uint64_t oldreg;
1669 
1670             oldreg = env->dmmu.mmuregs[reg];
1671             switch (reg) {
1672             case 0: /* RO */
1673             case 4:
1674                 return;
1675             case 3: /* SFSR */
1676                 if ((val & 1) == 0) {
1677                     val = 0; /* Clear SFSR, Fault address */
1678                     env->dmmu.sfar = 0;
1679                 }
1680                 env->dmmu.sfsr = val;
1681                 break;
1682             case 1: /* Primary context */
1683                 env->dmmu.mmu_primary_context = val;
1684                 /* can be optimized to only flush MMU_USER_IDX
1685                    and MMU_KERNEL_IDX entries */
1686                 tlb_flush(cs);
1687                 break;
1688             case 2: /* Secondary context */
1689                 env->dmmu.mmu_secondary_context = val;
1690                 /* can be optimized to only flush MMU_USER_SECONDARY_IDX
1691                    and MMU_KERNEL_SECONDARY_IDX entries */
1692                 tlb_flush(cs);
1693                 break;
1694             case 5: /* TSB access */
1695                 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
1696                             PRIx64 "\n", env->dmmu.tsb, val);
1697                 env->dmmu.tsb = val;
1698                 break;
1699             case 6: /* Tag access */
1700                 env->dmmu.tag_access = val;
1701                 break;
1702             case 7: /* Virtual Watchpoint */
1703                 env->dmmu.virtual_watchpoint = val;
1704                 break;
1705             case 8: /* Physical Watchpoint */
1706                 env->dmmu.physical_watchpoint = val;
1707                 break;
1708             default:
1709                 cpu_unassigned_access(cs, addr, true, false, 1, size);
1710                 break;
1711             }
1712 
1713             if (oldreg != env->dmmu.mmuregs[reg]) {
1714                 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1715                             PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
1716             }
1717 #ifdef DEBUG_MMU
1718             dump_mmu(env);
1719 #endif
1720             return;
1721         }
1722     case ASI_DTLB_DATA_IN: /* D-MMU data in */
1723       /* ignore real translation entries */
1724       if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1725           replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access,
1726                                val, "dmmu", env, addr);
1727       }
1728       return;
1729     case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1730         {
1731             unsigned int i = (addr >> 3) & 0x3f;
1732 
1733             /* ignore real translation entries */
1734             if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1735                 replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access,
1736                                   sun4v_tte_to_sun4u(env, addr, val), env);
1737             }
1738 #ifdef DEBUG_MMU
1739             DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
1740             dump_mmu(env);
1741 #endif
1742             return;
1743         }
1744     case ASI_DMMU_DEMAP: /* D-MMU demap */
1745         demap_tlb(env->dtlb, addr, "dmmu", env);
1746         return;
1747     case ASI_INTR_RECEIVE: /* Interrupt data receive */
1748         env->ivec_status = val & 0x20;
1749         return;
1750     case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1751         if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1752             /* Hyperprivileged access only */
1753             cpu_unassigned_access(cs, addr, true, false, 1, size);
1754         }
1755         /* fall through */
1756     case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1757         {
1758             unsigned int i = (addr >> 3) & 0x7;
1759             env->scratch[i] = val;
1760             return;
1761         }
1762     case ASI_MMU: /* UA2005 Context ID registers */
1763         {
1764           switch ((addr >> 3) & 0x3) {
1765           case 1:
1766               env->dmmu.mmu_primary_context = val;
1767               env->immu.mmu_primary_context = val;
1768               tlb_flush_by_mmuidx(cs,
1769                                   (1 << MMU_USER_IDX) | (1 << MMU_KERNEL_IDX));
1770               break;
1771           case 2:
1772               env->dmmu.mmu_secondary_context = val;
1773               env->immu.mmu_secondary_context = val;
1774               tlb_flush_by_mmuidx(cs,
1775                                   (1 << MMU_USER_SECONDARY_IDX) |
1776                                   (1 << MMU_KERNEL_SECONDARY_IDX));
1777               break;
1778           default:
1779               cpu_unassigned_access(cs, addr, true, false, 1, size);
1780           }
1781         }
1782         return;
1783     case ASI_QUEUE: /* UA2005 CPU mondo queue */
1784     case ASI_DCACHE_DATA: /* D-cache data */
1785     case ASI_DCACHE_TAG: /* D-cache tag access */
1786     case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1787     case ASI_AFSR: /* E-cache asynchronous fault status */
1788     case ASI_AFAR: /* E-cache asynchronous fault address */
1789     case ASI_EC_TAG_DATA: /* E-cache tag data */
1790     case ASI_IC_INSTR: /* I-cache instruction access */
1791     case ASI_IC_TAG: /* I-cache tag access */
1792     case ASI_IC_PRE_DECODE: /* I-cache predecode */
1793     case ASI_IC_NEXT_FIELD: /* I-cache LRU etc. */
1794     case ASI_EC_W: /* E-cache tag */
1795     case ASI_EC_R: /* E-cache tag */
1796         return;
1797     case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer, RO */
1798     case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer, RO */
1799     case ASI_ITLB_TAG_READ: /* I-MMU tag read, RO */
1800     case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer, RO */
1801     case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer, RO */
1802     case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer, RO */
1803     case ASI_DTLB_TAG_READ: /* D-MMU tag read, RO */
1804     case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1805     case ASI_INTR_R: /* Incoming interrupt vector, RO */
1806     case ASI_PNF: /* Primary no-fault, RO */
1807     case ASI_SNF: /* Secondary no-fault, RO */
1808     case ASI_PNFL: /* Primary no-fault LE, RO */
1809     case ASI_SNFL: /* Secondary no-fault LE, RO */
1810     default:
1811         cpu_unassigned_access(cs, addr, true, false, 1, size);
1812         return;
1813     }
1814 }
1815 #endif /* CONFIG_USER_ONLY */
1816 #endif /* TARGET_SPARC64 */
1817 
1818 #if !defined(CONFIG_USER_ONLY)
1819 #ifndef TARGET_SPARC64
1820 void sparc_cpu_unassigned_access(CPUState *cs, hwaddr addr,
1821                                  bool is_write, bool is_exec, int is_asi,
1822                                  unsigned size)
1823 {
1824     SPARCCPU *cpu = SPARC_CPU(cs);
1825     CPUSPARCState *env = &cpu->env;
1826     int fault_type;
1827 
1828 #ifdef DEBUG_UNASSIGNED
1829     if (is_asi) {
1830         printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
1831                " asi 0x%02x from " TARGET_FMT_lx "\n",
1832                is_exec ? "exec" : is_write ? "write" : "read", size,
1833                size == 1 ? "" : "s", addr, is_asi, env->pc);
1834     } else {
1835         printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
1836                " from " TARGET_FMT_lx "\n",
1837                is_exec ? "exec" : is_write ? "write" : "read", size,
1838                size == 1 ? "" : "s", addr, env->pc);
1839     }
1840 #endif
1841     /* Don't overwrite translation and access faults */
1842     fault_type = (env->mmuregs[3] & 0x1c) >> 2;
1843     if ((fault_type > 4) || (fault_type == 0)) {
1844         env->mmuregs[3] = 0; /* Fault status register */
1845         if (is_asi) {
1846             env->mmuregs[3] |= 1 << 16;
1847         }
1848         if (env->psrs) {
1849             env->mmuregs[3] |= 1 << 5;
1850         }
1851         if (is_exec) {
1852             env->mmuregs[3] |= 1 << 6;
1853         }
1854         if (is_write) {
1855             env->mmuregs[3] |= 1 << 7;
1856         }
1857         env->mmuregs[3] |= (5 << 2) | 2;
1858         /* SuperSPARC will never place instruction fault addresses in the FAR */
1859         if (!is_exec) {
1860             env->mmuregs[4] = addr; /* Fault address register */
1861         }
1862     }
1863     /* overflow (same type fault was not read before another fault) */
1864     if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
1865         env->mmuregs[3] |= 1;
1866     }
1867 
1868     if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
1869         int tt = is_exec ? TT_CODE_ACCESS : TT_DATA_ACCESS;
1870         cpu_raise_exception_ra(env, tt, GETPC());
1871     }
1872 
1873     /* flush neverland mappings created during no-fault mode,
1874        so the sequential MMU faults report proper fault types */
1875     if (env->mmuregs[0] & MMU_NF) {
1876         tlb_flush(cs);
1877     }
1878 }
1879 #else
1880 void sparc_cpu_unassigned_access(CPUState *cs, hwaddr addr,
1881                                  bool is_write, bool is_exec, int is_asi,
1882                                  unsigned size)
1883 {
1884     SPARCCPU *cpu = SPARC_CPU(cs);
1885     CPUSPARCState *env = &cpu->env;
1886 
1887 #ifdef DEBUG_UNASSIGNED
1888     printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
1889            "\n", addr, env->pc);
1890 #endif
1891 
1892     if (is_exec) { /* XXX has_hypervisor */
1893         if (env->lsu & (IMMU_E)) {
1894             cpu_raise_exception_ra(env, TT_CODE_ACCESS, GETPC());
1895         } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
1896             cpu_raise_exception_ra(env, TT_INSN_REAL_TRANSLATION_MISS, GETPC());
1897         }
1898     } else {
1899         if (env->lsu & (DMMU_E)) {
1900             cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1901         } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
1902             cpu_raise_exception_ra(env, TT_DATA_REAL_TRANSLATION_MISS, GETPC());
1903         }
1904     }
1905 }
1906 #endif
1907 #endif
1908 
1909 #if !defined(CONFIG_USER_ONLY)
1910 void QEMU_NORETURN sparc_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
1911                                                  MMUAccessType access_type,
1912                                                  int mmu_idx,
1913                                                  uintptr_t retaddr)
1914 {
1915     SPARCCPU *cpu = SPARC_CPU(cs);
1916     CPUSPARCState *env = &cpu->env;
1917 
1918 #ifdef DEBUG_UNALIGNED
1919     printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
1920            "\n", addr, env->pc);
1921 #endif
1922     cpu_raise_exception_ra(env, TT_UNALIGNED, retaddr);
1923 }
1924 #endif
1925