xref: /openbmc/qemu/target/s390x/tcg/mem_helper.c (revision ef45f5b998126205e0362c7af4c5d6ee65801450)
1 /*
2  *  S/390 memory access helper routines
3  *
4  *  Copyright (c) 2009 Ulrich Hecht
5  *  Copyright (c) 2009 Alexander Graf
6  *
7  * This library is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * This library is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/log.h"
23 #include "cpu.h"
24 #include "s390x-internal.h"
25 #include "tcg_s390x.h"
26 #include "exec/helper-proto.h"
27 #include "exec/exec-all.h"
28 #include "exec/cpu_ldst.h"
29 #include "qemu/int128.h"
30 #include "qemu/atomic128.h"
31 #include "trace.h"
32 
33 #if !defined(CONFIG_USER_ONLY)
34 #include "hw/s390x/storage-keys.h"
35 #include "hw/boards.h"
36 #endif
37 
38 /*****************************************************************************/
39 /* Softmmu support */
40 
41 /* #define DEBUG_HELPER */
42 #ifdef DEBUG_HELPER
43 #define HELPER_LOG(x...) qemu_log(x)
44 #else
45 #define HELPER_LOG(x...)
46 #endif
47 
48 static inline bool psw_key_valid(CPUS390XState *env, uint8_t psw_key)
49 {
50     uint16_t pkm = env->cregs[3] >> 16;
51 
52     if (env->psw.mask & PSW_MASK_PSTATE) {
53         /* PSW key has range 0..15, it is valid if the bit is 1 in the PKM */
54         return pkm & (0x8000 >> psw_key);
55     }
56     return true;
57 }
58 
59 static bool is_destructive_overlap(CPUS390XState *env, uint64_t dest,
60                                    uint64_t src, uint32_t len)
61 {
62     if (!len || src == dest) {
63         return false;
64     }
65     /* Take care of wrapping at the end of address space. */
66     if (unlikely(wrap_address(env, src + len - 1) < src)) {
67         return dest > src || dest <= wrap_address(env, src + len - 1);
68     }
69     return dest > src && dest <= src + len - 1;
70 }
71 
72 /* Trigger a SPECIFICATION exception if an address or a length is not
73    naturally aligned.  */
74 static inline void check_alignment(CPUS390XState *env, uint64_t v,
75                                    int wordsize, uintptr_t ra)
76 {
77     if (v % wordsize) {
78         tcg_s390_program_interrupt(env, PGM_SPECIFICATION, ra);
79     }
80 }
81 
82 /* Load a value from memory according to its size.  */
83 static inline uint64_t cpu_ldusize_data_ra(CPUS390XState *env, uint64_t addr,
84                                            int wordsize, uintptr_t ra)
85 {
86     switch (wordsize) {
87     case 1:
88         return cpu_ldub_data_ra(env, addr, ra);
89     case 2:
90         return cpu_lduw_data_ra(env, addr, ra);
91     default:
92         abort();
93     }
94 }
95 
96 /* Store a to memory according to its size.  */
97 static inline void cpu_stsize_data_ra(CPUS390XState *env, uint64_t addr,
98                                       uint64_t value, int wordsize,
99                                       uintptr_t ra)
100 {
101     switch (wordsize) {
102     case 1:
103         cpu_stb_data_ra(env, addr, value, ra);
104         break;
105     case 2:
106         cpu_stw_data_ra(env, addr, value, ra);
107         break;
108     default:
109         abort();
110     }
111 }
112 
113 /* An access covers at most 4096 bytes and therefore at most two pages. */
114 typedef struct S390Access {
115     target_ulong vaddr1;
116     target_ulong vaddr2;
117     char *haddr1;
118     char *haddr2;
119     uint16_t size1;
120     uint16_t size2;
121     /*
122      * If we can't access the host page directly, we'll have to do I/O access
123      * via ld/st helpers. These are internal details, so we store the
124      * mmu idx to do the access here instead of passing it around in the
125      * helpers. Maybe, one day we can get rid of ld/st access - once we can
126      * handle TLB_NOTDIRTY differently. We don't expect these special accesses
127      * to trigger exceptions - only if we would have TLB_NOTDIRTY on LAP
128      * pages, we might trigger a new MMU translation - very unlikely that
129      * the mapping changes in between and we would trigger a fault.
130      */
131     int mmu_idx;
132 } S390Access;
133 
134 /*
135  * With nonfault=1, return the PGM_ exception that would have been injected
136  * into the guest; return 0 if no exception was detected.
137  *
138  * For !CONFIG_USER_ONLY, the TEC is stored stored to env->tlb_fill_tec.
139  * For CONFIG_USER_ONLY, the faulting address is stored to env->__excp_addr.
140  */
141 static int s390_probe_access(CPUArchState *env, target_ulong addr, int size,
142                              MMUAccessType access_type, int mmu_idx,
143                              bool nonfault, void **phost, uintptr_t ra)
144 {
145 #if defined(CONFIG_USER_ONLY)
146     return probe_access_flags(env, addr, access_type, mmu_idx,
147                               nonfault, phost, ra);
148 #else
149     int flags;
150 
151     env->tlb_fill_exc = 0;
152     flags = probe_access_flags(env, addr, access_type, mmu_idx, nonfault, phost,
153                                ra);
154     if (env->tlb_fill_exc) {
155         return env->tlb_fill_exc;
156     }
157 
158     if (unlikely(flags & TLB_WATCHPOINT)) {
159         /* S390 does not presently use transaction attributes. */
160         cpu_check_watchpoint(env_cpu(env), addr, size,
161                              MEMTXATTRS_UNSPECIFIED,
162                              (access_type == MMU_DATA_STORE
163                               ? BP_MEM_WRITE : BP_MEM_READ), ra);
164     }
165     return 0;
166 #endif
167 }
168 
169 static int access_prepare_nf(S390Access *access, CPUS390XState *env,
170                              bool nonfault, vaddr vaddr1, int size,
171                              MMUAccessType access_type,
172                              int mmu_idx, uintptr_t ra)
173 {
174     void *haddr1, *haddr2 = NULL;
175     int size1, size2, exc;
176     vaddr vaddr2 = 0;
177 
178     assert(size > 0 && size <= 4096);
179 
180     size1 = MIN(size, -(vaddr1 | TARGET_PAGE_MASK)),
181     size2 = size - size1;
182 
183     exc = s390_probe_access(env, vaddr1, size1, access_type, mmu_idx, nonfault,
184                             &haddr1, ra);
185     if (exc) {
186         return exc;
187     }
188     if (unlikely(size2)) {
189         /* The access crosses page boundaries. */
190         vaddr2 = wrap_address(env, vaddr1 + size1);
191         exc = s390_probe_access(env, vaddr2, size2, access_type, mmu_idx,
192                                 nonfault, &haddr2, ra);
193         if (exc) {
194             return exc;
195         }
196     }
197 
198     *access = (S390Access) {
199         .vaddr1 = vaddr1,
200         .vaddr2 = vaddr2,
201         .haddr1 = haddr1,
202         .haddr2 = haddr2,
203         .size1 = size1,
204         .size2 = size2,
205         .mmu_idx = mmu_idx
206     };
207     return 0;
208 }
209 
210 static S390Access access_prepare(CPUS390XState *env, vaddr vaddr, int size,
211                                  MMUAccessType access_type, int mmu_idx,
212                                  uintptr_t ra)
213 {
214     S390Access ret;
215     int exc = access_prepare_nf(&ret, env, false, vaddr, size,
216                                 access_type, mmu_idx, ra);
217     assert(!exc);
218     return ret;
219 }
220 
221 /* Helper to handle memset on a single page. */
222 static void do_access_memset(CPUS390XState *env, vaddr vaddr, char *haddr,
223                              uint8_t byte, uint16_t size, int mmu_idx,
224                              uintptr_t ra)
225 {
226 #ifdef CONFIG_USER_ONLY
227     g_assert(haddr);
228     memset(haddr, byte, size);
229 #else
230     MemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
231     int i;
232 
233     if (likely(haddr)) {
234         memset(haddr, byte, size);
235     } else {
236         /*
237          * Do a single access and test if we can then get access to the
238          * page. This is especially relevant to speed up TLB_NOTDIRTY.
239          */
240         g_assert(size > 0);
241         cpu_stb_mmu(env, vaddr, byte, oi, ra);
242         haddr = tlb_vaddr_to_host(env, vaddr, MMU_DATA_STORE, mmu_idx);
243         if (likely(haddr)) {
244             memset(haddr + 1, byte, size - 1);
245         } else {
246             for (i = 1; i < size; i++) {
247                 cpu_stb_mmu(env, vaddr + i, byte, oi, ra);
248             }
249         }
250     }
251 #endif
252 }
253 
254 static void access_memset(CPUS390XState *env, S390Access *desta,
255                           uint8_t byte, uintptr_t ra)
256 {
257 
258     do_access_memset(env, desta->vaddr1, desta->haddr1, byte, desta->size1,
259                      desta->mmu_idx, ra);
260     if (likely(!desta->size2)) {
261         return;
262     }
263     do_access_memset(env, desta->vaddr2, desta->haddr2, byte, desta->size2,
264                      desta->mmu_idx, ra);
265 }
266 
267 static uint8_t do_access_get_byte(CPUS390XState *env, vaddr vaddr, char **haddr,
268                                   int offset, int mmu_idx, uintptr_t ra)
269 {
270 #ifdef CONFIG_USER_ONLY
271     return ldub_p(*haddr + offset);
272 #else
273     MemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
274     uint8_t byte;
275 
276     if (likely(*haddr)) {
277         return ldub_p(*haddr + offset);
278     }
279     /*
280      * Do a single access and test if we can then get access to the
281      * page. This is especially relevant to speed up TLB_NOTDIRTY.
282      */
283     byte = cpu_ldb_mmu(env, vaddr + offset, oi, ra);
284     *haddr = tlb_vaddr_to_host(env, vaddr, MMU_DATA_LOAD, mmu_idx);
285     return byte;
286 #endif
287 }
288 
289 static uint8_t access_get_byte(CPUS390XState *env, S390Access *access,
290                                int offset, uintptr_t ra)
291 {
292     if (offset < access->size1) {
293         return do_access_get_byte(env, access->vaddr1, &access->haddr1,
294                                   offset, access->mmu_idx, ra);
295     }
296     return do_access_get_byte(env, access->vaddr2, &access->haddr2,
297                               offset - access->size1, access->mmu_idx, ra);
298 }
299 
300 static void do_access_set_byte(CPUS390XState *env, vaddr vaddr, char **haddr,
301                                int offset, uint8_t byte, int mmu_idx,
302                                uintptr_t ra)
303 {
304 #ifdef CONFIG_USER_ONLY
305     stb_p(*haddr + offset, byte);
306 #else
307     MemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
308 
309     if (likely(*haddr)) {
310         stb_p(*haddr + offset, byte);
311         return;
312     }
313     /*
314      * Do a single access and test if we can then get access to the
315      * page. This is especially relevant to speed up TLB_NOTDIRTY.
316      */
317     cpu_stb_mmu(env, vaddr + offset, byte, oi, ra);
318     *haddr = tlb_vaddr_to_host(env, vaddr, MMU_DATA_STORE, mmu_idx);
319 #endif
320 }
321 
322 static void access_set_byte(CPUS390XState *env, S390Access *access,
323                             int offset, uint8_t byte, uintptr_t ra)
324 {
325     if (offset < access->size1) {
326         do_access_set_byte(env, access->vaddr1, &access->haddr1, offset, byte,
327                            access->mmu_idx, ra);
328     } else {
329         do_access_set_byte(env, access->vaddr2, &access->haddr2,
330                            offset - access->size1, byte, access->mmu_idx, ra);
331     }
332 }
333 
334 /*
335  * Move data with the same semantics as memmove() in case ranges don't overlap
336  * or src > dest. Undefined behavior on destructive overlaps.
337  */
338 static void access_memmove(CPUS390XState *env, S390Access *desta,
339                            S390Access *srca, uintptr_t ra)
340 {
341     int diff;
342 
343     g_assert(desta->size1 + desta->size2 == srca->size1 + srca->size2);
344 
345     /* Fallback to slow access in case we don't have access to all host pages */
346     if (unlikely(!desta->haddr1 || (desta->size2 && !desta->haddr2) ||
347                  !srca->haddr1 || (srca->size2 && !srca->haddr2))) {
348         int i;
349 
350         for (i = 0; i < desta->size1 + desta->size2; i++) {
351             uint8_t byte = access_get_byte(env, srca, i, ra);
352 
353             access_set_byte(env, desta, i, byte, ra);
354         }
355         return;
356     }
357 
358     if (srca->size1 == desta->size1) {
359         memmove(desta->haddr1, srca->haddr1, srca->size1);
360         if (unlikely(srca->size2)) {
361             memmove(desta->haddr2, srca->haddr2, srca->size2);
362         }
363     } else if (srca->size1 < desta->size1) {
364         diff = desta->size1 - srca->size1;
365         memmove(desta->haddr1, srca->haddr1, srca->size1);
366         memmove(desta->haddr1 + srca->size1, srca->haddr2, diff);
367         if (likely(desta->size2)) {
368             memmove(desta->haddr2, srca->haddr2 + diff, desta->size2);
369         }
370     } else {
371         diff = srca->size1 - desta->size1;
372         memmove(desta->haddr1, srca->haddr1, desta->size1);
373         memmove(desta->haddr2, srca->haddr1 + desta->size1, diff);
374         if (likely(srca->size2)) {
375             memmove(desta->haddr2 + diff, srca->haddr2, srca->size2);
376         }
377     }
378 }
379 
380 static int mmu_idx_from_as(uint8_t as)
381 {
382     switch (as) {
383     case AS_PRIMARY:
384         return MMU_PRIMARY_IDX;
385     case AS_SECONDARY:
386         return MMU_SECONDARY_IDX;
387     case AS_HOME:
388         return MMU_HOME_IDX;
389     default:
390         /* FIXME AS_ACCREG */
391         g_assert_not_reached();
392     }
393 }
394 
395 /* and on array */
396 static uint32_t do_helper_nc(CPUS390XState *env, uint32_t l, uint64_t dest,
397                              uint64_t src, uintptr_t ra)
398 {
399     const int mmu_idx = cpu_mmu_index(env, false);
400     S390Access srca1, srca2, desta;
401     uint32_t i;
402     uint8_t c = 0;
403 
404     HELPER_LOG("%s l %d dest %" PRIx64 " src %" PRIx64 "\n",
405                __func__, l, dest, src);
406 
407     /* NC always processes one more byte than specified - maximum is 256 */
408     l++;
409 
410     srca1 = access_prepare(env, src, l, MMU_DATA_LOAD, mmu_idx, ra);
411     srca2 = access_prepare(env, dest, l, MMU_DATA_LOAD, mmu_idx, ra);
412     desta = access_prepare(env, dest, l, MMU_DATA_STORE, mmu_idx, ra);
413     for (i = 0; i < l; i++) {
414         const uint8_t x = access_get_byte(env, &srca1, i, ra) &
415                           access_get_byte(env, &srca2, i, ra);
416 
417         c |= x;
418         access_set_byte(env, &desta, i, x, ra);
419     }
420     return c != 0;
421 }
422 
423 uint32_t HELPER(nc)(CPUS390XState *env, uint32_t l, uint64_t dest,
424                     uint64_t src)
425 {
426     return do_helper_nc(env, l, dest, src, GETPC());
427 }
428 
429 /* xor on array */
430 static uint32_t do_helper_xc(CPUS390XState *env, uint32_t l, uint64_t dest,
431                              uint64_t src, uintptr_t ra)
432 {
433     const int mmu_idx = cpu_mmu_index(env, false);
434     S390Access srca1, srca2, desta;
435     uint32_t i;
436     uint8_t c = 0;
437 
438     HELPER_LOG("%s l %d dest %" PRIx64 " src %" PRIx64 "\n",
439                __func__, l, dest, src);
440 
441     /* XC always processes one more byte than specified - maximum is 256 */
442     l++;
443 
444     srca1 = access_prepare(env, src, l, MMU_DATA_LOAD, mmu_idx, ra);
445     srca2 = access_prepare(env, dest, l, MMU_DATA_LOAD, mmu_idx, ra);
446     desta = access_prepare(env, dest, l, MMU_DATA_STORE, mmu_idx, ra);
447 
448     /* xor with itself is the same as memset(0) */
449     if (src == dest) {
450         access_memset(env, &desta, 0, ra);
451         return 0;
452     }
453 
454     for (i = 0; i < l; i++) {
455         const uint8_t x = access_get_byte(env, &srca1, i, ra) ^
456                           access_get_byte(env, &srca2, i, ra);
457 
458         c |= x;
459         access_set_byte(env, &desta, i, x, ra);
460     }
461     return c != 0;
462 }
463 
464 uint32_t HELPER(xc)(CPUS390XState *env, uint32_t l, uint64_t dest,
465                     uint64_t src)
466 {
467     return do_helper_xc(env, l, dest, src, GETPC());
468 }
469 
470 /* or on array */
471 static uint32_t do_helper_oc(CPUS390XState *env, uint32_t l, uint64_t dest,
472                              uint64_t src, uintptr_t ra)
473 {
474     const int mmu_idx = cpu_mmu_index(env, false);
475     S390Access srca1, srca2, desta;
476     uint32_t i;
477     uint8_t c = 0;
478 
479     HELPER_LOG("%s l %d dest %" PRIx64 " src %" PRIx64 "\n",
480                __func__, l, dest, src);
481 
482     /* OC always processes one more byte than specified - maximum is 256 */
483     l++;
484 
485     srca1 = access_prepare(env, src, l, MMU_DATA_LOAD, mmu_idx, ra);
486     srca2 = access_prepare(env, dest, l, MMU_DATA_LOAD, mmu_idx, ra);
487     desta = access_prepare(env, dest, l, MMU_DATA_STORE, mmu_idx, ra);
488     for (i = 0; i < l; i++) {
489         const uint8_t x = access_get_byte(env, &srca1, i, ra) |
490                           access_get_byte(env, &srca2, i, ra);
491 
492         c |= x;
493         access_set_byte(env, &desta, i, x, ra);
494     }
495     return c != 0;
496 }
497 
498 uint32_t HELPER(oc)(CPUS390XState *env, uint32_t l, uint64_t dest,
499                     uint64_t src)
500 {
501     return do_helper_oc(env, l, dest, src, GETPC());
502 }
503 
504 /* memmove */
505 static uint32_t do_helper_mvc(CPUS390XState *env, uint32_t l, uint64_t dest,
506                               uint64_t src, uintptr_t ra)
507 {
508     const int mmu_idx = cpu_mmu_index(env, false);
509     S390Access srca, desta;
510     uint32_t i;
511 
512     HELPER_LOG("%s l %d dest %" PRIx64 " src %" PRIx64 "\n",
513                __func__, l, dest, src);
514 
515     /* MVC always copies one more byte than specified - maximum is 256 */
516     l++;
517 
518     srca = access_prepare(env, src, l, MMU_DATA_LOAD, mmu_idx, ra);
519     desta = access_prepare(env, dest, l, MMU_DATA_STORE, mmu_idx, ra);
520 
521     /*
522      * "When the operands overlap, the result is obtained as if the operands
523      * were processed one byte at a time". Only non-destructive overlaps
524      * behave like memmove().
525      */
526     if (dest == src + 1) {
527         access_memset(env, &desta, access_get_byte(env, &srca, 0, ra), ra);
528     } else if (!is_destructive_overlap(env, dest, src, l)) {
529         access_memmove(env, &desta, &srca, ra);
530     } else {
531         for (i = 0; i < l; i++) {
532             uint8_t byte = access_get_byte(env, &srca, i, ra);
533 
534             access_set_byte(env, &desta, i, byte, ra);
535         }
536     }
537 
538     return env->cc_op;
539 }
540 
541 void HELPER(mvc)(CPUS390XState *env, uint32_t l, uint64_t dest, uint64_t src)
542 {
543     do_helper_mvc(env, l, dest, src, GETPC());
544 }
545 
546 /* move right to left */
547 void HELPER(mvcrl)(CPUS390XState *env, uint64_t l, uint64_t dest, uint64_t src)
548 {
549     const int mmu_idx = cpu_mmu_index(env, false);
550     const uint64_t ra = GETPC();
551     S390Access srca, desta;
552     int32_t i;
553 
554     /* MVCRL always copies one more byte than specified - maximum is 256 */
555     l++;
556 
557     srca = access_prepare(env, src, l, MMU_DATA_LOAD, mmu_idx, ra);
558     desta = access_prepare(env, dest, l, MMU_DATA_STORE, mmu_idx, ra);
559 
560     for (i = l - 1; i >= 0; i--) {
561         uint8_t byte = access_get_byte(env, &srca, i, ra);
562         access_set_byte(env, &desta, i, byte, ra);
563     }
564 }
565 
566 /* move inverse  */
567 void HELPER(mvcin)(CPUS390XState *env, uint32_t l, uint64_t dest, uint64_t src)
568 {
569     const int mmu_idx = cpu_mmu_index(env, false);
570     S390Access srca, desta;
571     uintptr_t ra = GETPC();
572     int i;
573 
574     /* MVCIN always copies one more byte than specified - maximum is 256 */
575     l++;
576 
577     src = wrap_address(env, src - l + 1);
578     srca = access_prepare(env, src, l, MMU_DATA_LOAD, mmu_idx, ra);
579     desta = access_prepare(env, dest, l, MMU_DATA_STORE, mmu_idx, ra);
580     for (i = 0; i < l; i++) {
581         const uint8_t x = access_get_byte(env, &srca, l - i - 1, ra);
582 
583         access_set_byte(env, &desta, i, x, ra);
584     }
585 }
586 
587 /* move numerics  */
588 void HELPER(mvn)(CPUS390XState *env, uint32_t l, uint64_t dest, uint64_t src)
589 {
590     const int mmu_idx = cpu_mmu_index(env, false);
591     S390Access srca1, srca2, desta;
592     uintptr_t ra = GETPC();
593     int i;
594 
595     /* MVN always copies one more byte than specified - maximum is 256 */
596     l++;
597 
598     srca1 = access_prepare(env, src, l, MMU_DATA_LOAD, mmu_idx, ra);
599     srca2 = access_prepare(env, dest, l, MMU_DATA_LOAD, mmu_idx, ra);
600     desta = access_prepare(env, dest, l, MMU_DATA_STORE, mmu_idx, ra);
601     for (i = 0; i < l; i++) {
602         const uint8_t x = (access_get_byte(env, &srca1, i, ra) & 0x0f) |
603                           (access_get_byte(env, &srca2, i, ra) & 0xf0);
604 
605         access_set_byte(env, &desta, i, x, ra);
606     }
607 }
608 
609 /* move with offset  */
610 void HELPER(mvo)(CPUS390XState *env, uint32_t l, uint64_t dest, uint64_t src)
611 {
612     const int mmu_idx = cpu_mmu_index(env, false);
613     /* MVO always processes one more byte than specified - maximum is 16 */
614     const int len_dest = (l >> 4) + 1;
615     const int len_src = (l & 0xf) + 1;
616     uintptr_t ra = GETPC();
617     uint8_t byte_dest, byte_src;
618     S390Access srca, desta;
619     int i, j;
620 
621     srca = access_prepare(env, src, len_src, MMU_DATA_LOAD, mmu_idx, ra);
622     desta = access_prepare(env, dest, len_dest, MMU_DATA_STORE, mmu_idx, ra);
623 
624     /* Handle rightmost byte */
625     byte_dest = cpu_ldub_data_ra(env, dest + len_dest - 1, ra);
626     byte_src = access_get_byte(env, &srca, len_src - 1, ra);
627     byte_dest = (byte_dest & 0x0f) | (byte_src << 4);
628     access_set_byte(env, &desta, len_dest - 1, byte_dest, ra);
629 
630     /* Process remaining bytes from right to left */
631     for (i = len_dest - 2, j = len_src - 2; i >= 0; i--, j--) {
632         byte_dest = byte_src >> 4;
633         if (j >= 0) {
634             byte_src = access_get_byte(env, &srca, j, ra);
635         } else {
636             byte_src = 0;
637         }
638         byte_dest |= byte_src << 4;
639         access_set_byte(env, &desta, i, byte_dest, ra);
640     }
641 }
642 
643 /* move zones  */
644 void HELPER(mvz)(CPUS390XState *env, uint32_t l, uint64_t dest, uint64_t src)
645 {
646     const int mmu_idx = cpu_mmu_index(env, false);
647     S390Access srca1, srca2, desta;
648     uintptr_t ra = GETPC();
649     int i;
650 
651     /* MVZ always copies one more byte than specified - maximum is 256 */
652     l++;
653 
654     srca1 = access_prepare(env, src, l, MMU_DATA_LOAD, mmu_idx, ra);
655     srca2 = access_prepare(env, dest, l, MMU_DATA_LOAD, mmu_idx, ra);
656     desta = access_prepare(env, dest, l, MMU_DATA_STORE, mmu_idx, ra);
657     for (i = 0; i < l; i++) {
658         const uint8_t x = (access_get_byte(env, &srca1, i, ra) & 0xf0) |
659                           (access_get_byte(env, &srca2, i, ra) & 0x0f);
660 
661         access_set_byte(env, &desta, i, x, ra);
662     }
663 }
664 
665 /* compare unsigned byte arrays */
666 static uint32_t do_helper_clc(CPUS390XState *env, uint32_t l, uint64_t s1,
667                               uint64_t s2, uintptr_t ra)
668 {
669     uint32_t i;
670     uint32_t cc = 0;
671 
672     HELPER_LOG("%s l %d s1 %" PRIx64 " s2 %" PRIx64 "\n",
673                __func__, l, s1, s2);
674 
675     for (i = 0; i <= l; i++) {
676         uint8_t x = cpu_ldub_data_ra(env, s1 + i, ra);
677         uint8_t y = cpu_ldub_data_ra(env, s2 + i, ra);
678         HELPER_LOG("%02x (%c)/%02x (%c) ", x, x, y, y);
679         if (x < y) {
680             cc = 1;
681             break;
682         } else if (x > y) {
683             cc = 2;
684             break;
685         }
686     }
687 
688     HELPER_LOG("\n");
689     return cc;
690 }
691 
692 uint32_t HELPER(clc)(CPUS390XState *env, uint32_t l, uint64_t s1, uint64_t s2)
693 {
694     return do_helper_clc(env, l, s1, s2, GETPC());
695 }
696 
697 /* compare logical under mask */
698 uint32_t HELPER(clm)(CPUS390XState *env, uint32_t r1, uint32_t mask,
699                      uint64_t addr)
700 {
701     uintptr_t ra = GETPC();
702     uint32_t cc = 0;
703 
704     HELPER_LOG("%s: r1 0x%x mask 0x%x addr 0x%" PRIx64 "\n", __func__, r1,
705                mask, addr);
706 
707     while (mask) {
708         if (mask & 8) {
709             uint8_t d = cpu_ldub_data_ra(env, addr, ra);
710             uint8_t r = extract32(r1, 24, 8);
711             HELPER_LOG("mask 0x%x %02x/%02x (0x%" PRIx64 ") ", mask, r, d,
712                        addr);
713             if (r < d) {
714                 cc = 1;
715                 break;
716             } else if (r > d) {
717                 cc = 2;
718                 break;
719             }
720             addr++;
721         }
722         mask = (mask << 1) & 0xf;
723         r1 <<= 8;
724     }
725 
726     HELPER_LOG("\n");
727     return cc;
728 }
729 
730 static inline uint64_t get_address(CPUS390XState *env, int reg)
731 {
732     return wrap_address(env, env->regs[reg]);
733 }
734 
735 /*
736  * Store the address to the given register, zeroing out unused leftmost
737  * bits in bit positions 32-63 (24-bit and 31-bit mode only).
738  */
739 static inline void set_address_zero(CPUS390XState *env, int reg,
740                                     uint64_t address)
741 {
742     if (env->psw.mask & PSW_MASK_64) {
743         env->regs[reg] = address;
744     } else {
745         if (!(env->psw.mask & PSW_MASK_32)) {
746             address &= 0x00ffffff;
747         } else {
748             address &= 0x7fffffff;
749         }
750         env->regs[reg] = deposit64(env->regs[reg], 0, 32, address);
751     }
752 }
753 
754 static inline void set_address(CPUS390XState *env, int reg, uint64_t address)
755 {
756     if (env->psw.mask & PSW_MASK_64) {
757         /* 64-Bit mode */
758         env->regs[reg] = address;
759     } else {
760         if (!(env->psw.mask & PSW_MASK_32)) {
761             /* 24-Bit mode. According to the PoO it is implementation
762             dependent if bits 32-39 remain unchanged or are set to
763             zeros.  Choose the former so that the function can also be
764             used for TRT.  */
765             env->regs[reg] = deposit64(env->regs[reg], 0, 24, address);
766         } else {
767             /* 31-Bit mode. According to the PoO it is implementation
768             dependent if bit 32 remains unchanged or is set to zero.
769             Choose the latter so that the function can also be used for
770             TRT.  */
771             address &= 0x7fffffff;
772             env->regs[reg] = deposit64(env->regs[reg], 0, 32, address);
773         }
774     }
775 }
776 
777 static inline uint64_t wrap_length32(CPUS390XState *env, uint64_t length)
778 {
779     if (!(env->psw.mask & PSW_MASK_64)) {
780         return (uint32_t)length;
781     }
782     return length;
783 }
784 
785 static inline uint64_t wrap_length31(CPUS390XState *env, uint64_t length)
786 {
787     if (!(env->psw.mask & PSW_MASK_64)) {
788         /* 24-Bit and 31-Bit mode */
789         length &= 0x7fffffff;
790     }
791     return length;
792 }
793 
794 static inline uint64_t get_length(CPUS390XState *env, int reg)
795 {
796     return wrap_length31(env, env->regs[reg]);
797 }
798 
799 static inline void set_length(CPUS390XState *env, int reg, uint64_t length)
800 {
801     if (env->psw.mask & PSW_MASK_64) {
802         /* 64-Bit mode */
803         env->regs[reg] = length;
804     } else {
805         /* 24-Bit and 31-Bit mode */
806         env->regs[reg] = deposit64(env->regs[reg], 0, 32, length);
807     }
808 }
809 
810 /* search string (c is byte to search, r2 is string, r1 end of string) */
811 void HELPER(srst)(CPUS390XState *env, uint32_t r1, uint32_t r2)
812 {
813     uintptr_t ra = GETPC();
814     uint64_t end, str;
815     uint32_t len;
816     uint8_t v, c = env->regs[0];
817 
818     /* Bits 32-55 must contain all 0.  */
819     if (env->regs[0] & 0xffffff00u) {
820         tcg_s390_program_interrupt(env, PGM_SPECIFICATION, ra);
821     }
822 
823     str = get_address(env, r2);
824     end = get_address(env, r1);
825 
826     /* Lest we fail to service interrupts in a timely manner, limit the
827        amount of work we're willing to do.  For now, let's cap at 8k.  */
828     for (len = 0; len < 0x2000; ++len) {
829         if (str + len == end) {
830             /* Character not found.  R1 & R2 are unmodified.  */
831             env->cc_op = 2;
832             return;
833         }
834         v = cpu_ldub_data_ra(env, str + len, ra);
835         if (v == c) {
836             /* Character found.  Set R1 to the location; R2 is unmodified.  */
837             env->cc_op = 1;
838             set_address(env, r1, str + len);
839             return;
840         }
841     }
842 
843     /* CPU-determined bytes processed.  Advance R2 to next byte to process.  */
844     env->cc_op = 3;
845     set_address(env, r2, str + len);
846 }
847 
848 void HELPER(srstu)(CPUS390XState *env, uint32_t r1, uint32_t r2)
849 {
850     uintptr_t ra = GETPC();
851     uint32_t len;
852     uint16_t v, c = env->regs[0];
853     uint64_t end, str, adj_end;
854 
855     /* Bits 32-47 of R0 must be zero.  */
856     if (env->regs[0] & 0xffff0000u) {
857         tcg_s390_program_interrupt(env, PGM_SPECIFICATION, ra);
858     }
859 
860     str = get_address(env, r2);
861     end = get_address(env, r1);
862 
863     /* If the LSB of the two addresses differ, use one extra byte.  */
864     adj_end = end + ((str ^ end) & 1);
865 
866     /* Lest we fail to service interrupts in a timely manner, limit the
867        amount of work we're willing to do.  For now, let's cap at 8k.  */
868     for (len = 0; len < 0x2000; len += 2) {
869         if (str + len == adj_end) {
870             /* End of input found.  */
871             env->cc_op = 2;
872             return;
873         }
874         v = cpu_lduw_data_ra(env, str + len, ra);
875         if (v == c) {
876             /* Character found.  Set R1 to the location; R2 is unmodified.  */
877             env->cc_op = 1;
878             set_address(env, r1, str + len);
879             return;
880         }
881     }
882 
883     /* CPU-determined bytes processed.  Advance R2 to next byte to process.  */
884     env->cc_op = 3;
885     set_address(env, r2, str + len);
886 }
887 
888 /* unsigned string compare (c is string terminator) */
889 Int128 HELPER(clst)(CPUS390XState *env, uint64_t c, uint64_t s1, uint64_t s2)
890 {
891     uintptr_t ra = GETPC();
892     uint32_t len;
893 
894     c = c & 0xff;
895     s1 = wrap_address(env, s1);
896     s2 = wrap_address(env, s2);
897 
898     /* Lest we fail to service interrupts in a timely manner, limit the
899        amount of work we're willing to do.  For now, let's cap at 8k.  */
900     for (len = 0; len < 0x2000; ++len) {
901         uint8_t v1 = cpu_ldub_data_ra(env, s1 + len, ra);
902         uint8_t v2 = cpu_ldub_data_ra(env, s2 + len, ra);
903         if (v1 == v2) {
904             if (v1 == c) {
905                 /* Equal.  CC=0, and don't advance the registers.  */
906                 env->cc_op = 0;
907                 return int128_make128(s2, s1);
908             }
909         } else {
910             /* Unequal.  CC={1,2}, and advance the registers.  Note that
911                the terminator need not be zero, but the string that contains
912                the terminator is by definition "low".  */
913             env->cc_op = (v1 == c ? 1 : v2 == c ? 2 : v1 < v2 ? 1 : 2);
914             return int128_make128(s2 + len, s1 + len);
915         }
916     }
917 
918     /* CPU-determined bytes equal; advance the registers.  */
919     env->cc_op = 3;
920     return int128_make128(s2 + len, s1 + len);
921 }
922 
923 /* move page */
924 uint32_t HELPER(mvpg)(CPUS390XState *env, uint64_t r0, uint32_t r1, uint32_t r2)
925 {
926     const uint64_t src = get_address(env, r2) & TARGET_PAGE_MASK;
927     const uint64_t dst = get_address(env, r1) & TARGET_PAGE_MASK;
928     const int mmu_idx = cpu_mmu_index(env, false);
929     const bool f = extract64(r0, 11, 1);
930     const bool s = extract64(r0, 10, 1);
931     const bool cco = extract64(r0, 8, 1);
932     uintptr_t ra = GETPC();
933     S390Access srca, desta;
934     int exc;
935 
936     if ((f && s) || extract64(r0, 12, 4)) {
937         tcg_s390_program_interrupt(env, PGM_SPECIFICATION, GETPC());
938     }
939 
940     /*
941      * We always manually handle exceptions such that we can properly store
942      * r1/r2 to the lowcore on page-translation exceptions.
943      *
944      * TODO: Access key handling
945      */
946     exc = access_prepare_nf(&srca, env, true, src, TARGET_PAGE_SIZE,
947                             MMU_DATA_LOAD, mmu_idx, ra);
948     if (exc) {
949         if (cco) {
950             return 2;
951         }
952         goto inject_exc;
953     }
954     exc = access_prepare_nf(&desta, env, true, dst, TARGET_PAGE_SIZE,
955                             MMU_DATA_STORE, mmu_idx, ra);
956     if (exc) {
957         if (cco && exc != PGM_PROTECTION) {
958             return 1;
959         }
960         goto inject_exc;
961     }
962     access_memmove(env, &desta, &srca, ra);
963     return 0; /* data moved */
964 inject_exc:
965 #if !defined(CONFIG_USER_ONLY)
966     if (exc != PGM_ADDRESSING) {
967         stq_phys(env_cpu(env)->as, env->psa + offsetof(LowCore, trans_exc_code),
968                  env->tlb_fill_tec);
969     }
970     if (exc == PGM_PAGE_TRANS) {
971         stb_phys(env_cpu(env)->as, env->psa + offsetof(LowCore, op_access_id),
972                  r1 << 4 | r2);
973     }
974 #endif
975     tcg_s390_program_interrupt(env, exc, ra);
976 }
977 
978 /* string copy */
979 uint32_t HELPER(mvst)(CPUS390XState *env, uint32_t r1, uint32_t r2)
980 {
981     const int mmu_idx = cpu_mmu_index(env, false);
982     const uint64_t d = get_address(env, r1);
983     const uint64_t s = get_address(env, r2);
984     const uint8_t c = env->regs[0];
985     const int len = MIN(-(d | TARGET_PAGE_MASK), -(s | TARGET_PAGE_MASK));
986     S390Access srca, desta;
987     uintptr_t ra = GETPC();
988     int i;
989 
990     if (env->regs[0] & 0xffffff00ull) {
991         tcg_s390_program_interrupt(env, PGM_SPECIFICATION, ra);
992     }
993 
994     /*
995      * Our access should not exceed single pages, as we must not report access
996      * exceptions exceeding the actually copied range (which we don't know at
997      * this point). We might over-indicate watchpoints within the pages
998      * (if we ever care, we have to limit processing to a single byte).
999      */
1000     srca = access_prepare(env, s, len, MMU_DATA_LOAD, mmu_idx, ra);
1001     desta = access_prepare(env, d, len, MMU_DATA_STORE, mmu_idx, ra);
1002     for (i = 0; i < len; i++) {
1003         const uint8_t v = access_get_byte(env, &srca, i, ra);
1004 
1005         access_set_byte(env, &desta, i, v, ra);
1006         if (v == c) {
1007             set_address_zero(env, r1, d + i);
1008             return 1;
1009         }
1010     }
1011     set_address_zero(env, r1, d + len);
1012     set_address_zero(env, r2, s + len);
1013     return 3;
1014 }
1015 
1016 /* load access registers r1 to r3 from memory at a2 */
1017 void HELPER(lam)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3)
1018 {
1019     uintptr_t ra = GETPC();
1020     int i;
1021 
1022     if (a2 & 0x3) {
1023         tcg_s390_program_interrupt(env, PGM_SPECIFICATION, ra);
1024     }
1025 
1026     for (i = r1;; i = (i + 1) % 16) {
1027         env->aregs[i] = cpu_ldl_data_ra(env, a2, ra);
1028         a2 += 4;
1029 
1030         if (i == r3) {
1031             break;
1032         }
1033     }
1034 }
1035 
1036 /* store access registers r1 to r3 in memory at a2 */
1037 void HELPER(stam)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3)
1038 {
1039     uintptr_t ra = GETPC();
1040     int i;
1041 
1042     if (a2 & 0x3) {
1043         tcg_s390_program_interrupt(env, PGM_SPECIFICATION, ra);
1044     }
1045 
1046     for (i = r1;; i = (i + 1) % 16) {
1047         cpu_stl_data_ra(env, a2, env->aregs[i], ra);
1048         a2 += 4;
1049 
1050         if (i == r3) {
1051             break;
1052         }
1053     }
1054 }
1055 
1056 /* move long helper */
1057 static inline uint32_t do_mvcl(CPUS390XState *env,
1058                                uint64_t *dest, uint64_t *destlen,
1059                                uint64_t *src, uint64_t *srclen,
1060                                uint16_t pad, int wordsize, uintptr_t ra)
1061 {
1062     const int mmu_idx = cpu_mmu_index(env, false);
1063     int len = MIN(*destlen, -(*dest | TARGET_PAGE_MASK));
1064     S390Access srca, desta;
1065     int i, cc;
1066 
1067     if (*destlen == *srclen) {
1068         cc = 0;
1069     } else if (*destlen < *srclen) {
1070         cc = 1;
1071     } else {
1072         cc = 2;
1073     }
1074 
1075     if (!*destlen) {
1076         return cc;
1077     }
1078 
1079     /*
1080      * Only perform one type of type of operation (move/pad) at a time.
1081      * Stay within single pages.
1082      */
1083     if (*srclen) {
1084         /* Copy the src array */
1085         len = MIN(MIN(*srclen, -(*src | TARGET_PAGE_MASK)), len);
1086         *destlen -= len;
1087         *srclen -= len;
1088         srca = access_prepare(env, *src, len, MMU_DATA_LOAD, mmu_idx, ra);
1089         desta = access_prepare(env, *dest, len, MMU_DATA_STORE, mmu_idx, ra);
1090         access_memmove(env, &desta, &srca, ra);
1091         *src = wrap_address(env, *src + len);
1092         *dest = wrap_address(env, *dest + len);
1093     } else if (wordsize == 1) {
1094         /* Pad the remaining area */
1095         *destlen -= len;
1096         desta = access_prepare(env, *dest, len, MMU_DATA_STORE, mmu_idx, ra);
1097         access_memset(env, &desta, pad, ra);
1098         *dest = wrap_address(env, *dest + len);
1099     } else {
1100         desta = access_prepare(env, *dest, len, MMU_DATA_STORE, mmu_idx, ra);
1101 
1102         /* The remaining length selects the padding byte. */
1103         for (i = 0; i < len; (*destlen)--, i++) {
1104             if (*destlen & 1) {
1105                 access_set_byte(env, &desta, i, pad, ra);
1106             } else {
1107                 access_set_byte(env, &desta, i, pad >> 8, ra);
1108             }
1109         }
1110         *dest = wrap_address(env, *dest + len);
1111     }
1112 
1113     return *destlen ? 3 : cc;
1114 }
1115 
1116 /* move long */
1117 uint32_t HELPER(mvcl)(CPUS390XState *env, uint32_t r1, uint32_t r2)
1118 {
1119     const int mmu_idx = cpu_mmu_index(env, false);
1120     uintptr_t ra = GETPC();
1121     uint64_t destlen = env->regs[r1 + 1] & 0xffffff;
1122     uint64_t dest = get_address(env, r1);
1123     uint64_t srclen = env->regs[r2 + 1] & 0xffffff;
1124     uint64_t src = get_address(env, r2);
1125     uint8_t pad = env->regs[r2 + 1] >> 24;
1126     CPUState *cs = env_cpu(env);
1127     S390Access srca, desta;
1128     uint32_t cc, cur_len;
1129 
1130     if (is_destructive_overlap(env, dest, src, MIN(srclen, destlen))) {
1131         cc = 3;
1132     } else if (srclen == destlen) {
1133         cc = 0;
1134     } else if (destlen < srclen) {
1135         cc = 1;
1136     } else {
1137         cc = 2;
1138     }
1139 
1140     /* We might have to zero-out some bits even if there was no action. */
1141     if (unlikely(!destlen || cc == 3)) {
1142         set_address_zero(env, r2, src);
1143         set_address_zero(env, r1, dest);
1144         return cc;
1145     } else if (!srclen) {
1146         set_address_zero(env, r2, src);
1147     }
1148 
1149     /*
1150      * Only perform one type of type of operation (move/pad) in one step.
1151      * Stay within single pages.
1152      */
1153     while (destlen) {
1154         cur_len = MIN(destlen, -(dest | TARGET_PAGE_MASK));
1155         if (!srclen) {
1156             desta = access_prepare(env, dest, cur_len, MMU_DATA_STORE, mmu_idx,
1157                                    ra);
1158             access_memset(env, &desta, pad, ra);
1159         } else {
1160             cur_len = MIN(MIN(srclen, -(src | TARGET_PAGE_MASK)), cur_len);
1161 
1162             srca = access_prepare(env, src, cur_len, MMU_DATA_LOAD, mmu_idx,
1163                                   ra);
1164             desta = access_prepare(env, dest, cur_len, MMU_DATA_STORE, mmu_idx,
1165                                    ra);
1166             access_memmove(env, &desta, &srca, ra);
1167             src = wrap_address(env, src + cur_len);
1168             srclen -= cur_len;
1169             env->regs[r2 + 1] = deposit64(env->regs[r2 + 1], 0, 24, srclen);
1170             set_address_zero(env, r2, src);
1171         }
1172         dest = wrap_address(env, dest + cur_len);
1173         destlen -= cur_len;
1174         env->regs[r1 + 1] = deposit64(env->regs[r1 + 1], 0, 24, destlen);
1175         set_address_zero(env, r1, dest);
1176 
1177         /*
1178          * MVCL is interruptible. Return to the main loop if requested after
1179          * writing back all state to registers. If no interrupt will get
1180          * injected, we'll end up back in this handler and continue processing
1181          * the remaining parts.
1182          */
1183         if (destlen && unlikely(cpu_loop_exit_requested(cs))) {
1184             cpu_loop_exit_restore(cs, ra);
1185         }
1186     }
1187     return cc;
1188 }
1189 
1190 /* move long extended */
1191 uint32_t HELPER(mvcle)(CPUS390XState *env, uint32_t r1, uint64_t a2,
1192                        uint32_t r3)
1193 {
1194     uintptr_t ra = GETPC();
1195     uint64_t destlen = get_length(env, r1 + 1);
1196     uint64_t dest = get_address(env, r1);
1197     uint64_t srclen = get_length(env, r3 + 1);
1198     uint64_t src = get_address(env, r3);
1199     uint8_t pad = a2;
1200     uint32_t cc;
1201 
1202     cc = do_mvcl(env, &dest, &destlen, &src, &srclen, pad, 1, ra);
1203 
1204     set_length(env, r1 + 1, destlen);
1205     set_length(env, r3 + 1, srclen);
1206     set_address(env, r1, dest);
1207     set_address(env, r3, src);
1208 
1209     return cc;
1210 }
1211 
1212 /* move long unicode */
1213 uint32_t HELPER(mvclu)(CPUS390XState *env, uint32_t r1, uint64_t a2,
1214                        uint32_t r3)
1215 {
1216     uintptr_t ra = GETPC();
1217     uint64_t destlen = get_length(env, r1 + 1);
1218     uint64_t dest = get_address(env, r1);
1219     uint64_t srclen = get_length(env, r3 + 1);
1220     uint64_t src = get_address(env, r3);
1221     uint16_t pad = a2;
1222     uint32_t cc;
1223 
1224     cc = do_mvcl(env, &dest, &destlen, &src, &srclen, pad, 2, ra);
1225 
1226     set_length(env, r1 + 1, destlen);
1227     set_length(env, r3 + 1, srclen);
1228     set_address(env, r1, dest);
1229     set_address(env, r3, src);
1230 
1231     return cc;
1232 }
1233 
1234 /* compare logical long helper */
1235 static inline uint32_t do_clcl(CPUS390XState *env,
1236                                uint64_t *src1, uint64_t *src1len,
1237                                uint64_t *src3, uint64_t *src3len,
1238                                uint16_t pad, uint64_t limit,
1239                                int wordsize, uintptr_t ra)
1240 {
1241     uint64_t len = MAX(*src1len, *src3len);
1242     uint32_t cc = 0;
1243 
1244     check_alignment(env, *src1len | *src3len, wordsize, ra);
1245 
1246     if (!len) {
1247         return cc;
1248     }
1249 
1250     /* Lest we fail to service interrupts in a timely manner, limit the
1251        amount of work we're willing to do.  */
1252     if (len > limit) {
1253         len = limit;
1254         cc = 3;
1255     }
1256 
1257     for (; len; len -= wordsize) {
1258         uint16_t v1 = pad;
1259         uint16_t v3 = pad;
1260 
1261         if (*src1len) {
1262             v1 = cpu_ldusize_data_ra(env, *src1, wordsize, ra);
1263         }
1264         if (*src3len) {
1265             v3 = cpu_ldusize_data_ra(env, *src3, wordsize, ra);
1266         }
1267 
1268         if (v1 != v3) {
1269             cc = (v1 < v3) ? 1 : 2;
1270             break;
1271         }
1272 
1273         if (*src1len) {
1274             *src1 += wordsize;
1275             *src1len -= wordsize;
1276         }
1277         if (*src3len) {
1278             *src3 += wordsize;
1279             *src3len -= wordsize;
1280         }
1281     }
1282 
1283     return cc;
1284 }
1285 
1286 
1287 /* compare logical long */
1288 uint32_t HELPER(clcl)(CPUS390XState *env, uint32_t r1, uint32_t r2)
1289 {
1290     uintptr_t ra = GETPC();
1291     uint64_t src1len = extract64(env->regs[r1 + 1], 0, 24);
1292     uint64_t src1 = get_address(env, r1);
1293     uint64_t src3len = extract64(env->regs[r2 + 1], 0, 24);
1294     uint64_t src3 = get_address(env, r2);
1295     uint8_t pad = env->regs[r2 + 1] >> 24;
1296     uint32_t cc;
1297 
1298     cc = do_clcl(env, &src1, &src1len, &src3, &src3len, pad, -1, 1, ra);
1299 
1300     env->regs[r1 + 1] = deposit64(env->regs[r1 + 1], 0, 24, src1len);
1301     env->regs[r2 + 1] = deposit64(env->regs[r2 + 1], 0, 24, src3len);
1302     set_address(env, r1, src1);
1303     set_address(env, r2, src3);
1304 
1305     return cc;
1306 }
1307 
1308 /* compare logical long extended memcompare insn with padding */
1309 uint32_t HELPER(clcle)(CPUS390XState *env, uint32_t r1, uint64_t a2,
1310                        uint32_t r3)
1311 {
1312     uintptr_t ra = GETPC();
1313     uint64_t src1len = get_length(env, r1 + 1);
1314     uint64_t src1 = get_address(env, r1);
1315     uint64_t src3len = get_length(env, r3 + 1);
1316     uint64_t src3 = get_address(env, r3);
1317     uint8_t pad = a2;
1318     uint32_t cc;
1319 
1320     cc = do_clcl(env, &src1, &src1len, &src3, &src3len, pad, 0x2000, 1, ra);
1321 
1322     set_length(env, r1 + 1, src1len);
1323     set_length(env, r3 + 1, src3len);
1324     set_address(env, r1, src1);
1325     set_address(env, r3, src3);
1326 
1327     return cc;
1328 }
1329 
1330 /* compare logical long unicode memcompare insn with padding */
1331 uint32_t HELPER(clclu)(CPUS390XState *env, uint32_t r1, uint64_t a2,
1332                        uint32_t r3)
1333 {
1334     uintptr_t ra = GETPC();
1335     uint64_t src1len = get_length(env, r1 + 1);
1336     uint64_t src1 = get_address(env, r1);
1337     uint64_t src3len = get_length(env, r3 + 1);
1338     uint64_t src3 = get_address(env, r3);
1339     uint16_t pad = a2;
1340     uint32_t cc = 0;
1341 
1342     cc = do_clcl(env, &src1, &src1len, &src3, &src3len, pad, 0x1000, 2, ra);
1343 
1344     set_length(env, r1 + 1, src1len);
1345     set_length(env, r3 + 1, src3len);
1346     set_address(env, r1, src1);
1347     set_address(env, r3, src3);
1348 
1349     return cc;
1350 }
1351 
1352 /* checksum */
1353 Int128 HELPER(cksm)(CPUS390XState *env, uint64_t r1,
1354                     uint64_t src, uint64_t src_len)
1355 {
1356     uintptr_t ra = GETPC();
1357     uint64_t max_len, len;
1358     uint64_t cksm = (uint32_t)r1;
1359 
1360     /* Lest we fail to service interrupts in a timely manner, limit the
1361        amount of work we're willing to do.  For now, let's cap at 8k.  */
1362     max_len = (src_len > 0x2000 ? 0x2000 : src_len);
1363 
1364     /* Process full words as available.  */
1365     for (len = 0; len + 4 <= max_len; len += 4, src += 4) {
1366         cksm += (uint32_t)cpu_ldl_data_ra(env, src, ra);
1367     }
1368 
1369     switch (max_len - len) {
1370     case 1:
1371         cksm += cpu_ldub_data_ra(env, src, ra) << 24;
1372         len += 1;
1373         break;
1374     case 2:
1375         cksm += cpu_lduw_data_ra(env, src, ra) << 16;
1376         len += 2;
1377         break;
1378     case 3:
1379         cksm += cpu_lduw_data_ra(env, src, ra) << 16;
1380         cksm += cpu_ldub_data_ra(env, src + 2, ra) << 8;
1381         len += 3;
1382         break;
1383     }
1384 
1385     /* Fold the carry from the checksum.  Note that we can see carry-out
1386        during folding more than once (but probably not more than twice).  */
1387     while (cksm > 0xffffffffull) {
1388         cksm = (uint32_t)cksm + (cksm >> 32);
1389     }
1390 
1391     /* Indicate whether or not we've processed everything.  */
1392     env->cc_op = (len == src_len ? 0 : 3);
1393 
1394     /* Return both cksm and processed length.  */
1395     return int128_make128(cksm, len);
1396 }
1397 
1398 void HELPER(pack)(CPUS390XState *env, uint32_t len, uint64_t dest, uint64_t src)
1399 {
1400     uintptr_t ra = GETPC();
1401     int len_dest = len >> 4;
1402     int len_src = len & 0xf;
1403     uint8_t b;
1404 
1405     dest += len_dest;
1406     src += len_src;
1407 
1408     /* last byte is special, it only flips the nibbles */
1409     b = cpu_ldub_data_ra(env, src, ra);
1410     cpu_stb_data_ra(env, dest, (b << 4) | (b >> 4), ra);
1411     src--;
1412     len_src--;
1413 
1414     /* now pack every value */
1415     while (len_dest > 0) {
1416         b = 0;
1417 
1418         if (len_src >= 0) {
1419             b = cpu_ldub_data_ra(env, src, ra) & 0x0f;
1420             src--;
1421             len_src--;
1422         }
1423         if (len_src >= 0) {
1424             b |= cpu_ldub_data_ra(env, src, ra) << 4;
1425             src--;
1426             len_src--;
1427         }
1428 
1429         len_dest--;
1430         dest--;
1431         cpu_stb_data_ra(env, dest, b, ra);
1432     }
1433 }
1434 
1435 static inline void do_pkau(CPUS390XState *env, uint64_t dest, uint64_t src,
1436                            uint32_t srclen, int ssize, uintptr_t ra)
1437 {
1438     int i;
1439     /* The destination operand is always 16 bytes long.  */
1440     const int destlen = 16;
1441 
1442     /* The operands are processed from right to left.  */
1443     src += srclen - 1;
1444     dest += destlen - 1;
1445 
1446     for (i = 0; i < destlen; i++) {
1447         uint8_t b = 0;
1448 
1449         /* Start with a positive sign */
1450         if (i == 0) {
1451             b = 0xc;
1452         } else if (srclen > ssize) {
1453             b = cpu_ldub_data_ra(env, src, ra) & 0x0f;
1454             src -= ssize;
1455             srclen -= ssize;
1456         }
1457 
1458         if (srclen > ssize) {
1459             b |= cpu_ldub_data_ra(env, src, ra) << 4;
1460             src -= ssize;
1461             srclen -= ssize;
1462         }
1463 
1464         cpu_stb_data_ra(env, dest, b, ra);
1465         dest--;
1466     }
1467 }
1468 
1469 
1470 void HELPER(pka)(CPUS390XState *env, uint64_t dest, uint64_t src,
1471                  uint32_t srclen)
1472 {
1473     do_pkau(env, dest, src, srclen, 1, GETPC());
1474 }
1475 
1476 void HELPER(pku)(CPUS390XState *env, uint64_t dest, uint64_t src,
1477                  uint32_t srclen)
1478 {
1479     do_pkau(env, dest, src, srclen, 2, GETPC());
1480 }
1481 
1482 void HELPER(unpk)(CPUS390XState *env, uint32_t len, uint64_t dest,
1483                   uint64_t src)
1484 {
1485     uintptr_t ra = GETPC();
1486     int len_dest = len >> 4;
1487     int len_src = len & 0xf;
1488     uint8_t b;
1489     int second_nibble = 0;
1490 
1491     dest += len_dest;
1492     src += len_src;
1493 
1494     /* last byte is special, it only flips the nibbles */
1495     b = cpu_ldub_data_ra(env, src, ra);
1496     cpu_stb_data_ra(env, dest, (b << 4) | (b >> 4), ra);
1497     src--;
1498     len_src--;
1499 
1500     /* now pad every nibble with 0xf0 */
1501 
1502     while (len_dest > 0) {
1503         uint8_t cur_byte = 0;
1504 
1505         if (len_src > 0) {
1506             cur_byte = cpu_ldub_data_ra(env, src, ra);
1507         }
1508 
1509         len_dest--;
1510         dest--;
1511 
1512         /* only advance one nibble at a time */
1513         if (second_nibble) {
1514             cur_byte >>= 4;
1515             len_src--;
1516             src--;
1517         }
1518         second_nibble = !second_nibble;
1519 
1520         /* digit */
1521         cur_byte = (cur_byte & 0xf);
1522         /* zone bits */
1523         cur_byte |= 0xf0;
1524 
1525         cpu_stb_data_ra(env, dest, cur_byte, ra);
1526     }
1527 }
1528 
1529 static inline uint32_t do_unpkau(CPUS390XState *env, uint64_t dest,
1530                                  uint32_t destlen, int dsize, uint64_t src,
1531                                  uintptr_t ra)
1532 {
1533     int i;
1534     uint32_t cc;
1535     uint8_t b;
1536     /* The source operand is always 16 bytes long.  */
1537     const int srclen = 16;
1538 
1539     /* The operands are processed from right to left.  */
1540     src += srclen - 1;
1541     dest += destlen - dsize;
1542 
1543     /* Check for the sign.  */
1544     b = cpu_ldub_data_ra(env, src, ra);
1545     src--;
1546     switch (b & 0xf) {
1547     case 0xa:
1548     case 0xc:
1549     case 0xe ... 0xf:
1550         cc = 0;  /* plus */
1551         break;
1552     case 0xb:
1553     case 0xd:
1554         cc = 1;  /* minus */
1555         break;
1556     default:
1557     case 0x0 ... 0x9:
1558         cc = 3;  /* invalid */
1559         break;
1560     }
1561 
1562     /* Now pad every nibble with 0x30, advancing one nibble at a time. */
1563     for (i = 0; i < destlen; i += dsize) {
1564         if (i == (31 * dsize)) {
1565             /* If length is 32/64 bytes, the leftmost byte is 0. */
1566             b = 0;
1567         } else if (i % (2 * dsize)) {
1568             b = cpu_ldub_data_ra(env, src, ra);
1569             src--;
1570         } else {
1571             b >>= 4;
1572         }
1573         cpu_stsize_data_ra(env, dest, 0x30 + (b & 0xf), dsize, ra);
1574         dest -= dsize;
1575     }
1576 
1577     return cc;
1578 }
1579 
1580 uint32_t HELPER(unpka)(CPUS390XState *env, uint64_t dest, uint32_t destlen,
1581                        uint64_t src)
1582 {
1583     return do_unpkau(env, dest, destlen, 1, src, GETPC());
1584 }
1585 
1586 uint32_t HELPER(unpku)(CPUS390XState *env, uint64_t dest, uint32_t destlen,
1587                        uint64_t src)
1588 {
1589     return do_unpkau(env, dest, destlen, 2, src, GETPC());
1590 }
1591 
1592 uint32_t HELPER(tp)(CPUS390XState *env, uint64_t dest, uint32_t destlen)
1593 {
1594     uintptr_t ra = GETPC();
1595     uint32_t cc = 0;
1596     int i;
1597 
1598     for (i = 0; i < destlen; i++) {
1599         uint8_t b = cpu_ldub_data_ra(env, dest + i, ra);
1600         /* digit */
1601         cc |= (b & 0xf0) > 0x90 ? 2 : 0;
1602 
1603         if (i == (destlen - 1)) {
1604             /* sign */
1605             cc |= (b & 0xf) < 0xa ? 1 : 0;
1606         } else {
1607             /* digit */
1608             cc |= (b & 0xf) > 0x9 ? 2 : 0;
1609         }
1610     }
1611 
1612     return cc;
1613 }
1614 
1615 static uint32_t do_helper_tr(CPUS390XState *env, uint32_t len, uint64_t array,
1616                              uint64_t trans, uintptr_t ra)
1617 {
1618     uint32_t i;
1619 
1620     for (i = 0; i <= len; i++) {
1621         uint8_t byte = cpu_ldub_data_ra(env, array + i, ra);
1622         uint8_t new_byte = cpu_ldub_data_ra(env, trans + byte, ra);
1623         cpu_stb_data_ra(env, array + i, new_byte, ra);
1624     }
1625 
1626     return env->cc_op;
1627 }
1628 
1629 void HELPER(tr)(CPUS390XState *env, uint32_t len, uint64_t array,
1630                 uint64_t trans)
1631 {
1632     do_helper_tr(env, len, array, trans, GETPC());
1633 }
1634 
1635 Int128 HELPER(tre)(CPUS390XState *env, uint64_t array,
1636                    uint64_t len, uint64_t trans)
1637 {
1638     uintptr_t ra = GETPC();
1639     uint8_t end = env->regs[0] & 0xff;
1640     uint64_t l = len;
1641     uint64_t i;
1642     uint32_t cc = 0;
1643 
1644     if (!(env->psw.mask & PSW_MASK_64)) {
1645         array &= 0x7fffffff;
1646         l = (uint32_t)l;
1647     }
1648 
1649     /* Lest we fail to service interrupts in a timely manner, limit the
1650        amount of work we're willing to do.  For now, let's cap at 8k.  */
1651     if (l > 0x2000) {
1652         l = 0x2000;
1653         cc = 3;
1654     }
1655 
1656     for (i = 0; i < l; i++) {
1657         uint8_t byte, new_byte;
1658 
1659         byte = cpu_ldub_data_ra(env, array + i, ra);
1660 
1661         if (byte == end) {
1662             cc = 1;
1663             break;
1664         }
1665 
1666         new_byte = cpu_ldub_data_ra(env, trans + byte, ra);
1667         cpu_stb_data_ra(env, array + i, new_byte, ra);
1668     }
1669 
1670     env->cc_op = cc;
1671     return int128_make128(len - i, array + i);
1672 }
1673 
1674 static inline uint32_t do_helper_trt(CPUS390XState *env, int len,
1675                                      uint64_t array, uint64_t trans,
1676                                      int inc, uintptr_t ra)
1677 {
1678     int i;
1679 
1680     for (i = 0; i <= len; i++) {
1681         uint8_t byte = cpu_ldub_data_ra(env, array + i * inc, ra);
1682         uint8_t sbyte = cpu_ldub_data_ra(env, trans + byte, ra);
1683 
1684         if (sbyte != 0) {
1685             set_address(env, 1, array + i * inc);
1686             env->regs[2] = deposit64(env->regs[2], 0, 8, sbyte);
1687             return (i == len) ? 2 : 1;
1688         }
1689     }
1690 
1691     return 0;
1692 }
1693 
1694 static uint32_t do_helper_trt_fwd(CPUS390XState *env, uint32_t len,
1695                                   uint64_t array, uint64_t trans,
1696                                   uintptr_t ra)
1697 {
1698     return do_helper_trt(env, len, array, trans, 1, ra);
1699 }
1700 
1701 uint32_t HELPER(trt)(CPUS390XState *env, uint32_t len, uint64_t array,
1702                      uint64_t trans)
1703 {
1704     return do_helper_trt(env, len, array, trans, 1, GETPC());
1705 }
1706 
1707 static uint32_t do_helper_trt_bkwd(CPUS390XState *env, uint32_t len,
1708                                    uint64_t array, uint64_t trans,
1709                                    uintptr_t ra)
1710 {
1711     return do_helper_trt(env, len, array, trans, -1, ra);
1712 }
1713 
1714 uint32_t HELPER(trtr)(CPUS390XState *env, uint32_t len, uint64_t array,
1715                       uint64_t trans)
1716 {
1717     return do_helper_trt(env, len, array, trans, -1, GETPC());
1718 }
1719 
1720 /* Translate one/two to one/two */
1721 uint32_t HELPER(trXX)(CPUS390XState *env, uint32_t r1, uint32_t r2,
1722                       uint32_t tst, uint32_t sizes)
1723 {
1724     uintptr_t ra = GETPC();
1725     int dsize = (sizes & 1) ? 1 : 2;
1726     int ssize = (sizes & 2) ? 1 : 2;
1727     uint64_t tbl = get_address(env, 1);
1728     uint64_t dst = get_address(env, r1);
1729     uint64_t len = get_length(env, r1 + 1);
1730     uint64_t src = get_address(env, r2);
1731     uint32_t cc = 3;
1732     int i;
1733 
1734     /* The lower address bits of TBL are ignored.  For TROO, TROT, it's
1735        the low 3 bits (double-word aligned).  For TRTO, TRTT, it's either
1736        the low 12 bits (4K, without ETF2-ENH) or 3 bits (with ETF2-ENH).  */
1737     if (ssize == 2 && !s390_has_feat(S390_FEAT_ETF2_ENH)) {
1738         tbl &= -4096;
1739     } else {
1740         tbl &= -8;
1741     }
1742 
1743     check_alignment(env, len, ssize, ra);
1744 
1745     /* Lest we fail to service interrupts in a timely manner, */
1746     /* limit the amount of work we're willing to do.   */
1747     for (i = 0; i < 0x2000; i++) {
1748         uint16_t sval = cpu_ldusize_data_ra(env, src, ssize, ra);
1749         uint64_t tble = tbl + (sval * dsize);
1750         uint16_t dval = cpu_ldusize_data_ra(env, tble, dsize, ra);
1751         if (dval == tst) {
1752             cc = 1;
1753             break;
1754         }
1755         cpu_stsize_data_ra(env, dst, dval, dsize, ra);
1756 
1757         len -= ssize;
1758         src += ssize;
1759         dst += dsize;
1760 
1761         if (len == 0) {
1762             cc = 0;
1763             break;
1764         }
1765     }
1766 
1767     set_address(env, r1, dst);
1768     set_length(env, r1 + 1, len);
1769     set_address(env, r2, src);
1770 
1771     return cc;
1772 }
1773 
1774 void HELPER(cdsg)(CPUS390XState *env, uint64_t addr,
1775                   uint32_t r1, uint32_t r3)
1776 {
1777     uintptr_t ra = GETPC();
1778     Int128 cmpv = int128_make128(env->regs[r1 + 1], env->regs[r1]);
1779     Int128 newv = int128_make128(env->regs[r3 + 1], env->regs[r3]);
1780     Int128 oldv;
1781     uint64_t oldh, oldl;
1782     bool fail;
1783 
1784     check_alignment(env, addr, 16, ra);
1785 
1786     oldh = cpu_ldq_data_ra(env, addr + 0, ra);
1787     oldl = cpu_ldq_data_ra(env, addr + 8, ra);
1788 
1789     oldv = int128_make128(oldl, oldh);
1790     fail = !int128_eq(oldv, cmpv);
1791     if (fail) {
1792         newv = oldv;
1793     }
1794 
1795     cpu_stq_data_ra(env, addr + 0, int128_gethi(newv), ra);
1796     cpu_stq_data_ra(env, addr + 8, int128_getlo(newv), ra);
1797 
1798     env->cc_op = fail;
1799     env->regs[r1] = int128_gethi(oldv);
1800     env->regs[r1 + 1] = int128_getlo(oldv);
1801 }
1802 
1803 void HELPER(cdsg_parallel)(CPUS390XState *env, uint64_t addr,
1804                            uint32_t r1, uint32_t r3)
1805 {
1806     uintptr_t ra = GETPC();
1807     Int128 cmpv = int128_make128(env->regs[r1 + 1], env->regs[r1]);
1808     Int128 newv = int128_make128(env->regs[r3 + 1], env->regs[r3]);
1809     int mem_idx;
1810     MemOpIdx oi;
1811     Int128 oldv;
1812     bool fail;
1813 
1814     assert(HAVE_CMPXCHG128);
1815 
1816     mem_idx = cpu_mmu_index(env, false);
1817     oi = make_memop_idx(MO_TE | MO_128 | MO_ALIGN, mem_idx);
1818     oldv = cpu_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, oi, ra);
1819     fail = !int128_eq(oldv, cmpv);
1820 
1821     env->cc_op = fail;
1822     env->regs[r1] = int128_gethi(oldv);
1823     env->regs[r1 + 1] = int128_getlo(oldv);
1824 }
1825 
1826 static uint32_t do_csst(CPUS390XState *env, uint32_t r3, uint64_t a1,
1827                         uint64_t a2, bool parallel)
1828 {
1829     uint32_t mem_idx = cpu_mmu_index(env, false);
1830     uintptr_t ra = GETPC();
1831     uint32_t fc = extract32(env->regs[0], 0, 8);
1832     uint32_t sc = extract32(env->regs[0], 8, 8);
1833     uint64_t pl = get_address(env, 1) & -16;
1834     uint64_t svh, svl;
1835     uint32_t cc;
1836 
1837     /* Sanity check the function code and storage characteristic.  */
1838     if (fc > 1 || sc > 3) {
1839         if (!s390_has_feat(S390_FEAT_COMPARE_AND_SWAP_AND_STORE_2)) {
1840             goto spec_exception;
1841         }
1842         if (fc > 2 || sc > 4 || (fc == 2 && (r3 & 1))) {
1843             goto spec_exception;
1844         }
1845     }
1846 
1847     /* Sanity check the alignments.  */
1848     if (extract32(a1, 0, fc + 2) || extract32(a2, 0, sc)) {
1849         goto spec_exception;
1850     }
1851 
1852     /* Sanity check writability of the store address.  */
1853     probe_write(env, a2, 1 << sc, mem_idx, ra);
1854 
1855     /*
1856      * Note that the compare-and-swap is atomic, and the store is atomic,
1857      * but the complete operation is not.  Therefore we do not need to
1858      * assert serial context in order to implement this.  That said,
1859      * restart early if we can't support either operation that is supposed
1860      * to be atomic.
1861      */
1862     if (parallel) {
1863         uint32_t max = 2;
1864 #ifdef CONFIG_ATOMIC64
1865         max = 3;
1866 #endif
1867         if ((HAVE_CMPXCHG128 ? 0 : fc + 2 > max) ||
1868             (HAVE_ATOMIC128  ? 0 : sc > max)) {
1869             cpu_loop_exit_atomic(env_cpu(env), ra);
1870         }
1871     }
1872 
1873     /* All loads happen before all stores.  For simplicity, load the entire
1874        store value area from the parameter list.  */
1875     svh = cpu_ldq_data_ra(env, pl + 16, ra);
1876     svl = cpu_ldq_data_ra(env, pl + 24, ra);
1877 
1878     switch (fc) {
1879     case 0:
1880         {
1881             uint32_t nv = cpu_ldl_data_ra(env, pl, ra);
1882             uint32_t cv = env->regs[r3];
1883             uint32_t ov;
1884 
1885             if (parallel) {
1886 #ifdef CONFIG_USER_ONLY
1887                 uint32_t *haddr = g2h(env_cpu(env), a1);
1888                 ov = qatomic_cmpxchg__nocheck(haddr, cv, nv);
1889 #else
1890                 MemOpIdx oi = make_memop_idx(MO_TEUL | MO_ALIGN, mem_idx);
1891                 ov = cpu_atomic_cmpxchgl_be_mmu(env, a1, cv, nv, oi, ra);
1892 #endif
1893             } else {
1894                 ov = cpu_ldl_data_ra(env, a1, ra);
1895                 cpu_stl_data_ra(env, a1, (ov == cv ? nv : ov), ra);
1896             }
1897             cc = (ov != cv);
1898             env->regs[r3] = deposit64(env->regs[r3], 32, 32, ov);
1899         }
1900         break;
1901 
1902     case 1:
1903         {
1904             uint64_t nv = cpu_ldq_data_ra(env, pl, ra);
1905             uint64_t cv = env->regs[r3];
1906             uint64_t ov;
1907 
1908             if (parallel) {
1909 #ifdef CONFIG_ATOMIC64
1910                 MemOpIdx oi = make_memop_idx(MO_TEUQ | MO_ALIGN, mem_idx);
1911                 ov = cpu_atomic_cmpxchgq_be_mmu(env, a1, cv, nv, oi, ra);
1912 #else
1913                 /* Note that we asserted !parallel above.  */
1914                 g_assert_not_reached();
1915 #endif
1916             } else {
1917                 ov = cpu_ldq_data_ra(env, a1, ra);
1918                 cpu_stq_data_ra(env, a1, (ov == cv ? nv : ov), ra);
1919             }
1920             cc = (ov != cv);
1921             env->regs[r3] = ov;
1922         }
1923         break;
1924 
1925     case 2:
1926         {
1927             uint64_t nvh = cpu_ldq_data_ra(env, pl, ra);
1928             uint64_t nvl = cpu_ldq_data_ra(env, pl + 8, ra);
1929             Int128 nv = int128_make128(nvl, nvh);
1930             Int128 cv = int128_make128(env->regs[r3 + 1], env->regs[r3]);
1931             Int128 ov;
1932 
1933             if (!parallel) {
1934                 uint64_t oh = cpu_ldq_data_ra(env, a1 + 0, ra);
1935                 uint64_t ol = cpu_ldq_data_ra(env, a1 + 8, ra);
1936 
1937                 ov = int128_make128(ol, oh);
1938                 cc = !int128_eq(ov, cv);
1939                 if (cc) {
1940                     nv = ov;
1941                 }
1942 
1943                 cpu_stq_data_ra(env, a1 + 0, int128_gethi(nv), ra);
1944                 cpu_stq_data_ra(env, a1 + 8, int128_getlo(nv), ra);
1945             } else if (HAVE_CMPXCHG128) {
1946                 MemOpIdx oi = make_memop_idx(MO_TE | MO_128 | MO_ALIGN, mem_idx);
1947                 ov = cpu_atomic_cmpxchgo_be_mmu(env, a1, cv, nv, oi, ra);
1948                 cc = !int128_eq(ov, cv);
1949             } else {
1950                 /* Note that we asserted !parallel above.  */
1951                 g_assert_not_reached();
1952             }
1953 
1954             env->regs[r3 + 0] = int128_gethi(ov);
1955             env->regs[r3 + 1] = int128_getlo(ov);
1956         }
1957         break;
1958 
1959     default:
1960         g_assert_not_reached();
1961     }
1962 
1963     /* Store only if the comparison succeeded.  Note that above we use a pair
1964        of 64-bit big-endian loads, so for sc < 3 we must extract the value
1965        from the most-significant bits of svh.  */
1966     if (cc == 0) {
1967         switch (sc) {
1968         case 0:
1969             cpu_stb_data_ra(env, a2, svh >> 56, ra);
1970             break;
1971         case 1:
1972             cpu_stw_data_ra(env, a2, svh >> 48, ra);
1973             break;
1974         case 2:
1975             cpu_stl_data_ra(env, a2, svh >> 32, ra);
1976             break;
1977         case 3:
1978             cpu_stq_data_ra(env, a2, svh, ra);
1979             break;
1980         case 4:
1981             if (!parallel) {
1982                 cpu_stq_data_ra(env, a2 + 0, svh, ra);
1983                 cpu_stq_data_ra(env, a2 + 8, svl, ra);
1984             } else if (HAVE_ATOMIC128) {
1985                 MemOpIdx oi = make_memop_idx(MO_TEUQ | MO_ALIGN_16, mem_idx);
1986                 Int128 sv = int128_make128(svl, svh);
1987                 cpu_atomic_sto_be_mmu(env, a2, sv, oi, ra);
1988             } else {
1989                 /* Note that we asserted !parallel above.  */
1990                 g_assert_not_reached();
1991             }
1992             break;
1993         default:
1994             g_assert_not_reached();
1995         }
1996     }
1997 
1998     return cc;
1999 
2000  spec_exception:
2001     tcg_s390_program_interrupt(env, PGM_SPECIFICATION, ra);
2002 }
2003 
2004 uint32_t HELPER(csst)(CPUS390XState *env, uint32_t r3, uint64_t a1, uint64_t a2)
2005 {
2006     return do_csst(env, r3, a1, a2, false);
2007 }
2008 
2009 uint32_t HELPER(csst_parallel)(CPUS390XState *env, uint32_t r3, uint64_t a1,
2010                                uint64_t a2)
2011 {
2012     return do_csst(env, r3, a1, a2, true);
2013 }
2014 
2015 #if !defined(CONFIG_USER_ONLY)
2016 void HELPER(lctlg)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3)
2017 {
2018     uintptr_t ra = GETPC();
2019     bool PERchanged = false;
2020     uint64_t src = a2;
2021     uint32_t i;
2022 
2023     if (src & 0x7) {
2024         tcg_s390_program_interrupt(env, PGM_SPECIFICATION, ra);
2025     }
2026 
2027     for (i = r1;; i = (i + 1) % 16) {
2028         uint64_t val = cpu_ldq_data_ra(env, src, ra);
2029         if (env->cregs[i] != val && i >= 9 && i <= 11) {
2030             PERchanged = true;
2031         }
2032         env->cregs[i] = val;
2033         HELPER_LOG("load ctl %d from 0x%" PRIx64 " == 0x%" PRIx64 "\n",
2034                    i, src, val);
2035         src += sizeof(uint64_t);
2036 
2037         if (i == r3) {
2038             break;
2039         }
2040     }
2041 
2042     if (PERchanged && env->psw.mask & PSW_MASK_PER) {
2043         s390_cpu_recompute_watchpoints(env_cpu(env));
2044     }
2045 
2046     tlb_flush(env_cpu(env));
2047 }
2048 
2049 void HELPER(lctl)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3)
2050 {
2051     uintptr_t ra = GETPC();
2052     bool PERchanged = false;
2053     uint64_t src = a2;
2054     uint32_t i;
2055 
2056     if (src & 0x3) {
2057         tcg_s390_program_interrupt(env, PGM_SPECIFICATION, ra);
2058     }
2059 
2060     for (i = r1;; i = (i + 1) % 16) {
2061         uint32_t val = cpu_ldl_data_ra(env, src, ra);
2062         if ((uint32_t)env->cregs[i] != val && i >= 9 && i <= 11) {
2063             PERchanged = true;
2064         }
2065         env->cregs[i] = deposit64(env->cregs[i], 0, 32, val);
2066         HELPER_LOG("load ctl %d from 0x%" PRIx64 " == 0x%x\n", i, src, val);
2067         src += sizeof(uint32_t);
2068 
2069         if (i == r3) {
2070             break;
2071         }
2072     }
2073 
2074     if (PERchanged && env->psw.mask & PSW_MASK_PER) {
2075         s390_cpu_recompute_watchpoints(env_cpu(env));
2076     }
2077 
2078     tlb_flush(env_cpu(env));
2079 }
2080 
2081 void HELPER(stctg)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3)
2082 {
2083     uintptr_t ra = GETPC();
2084     uint64_t dest = a2;
2085     uint32_t i;
2086 
2087     if (dest & 0x7) {
2088         tcg_s390_program_interrupt(env, PGM_SPECIFICATION, ra);
2089     }
2090 
2091     for (i = r1;; i = (i + 1) % 16) {
2092         cpu_stq_data_ra(env, dest, env->cregs[i], ra);
2093         dest += sizeof(uint64_t);
2094 
2095         if (i == r3) {
2096             break;
2097         }
2098     }
2099 }
2100 
2101 void HELPER(stctl)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3)
2102 {
2103     uintptr_t ra = GETPC();
2104     uint64_t dest = a2;
2105     uint32_t i;
2106 
2107     if (dest & 0x3) {
2108         tcg_s390_program_interrupt(env, PGM_SPECIFICATION, ra);
2109     }
2110 
2111     for (i = r1;; i = (i + 1) % 16) {
2112         cpu_stl_data_ra(env, dest, env->cregs[i], ra);
2113         dest += sizeof(uint32_t);
2114 
2115         if (i == r3) {
2116             break;
2117         }
2118     }
2119 }
2120 
2121 uint32_t HELPER(testblock)(CPUS390XState *env, uint64_t real_addr)
2122 {
2123     uintptr_t ra = GETPC();
2124     int i;
2125 
2126     real_addr = wrap_address(env, real_addr) & TARGET_PAGE_MASK;
2127 
2128     for (i = 0; i < TARGET_PAGE_SIZE; i += 8) {
2129         cpu_stq_mmuidx_ra(env, real_addr + i, 0, MMU_REAL_IDX, ra);
2130     }
2131 
2132     return 0;
2133 }
2134 
2135 uint32_t HELPER(tprot)(CPUS390XState *env, uint64_t a1, uint64_t a2)
2136 {
2137     S390CPU *cpu = env_archcpu(env);
2138     CPUState *cs = env_cpu(env);
2139 
2140     /*
2141      * TODO: we currently don't handle all access protection types
2142      * (including access-list and key-controlled) as well as AR mode.
2143      */
2144     if (!s390_cpu_virt_mem_check_write(cpu, a1, 0, 1)) {
2145         /* Fetching permitted; storing permitted */
2146         return 0;
2147     }
2148 
2149     if (env->int_pgm_code == PGM_PROTECTION) {
2150         /* retry if reading is possible */
2151         cs->exception_index = -1;
2152         if (!s390_cpu_virt_mem_check_read(cpu, a1, 0, 1)) {
2153             /* Fetching permitted; storing not permitted */
2154             return 1;
2155         }
2156     }
2157 
2158     switch (env->int_pgm_code) {
2159     case PGM_PROTECTION:
2160         /* Fetching not permitted; storing not permitted */
2161         cs->exception_index = -1;
2162         return 2;
2163     case PGM_ADDRESSING:
2164     case PGM_TRANS_SPEC:
2165         /* exceptions forwarded to the guest */
2166         s390_cpu_virt_mem_handle_exc(cpu, GETPC());
2167         return 0;
2168     }
2169 
2170     /* Translation not available */
2171     cs->exception_index = -1;
2172     return 3;
2173 }
2174 
2175 /* insert storage key extended */
2176 uint64_t HELPER(iske)(CPUS390XState *env, uint64_t r2)
2177 {
2178     static S390SKeysState *ss;
2179     static S390SKeysClass *skeyclass;
2180     uint64_t addr = wrap_address(env, r2);
2181     uint8_t key;
2182     int rc;
2183 
2184     addr = mmu_real2abs(env, addr);
2185     if (!mmu_absolute_addr_valid(addr, false)) {
2186         tcg_s390_program_interrupt(env, PGM_ADDRESSING, GETPC());
2187     }
2188 
2189     if (unlikely(!ss)) {
2190         ss = s390_get_skeys_device();
2191         skeyclass = S390_SKEYS_GET_CLASS(ss);
2192         if (skeyclass->enable_skeys && !skeyclass->enable_skeys(ss)) {
2193             tlb_flush_all_cpus_synced(env_cpu(env));
2194         }
2195     }
2196 
2197     rc = skeyclass->get_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key);
2198     if (rc) {
2199         trace_get_skeys_nonzero(rc);
2200         return 0;
2201     }
2202     return key;
2203 }
2204 
2205 /* set storage key extended */
2206 void HELPER(sske)(CPUS390XState *env, uint64_t r1, uint64_t r2)
2207 {
2208     static S390SKeysState *ss;
2209     static S390SKeysClass *skeyclass;
2210     uint64_t addr = wrap_address(env, r2);
2211     uint8_t key;
2212     int rc;
2213 
2214     addr = mmu_real2abs(env, addr);
2215     if (!mmu_absolute_addr_valid(addr, false)) {
2216         tcg_s390_program_interrupt(env, PGM_ADDRESSING, GETPC());
2217     }
2218 
2219     if (unlikely(!ss)) {
2220         ss = s390_get_skeys_device();
2221         skeyclass = S390_SKEYS_GET_CLASS(ss);
2222         if (skeyclass->enable_skeys && !skeyclass->enable_skeys(ss)) {
2223             tlb_flush_all_cpus_synced(env_cpu(env));
2224         }
2225     }
2226 
2227     key = r1 & 0xfe;
2228     rc = skeyclass->set_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key);
2229     if (rc) {
2230         trace_set_skeys_nonzero(rc);
2231     }
2232    /*
2233     * As we can only flush by virtual address and not all the entries
2234     * that point to a physical address we have to flush the whole TLB.
2235     */
2236     tlb_flush_all_cpus_synced(env_cpu(env));
2237 }
2238 
2239 /* reset reference bit extended */
2240 uint32_t HELPER(rrbe)(CPUS390XState *env, uint64_t r2)
2241 {
2242     uint64_t addr = wrap_address(env, r2);
2243     static S390SKeysState *ss;
2244     static S390SKeysClass *skeyclass;
2245     uint8_t re, key;
2246     int rc;
2247 
2248     addr = mmu_real2abs(env, addr);
2249     if (!mmu_absolute_addr_valid(addr, false)) {
2250         tcg_s390_program_interrupt(env, PGM_ADDRESSING, GETPC());
2251     }
2252 
2253     if (unlikely(!ss)) {
2254         ss = s390_get_skeys_device();
2255         skeyclass = S390_SKEYS_GET_CLASS(ss);
2256         if (skeyclass->enable_skeys && !skeyclass->enable_skeys(ss)) {
2257             tlb_flush_all_cpus_synced(env_cpu(env));
2258         }
2259     }
2260 
2261     rc = skeyclass->get_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key);
2262     if (rc) {
2263         trace_get_skeys_nonzero(rc);
2264         return 0;
2265     }
2266 
2267     re = key & (SK_R | SK_C);
2268     key &= ~SK_R;
2269 
2270     rc = skeyclass->set_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key);
2271     if (rc) {
2272         trace_set_skeys_nonzero(rc);
2273         return 0;
2274     }
2275    /*
2276     * As we can only flush by virtual address and not all the entries
2277     * that point to a physical address we have to flush the whole TLB.
2278     */
2279     tlb_flush_all_cpus_synced(env_cpu(env));
2280 
2281     /*
2282      * cc
2283      *
2284      * 0  Reference bit zero; change bit zero
2285      * 1  Reference bit zero; change bit one
2286      * 2  Reference bit one; change bit zero
2287      * 3  Reference bit one; change bit one
2288      */
2289 
2290     return re >> 1;
2291 }
2292 
2293 uint32_t HELPER(mvcs)(CPUS390XState *env, uint64_t l, uint64_t a1, uint64_t a2,
2294                       uint64_t key)
2295 {
2296     const uint8_t psw_as = (env->psw.mask & PSW_MASK_ASC) >> PSW_SHIFT_ASC;
2297     S390Access srca, desta;
2298     uintptr_t ra = GETPC();
2299     int cc = 0;
2300 
2301     HELPER_LOG("%s: %16" PRIx64 " %16" PRIx64 " %16" PRIx64 "\n",
2302                __func__, l, a1, a2);
2303 
2304     if (!(env->psw.mask & PSW_MASK_DAT) || !(env->cregs[0] & CR0_SECONDARY) ||
2305         psw_as == AS_HOME || psw_as == AS_ACCREG) {
2306         s390_program_interrupt(env, PGM_SPECIAL_OP, ra);
2307     }
2308 
2309     if (!psw_key_valid(env, (key >> 4) & 0xf)) {
2310         s390_program_interrupt(env, PGM_PRIVILEGED, ra);
2311     }
2312 
2313     l = wrap_length32(env, l);
2314     if (l > 256) {
2315         /* max 256 */
2316         l = 256;
2317         cc = 3;
2318     } else if (!l) {
2319         return cc;
2320     }
2321 
2322     srca = access_prepare(env, a2, l, MMU_DATA_LOAD, MMU_PRIMARY_IDX, ra);
2323     desta = access_prepare(env, a1, l, MMU_DATA_STORE, MMU_SECONDARY_IDX, ra);
2324     access_memmove(env, &desta, &srca, ra);
2325     return cc;
2326 }
2327 
2328 uint32_t HELPER(mvcp)(CPUS390XState *env, uint64_t l, uint64_t a1, uint64_t a2,
2329                       uint64_t key)
2330 {
2331     const uint8_t psw_as = (env->psw.mask & PSW_MASK_ASC) >> PSW_SHIFT_ASC;
2332     S390Access srca, desta;
2333     uintptr_t ra = GETPC();
2334     int cc = 0;
2335 
2336     HELPER_LOG("%s: %16" PRIx64 " %16" PRIx64 " %16" PRIx64 "\n",
2337                __func__, l, a1, a2);
2338 
2339     if (!(env->psw.mask & PSW_MASK_DAT) || !(env->cregs[0] & CR0_SECONDARY) ||
2340         psw_as == AS_HOME || psw_as == AS_ACCREG) {
2341         s390_program_interrupt(env, PGM_SPECIAL_OP, ra);
2342     }
2343 
2344     if (!psw_key_valid(env, (key >> 4) & 0xf)) {
2345         s390_program_interrupt(env, PGM_PRIVILEGED, ra);
2346     }
2347 
2348     l = wrap_length32(env, l);
2349     if (l > 256) {
2350         /* max 256 */
2351         l = 256;
2352         cc = 3;
2353     } else if (!l) {
2354         return cc;
2355     }
2356 
2357     srca = access_prepare(env, a2, l, MMU_DATA_LOAD, MMU_SECONDARY_IDX, ra);
2358     desta = access_prepare(env, a1, l, MMU_DATA_STORE, MMU_PRIMARY_IDX, ra);
2359     access_memmove(env, &desta, &srca, ra);
2360     return cc;
2361 }
2362 
2363 void HELPER(idte)(CPUS390XState *env, uint64_t r1, uint64_t r2, uint32_t m4)
2364 {
2365     CPUState *cs = env_cpu(env);
2366     const uintptr_t ra = GETPC();
2367     uint64_t table, entry, raddr;
2368     uint16_t entries, i, index = 0;
2369 
2370     if (r2 & 0xff000) {
2371         tcg_s390_program_interrupt(env, PGM_SPECIFICATION, ra);
2372     }
2373 
2374     if (!(r2 & 0x800)) {
2375         /* invalidation-and-clearing operation */
2376         table = r1 & ASCE_ORIGIN;
2377         entries = (r2 & 0x7ff) + 1;
2378 
2379         switch (r1 & ASCE_TYPE_MASK) {
2380         case ASCE_TYPE_REGION1:
2381             index = (r2 >> 53) & 0x7ff;
2382             break;
2383         case ASCE_TYPE_REGION2:
2384             index = (r2 >> 42) & 0x7ff;
2385             break;
2386         case ASCE_TYPE_REGION3:
2387             index = (r2 >> 31) & 0x7ff;
2388             break;
2389         case ASCE_TYPE_SEGMENT:
2390             index = (r2 >> 20) & 0x7ff;
2391             break;
2392         }
2393         for (i = 0; i < entries; i++) {
2394             /* addresses are not wrapped in 24/31bit mode but table index is */
2395             raddr = table + ((index + i) & 0x7ff) * sizeof(entry);
2396             entry = cpu_ldq_mmuidx_ra(env, raddr, MMU_REAL_IDX, ra);
2397             if (!(entry & REGION_ENTRY_I)) {
2398                 /* we are allowed to not store if already invalid */
2399                 entry |= REGION_ENTRY_I;
2400                 cpu_stq_mmuidx_ra(env, raddr, entry, MMU_REAL_IDX, ra);
2401             }
2402         }
2403     }
2404 
2405     /* We simply flush the complete tlb, therefore we can ignore r3. */
2406     if (m4 & 1) {
2407         tlb_flush(cs);
2408     } else {
2409         tlb_flush_all_cpus_synced(cs);
2410     }
2411 }
2412 
2413 /* invalidate pte */
2414 void HELPER(ipte)(CPUS390XState *env, uint64_t pto, uint64_t vaddr,
2415                   uint32_t m4)
2416 {
2417     CPUState *cs = env_cpu(env);
2418     const uintptr_t ra = GETPC();
2419     uint64_t page = vaddr & TARGET_PAGE_MASK;
2420     uint64_t pte_addr, pte;
2421 
2422     /* Compute the page table entry address */
2423     pte_addr = (pto & SEGMENT_ENTRY_ORIGIN);
2424     pte_addr += VADDR_PAGE_TX(vaddr) * 8;
2425 
2426     /* Mark the page table entry as invalid */
2427     pte = cpu_ldq_mmuidx_ra(env, pte_addr, MMU_REAL_IDX, ra);
2428     pte |= PAGE_ENTRY_I;
2429     cpu_stq_mmuidx_ra(env, pte_addr, pte, MMU_REAL_IDX, ra);
2430 
2431     /* XXX we exploit the fact that Linux passes the exact virtual
2432        address here - it's not obliged to! */
2433     if (m4 & 1) {
2434         if (vaddr & ~VADDR_PAGE_TX_MASK) {
2435             tlb_flush_page(cs, page);
2436             /* XXX 31-bit hack */
2437             tlb_flush_page(cs, page ^ 0x80000000);
2438         } else {
2439             /* looks like we don't have a valid virtual address */
2440             tlb_flush(cs);
2441         }
2442     } else {
2443         if (vaddr & ~VADDR_PAGE_TX_MASK) {
2444             tlb_flush_page_all_cpus_synced(cs, page);
2445             /* XXX 31-bit hack */
2446             tlb_flush_page_all_cpus_synced(cs, page ^ 0x80000000);
2447         } else {
2448             /* looks like we don't have a valid virtual address */
2449             tlb_flush_all_cpus_synced(cs);
2450         }
2451     }
2452 }
2453 
2454 /* flush local tlb */
2455 void HELPER(ptlb)(CPUS390XState *env)
2456 {
2457     tlb_flush(env_cpu(env));
2458 }
2459 
2460 /* flush global tlb */
2461 void HELPER(purge)(CPUS390XState *env)
2462 {
2463     tlb_flush_all_cpus_synced(env_cpu(env));
2464 }
2465 
2466 /* load real address */
2467 uint64_t HELPER(lra)(CPUS390XState *env, uint64_t addr)
2468 {
2469     uint64_t asc = env->psw.mask & PSW_MASK_ASC;
2470     uint64_t ret, tec;
2471     int flags, exc, cc;
2472 
2473     /* XXX incomplete - has more corner cases */
2474     if (!(env->psw.mask & PSW_MASK_64) && (addr >> 32)) {
2475         tcg_s390_program_interrupt(env, PGM_SPECIAL_OP, GETPC());
2476     }
2477 
2478     exc = mmu_translate(env, addr, MMU_S390_LRA, asc, &ret, &flags, &tec);
2479     if (exc) {
2480         cc = 3;
2481         ret = exc | 0x80000000;
2482     } else {
2483         cc = 0;
2484         ret |= addr & ~TARGET_PAGE_MASK;
2485     }
2486 
2487     env->cc_op = cc;
2488     return ret;
2489 }
2490 #endif
2491 
2492 /* load pair from quadword */
2493 uint64_t HELPER(lpq)(CPUS390XState *env, uint64_t addr)
2494 {
2495     uintptr_t ra = GETPC();
2496     uint64_t hi, lo;
2497 
2498     check_alignment(env, addr, 16, ra);
2499     hi = cpu_ldq_data_ra(env, addr + 0, ra);
2500     lo = cpu_ldq_data_ra(env, addr + 8, ra);
2501 
2502     env->retxl = lo;
2503     return hi;
2504 }
2505 
2506 uint64_t HELPER(lpq_parallel)(CPUS390XState *env, uint64_t addr)
2507 {
2508     uintptr_t ra = GETPC();
2509     uint64_t hi, lo;
2510     int mem_idx;
2511     MemOpIdx oi;
2512     Int128 v;
2513 
2514     assert(HAVE_ATOMIC128);
2515 
2516     mem_idx = cpu_mmu_index(env, false);
2517     oi = make_memop_idx(MO_TEUQ | MO_ALIGN_16, mem_idx);
2518     v = cpu_atomic_ldo_be_mmu(env, addr, oi, ra);
2519     hi = int128_gethi(v);
2520     lo = int128_getlo(v);
2521 
2522     env->retxl = lo;
2523     return hi;
2524 }
2525 
2526 /* store pair to quadword */
2527 void HELPER(stpq)(CPUS390XState *env, uint64_t addr,
2528                   uint64_t low, uint64_t high)
2529 {
2530     uintptr_t ra = GETPC();
2531 
2532     check_alignment(env, addr, 16, ra);
2533     cpu_stq_data_ra(env, addr + 0, high, ra);
2534     cpu_stq_data_ra(env, addr + 8, low, ra);
2535 }
2536 
2537 void HELPER(stpq_parallel)(CPUS390XState *env, uint64_t addr,
2538                            uint64_t low, uint64_t high)
2539 {
2540     uintptr_t ra = GETPC();
2541     int mem_idx;
2542     MemOpIdx oi;
2543     Int128 v;
2544 
2545     assert(HAVE_ATOMIC128);
2546 
2547     mem_idx = cpu_mmu_index(env, false);
2548     oi = make_memop_idx(MO_TEUQ | MO_ALIGN_16, mem_idx);
2549     v = int128_make128(low, high);
2550     cpu_atomic_sto_be_mmu(env, addr, v, oi, ra);
2551 }
2552 
2553 /* Execute instruction.  This instruction executes an insn modified with
2554    the contents of r1.  It does not change the executed instruction in memory;
2555    it does not change the program counter.
2556 
2557    Perform this by recording the modified instruction in env->ex_value.
2558    This will be noticed by cpu_get_tb_cpu_state and thus tb translation.
2559 */
2560 void HELPER(ex)(CPUS390XState *env, uint32_t ilen, uint64_t r1, uint64_t addr)
2561 {
2562     uint64_t insn = cpu_lduw_code(env, addr);
2563     uint8_t opc = insn >> 8;
2564 
2565     /* Or in the contents of R1[56:63].  */
2566     insn |= r1 & 0xff;
2567 
2568     /* Load the rest of the instruction.  */
2569     insn <<= 48;
2570     switch (get_ilen(opc)) {
2571     case 2:
2572         break;
2573     case 4:
2574         insn |= (uint64_t)cpu_lduw_code(env, addr + 2) << 32;
2575         break;
2576     case 6:
2577         insn |= (uint64_t)(uint32_t)cpu_ldl_code(env, addr + 2) << 16;
2578         break;
2579     default:
2580         g_assert_not_reached();
2581     }
2582 
2583     /* The very most common cases can be sped up by avoiding a new TB.  */
2584     if ((opc & 0xf0) == 0xd0) {
2585         typedef uint32_t (*dx_helper)(CPUS390XState *, uint32_t, uint64_t,
2586                                       uint64_t, uintptr_t);
2587         static const dx_helper dx[16] = {
2588             [0x0] = do_helper_trt_bkwd,
2589             [0x2] = do_helper_mvc,
2590             [0x4] = do_helper_nc,
2591             [0x5] = do_helper_clc,
2592             [0x6] = do_helper_oc,
2593             [0x7] = do_helper_xc,
2594             [0xc] = do_helper_tr,
2595             [0xd] = do_helper_trt_fwd,
2596         };
2597         dx_helper helper = dx[opc & 0xf];
2598 
2599         if (helper) {
2600             uint32_t l = extract64(insn, 48, 8);
2601             uint32_t b1 = extract64(insn, 44, 4);
2602             uint32_t d1 = extract64(insn, 32, 12);
2603             uint32_t b2 = extract64(insn, 28, 4);
2604             uint32_t d2 = extract64(insn, 16, 12);
2605             uint64_t a1 = wrap_address(env, (b1 ? env->regs[b1] : 0) + d1);
2606             uint64_t a2 = wrap_address(env, (b2 ? env->regs[b2] : 0) + d2);
2607 
2608             env->cc_op = helper(env, l, a1, a2, 0);
2609             env->psw.addr += ilen;
2610             return;
2611         }
2612     } else if (opc == 0x0a) {
2613         env->int_svc_code = extract64(insn, 48, 8);
2614         env->int_svc_ilen = ilen;
2615         helper_exception(env, EXCP_SVC);
2616         g_assert_not_reached();
2617     }
2618 
2619     /* Record the insn we want to execute as well as the ilen to use
2620        during the execution of the target insn.  This will also ensure
2621        that ex_value is non-zero, which flags that we are in a state
2622        that requires such execution.  */
2623     env->ex_value = insn | ilen;
2624 }
2625 
2626 uint32_t HELPER(mvcos)(CPUS390XState *env, uint64_t dest, uint64_t src,
2627                        uint64_t len)
2628 {
2629     const uint8_t psw_key = (env->psw.mask & PSW_MASK_KEY) >> PSW_SHIFT_KEY;
2630     const uint8_t psw_as = (env->psw.mask & PSW_MASK_ASC) >> PSW_SHIFT_ASC;
2631     const uint64_t r0 = env->regs[0];
2632     const uintptr_t ra = GETPC();
2633     uint8_t dest_key, dest_as, dest_k, dest_a;
2634     uint8_t src_key, src_as, src_k, src_a;
2635     uint64_t val;
2636     int cc = 0;
2637 
2638     HELPER_LOG("%s dest %" PRIx64 ", src %" PRIx64 ", len %" PRIx64 "\n",
2639                __func__, dest, src, len);
2640 
2641     if (!(env->psw.mask & PSW_MASK_DAT)) {
2642         tcg_s390_program_interrupt(env, PGM_SPECIAL_OP, ra);
2643     }
2644 
2645     /* OAC (operand access control) for the first operand -> dest */
2646     val = (r0 & 0xffff0000ULL) >> 16;
2647     dest_key = (val >> 12) & 0xf;
2648     dest_as = (val >> 6) & 0x3;
2649     dest_k = (val >> 1) & 0x1;
2650     dest_a = val & 0x1;
2651 
2652     /* OAC (operand access control) for the second operand -> src */
2653     val = (r0 & 0x0000ffffULL);
2654     src_key = (val >> 12) & 0xf;
2655     src_as = (val >> 6) & 0x3;
2656     src_k = (val >> 1) & 0x1;
2657     src_a = val & 0x1;
2658 
2659     if (!dest_k) {
2660         dest_key = psw_key;
2661     }
2662     if (!src_k) {
2663         src_key = psw_key;
2664     }
2665     if (!dest_a) {
2666         dest_as = psw_as;
2667     }
2668     if (!src_a) {
2669         src_as = psw_as;
2670     }
2671 
2672     if (dest_a && dest_as == AS_HOME && (env->psw.mask & PSW_MASK_PSTATE)) {
2673         tcg_s390_program_interrupt(env, PGM_SPECIAL_OP, ra);
2674     }
2675     if (!(env->cregs[0] & CR0_SECONDARY) &&
2676         (dest_as == AS_SECONDARY || src_as == AS_SECONDARY)) {
2677         tcg_s390_program_interrupt(env, PGM_SPECIAL_OP, ra);
2678     }
2679     if (!psw_key_valid(env, dest_key) || !psw_key_valid(env, src_key)) {
2680         tcg_s390_program_interrupt(env, PGM_PRIVILEGED, ra);
2681     }
2682 
2683     len = wrap_length32(env, len);
2684     if (len > 4096) {
2685         cc = 3;
2686         len = 4096;
2687     }
2688 
2689     /* FIXME: AR-mode and proper problem state mode (using PSW keys) missing */
2690     if (src_as == AS_ACCREG || dest_as == AS_ACCREG ||
2691         (env->psw.mask & PSW_MASK_PSTATE)) {
2692         qemu_log_mask(LOG_UNIMP, "%s: AR-mode and PSTATE support missing\n",
2693                       __func__);
2694         tcg_s390_program_interrupt(env, PGM_ADDRESSING, ra);
2695     }
2696 
2697     /* FIXME: Access using correct keys and AR-mode */
2698     if (len) {
2699         S390Access srca = access_prepare(env, src, len, MMU_DATA_LOAD,
2700                                          mmu_idx_from_as(src_as), ra);
2701         S390Access desta = access_prepare(env, dest, len, MMU_DATA_STORE,
2702                                           mmu_idx_from_as(dest_as), ra);
2703 
2704         access_memmove(env, &desta, &srca, ra);
2705     }
2706 
2707     return cc;
2708 }
2709 
2710 /* Decode a Unicode character.  A return value < 0 indicates success, storing
2711    the UTF-32 result into OCHAR and the input length into OLEN.  A return
2712    value >= 0 indicates failure, and the CC value to be returned.  */
2713 typedef int (*decode_unicode_fn)(CPUS390XState *env, uint64_t addr,
2714                                  uint64_t ilen, bool enh_check, uintptr_t ra,
2715                                  uint32_t *ochar, uint32_t *olen);
2716 
2717 /* Encode a Unicode character.  A return value < 0 indicates success, storing
2718    the bytes into ADDR and the output length into OLEN.  A return value >= 0
2719    indicates failure, and the CC value to be returned.  */
2720 typedef int (*encode_unicode_fn)(CPUS390XState *env, uint64_t addr,
2721                                  uint64_t ilen, uintptr_t ra, uint32_t c,
2722                                  uint32_t *olen);
2723 
2724 static int decode_utf8(CPUS390XState *env, uint64_t addr, uint64_t ilen,
2725                        bool enh_check, uintptr_t ra,
2726                        uint32_t *ochar, uint32_t *olen)
2727 {
2728     uint8_t s0, s1, s2, s3;
2729     uint32_t c, l;
2730 
2731     if (ilen < 1) {
2732         return 0;
2733     }
2734     s0 = cpu_ldub_data_ra(env, addr, ra);
2735     if (s0 <= 0x7f) {
2736         /* one byte character */
2737         l = 1;
2738         c = s0;
2739     } else if (s0 <= (enh_check ? 0xc1 : 0xbf)) {
2740         /* invalid character */
2741         return 2;
2742     } else if (s0 <= 0xdf) {
2743         /* two byte character */
2744         l = 2;
2745         if (ilen < 2) {
2746             return 0;
2747         }
2748         s1 = cpu_ldub_data_ra(env, addr + 1, ra);
2749         c = s0 & 0x1f;
2750         c = (c << 6) | (s1 & 0x3f);
2751         if (enh_check && (s1 & 0xc0) != 0x80) {
2752             return 2;
2753         }
2754     } else if (s0 <= 0xef) {
2755         /* three byte character */
2756         l = 3;
2757         if (ilen < 3) {
2758             return 0;
2759         }
2760         s1 = cpu_ldub_data_ra(env, addr + 1, ra);
2761         s2 = cpu_ldub_data_ra(env, addr + 2, ra);
2762         c = s0 & 0x0f;
2763         c = (c << 6) | (s1 & 0x3f);
2764         c = (c << 6) | (s2 & 0x3f);
2765         /* Fold the byte-by-byte range descriptions in the PoO into
2766            tests against the complete value.  It disallows encodings
2767            that could be smaller, and the UTF-16 surrogates.  */
2768         if (enh_check
2769             && ((s1 & 0xc0) != 0x80
2770                 || (s2 & 0xc0) != 0x80
2771                 || c < 0x1000
2772                 || (c >= 0xd800 && c <= 0xdfff))) {
2773             return 2;
2774         }
2775     } else if (s0 <= (enh_check ? 0xf4 : 0xf7)) {
2776         /* four byte character */
2777         l = 4;
2778         if (ilen < 4) {
2779             return 0;
2780         }
2781         s1 = cpu_ldub_data_ra(env, addr + 1, ra);
2782         s2 = cpu_ldub_data_ra(env, addr + 2, ra);
2783         s3 = cpu_ldub_data_ra(env, addr + 3, ra);
2784         c = s0 & 0x07;
2785         c = (c << 6) | (s1 & 0x3f);
2786         c = (c << 6) | (s2 & 0x3f);
2787         c = (c << 6) | (s3 & 0x3f);
2788         /* See above.  */
2789         if (enh_check
2790             && ((s1 & 0xc0) != 0x80
2791                 || (s2 & 0xc0) != 0x80
2792                 || (s3 & 0xc0) != 0x80
2793                 || c < 0x010000
2794                 || c > 0x10ffff)) {
2795             return 2;
2796         }
2797     } else {
2798         /* invalid character */
2799         return 2;
2800     }
2801 
2802     *ochar = c;
2803     *olen = l;
2804     return -1;
2805 }
2806 
2807 static int decode_utf16(CPUS390XState *env, uint64_t addr, uint64_t ilen,
2808                         bool enh_check, uintptr_t ra,
2809                         uint32_t *ochar, uint32_t *olen)
2810 {
2811     uint16_t s0, s1;
2812     uint32_t c, l;
2813 
2814     if (ilen < 2) {
2815         return 0;
2816     }
2817     s0 = cpu_lduw_data_ra(env, addr, ra);
2818     if ((s0 & 0xfc00) != 0xd800) {
2819         /* one word character */
2820         l = 2;
2821         c = s0;
2822     } else {
2823         /* two word character */
2824         l = 4;
2825         if (ilen < 4) {
2826             return 0;
2827         }
2828         s1 = cpu_lduw_data_ra(env, addr + 2, ra);
2829         c = extract32(s0, 6, 4) + 1;
2830         c = (c << 6) | (s0 & 0x3f);
2831         c = (c << 10) | (s1 & 0x3ff);
2832         if (enh_check && (s1 & 0xfc00) != 0xdc00) {
2833             /* invalid surrogate character */
2834             return 2;
2835         }
2836     }
2837 
2838     *ochar = c;
2839     *olen = l;
2840     return -1;
2841 }
2842 
2843 static int decode_utf32(CPUS390XState *env, uint64_t addr, uint64_t ilen,
2844                         bool enh_check, uintptr_t ra,
2845                         uint32_t *ochar, uint32_t *olen)
2846 {
2847     uint32_t c;
2848 
2849     if (ilen < 4) {
2850         return 0;
2851     }
2852     c = cpu_ldl_data_ra(env, addr, ra);
2853     if ((c >= 0xd800 && c <= 0xdbff) || c > 0x10ffff) {
2854         /* invalid unicode character */
2855         return 2;
2856     }
2857 
2858     *ochar = c;
2859     *olen = 4;
2860     return -1;
2861 }
2862 
2863 static int encode_utf8(CPUS390XState *env, uint64_t addr, uint64_t ilen,
2864                        uintptr_t ra, uint32_t c, uint32_t *olen)
2865 {
2866     uint8_t d[4];
2867     uint32_t l, i;
2868 
2869     if (c <= 0x7f) {
2870         /* one byte character */
2871         l = 1;
2872         d[0] = c;
2873     } else if (c <= 0x7ff) {
2874         /* two byte character */
2875         l = 2;
2876         d[1] = 0x80 | extract32(c, 0, 6);
2877         d[0] = 0xc0 | extract32(c, 6, 5);
2878     } else if (c <= 0xffff) {
2879         /* three byte character */
2880         l = 3;
2881         d[2] = 0x80 | extract32(c, 0, 6);
2882         d[1] = 0x80 | extract32(c, 6, 6);
2883         d[0] = 0xe0 | extract32(c, 12, 4);
2884     } else {
2885         /* four byte character */
2886         l = 4;
2887         d[3] = 0x80 | extract32(c, 0, 6);
2888         d[2] = 0x80 | extract32(c, 6, 6);
2889         d[1] = 0x80 | extract32(c, 12, 6);
2890         d[0] = 0xf0 | extract32(c, 18, 3);
2891     }
2892 
2893     if (ilen < l) {
2894         return 1;
2895     }
2896     for (i = 0; i < l; ++i) {
2897         cpu_stb_data_ra(env, addr + i, d[i], ra);
2898     }
2899 
2900     *olen = l;
2901     return -1;
2902 }
2903 
2904 static int encode_utf16(CPUS390XState *env, uint64_t addr, uint64_t ilen,
2905                         uintptr_t ra, uint32_t c, uint32_t *olen)
2906 {
2907     uint16_t d0, d1;
2908 
2909     if (c <= 0xffff) {
2910         /* one word character */
2911         if (ilen < 2) {
2912             return 1;
2913         }
2914         cpu_stw_data_ra(env, addr, c, ra);
2915         *olen = 2;
2916     } else {
2917         /* two word character */
2918         if (ilen < 4) {
2919             return 1;
2920         }
2921         d1 = 0xdc00 | extract32(c, 0, 10);
2922         d0 = 0xd800 | extract32(c, 10, 6);
2923         d0 = deposit32(d0, 6, 4, extract32(c, 16, 5) - 1);
2924         cpu_stw_data_ra(env, addr + 0, d0, ra);
2925         cpu_stw_data_ra(env, addr + 2, d1, ra);
2926         *olen = 4;
2927     }
2928 
2929     return -1;
2930 }
2931 
2932 static int encode_utf32(CPUS390XState *env, uint64_t addr, uint64_t ilen,
2933                         uintptr_t ra, uint32_t c, uint32_t *olen)
2934 {
2935     if (ilen < 4) {
2936         return 1;
2937     }
2938     cpu_stl_data_ra(env, addr, c, ra);
2939     *olen = 4;
2940     return -1;
2941 }
2942 
2943 static inline uint32_t convert_unicode(CPUS390XState *env, uint32_t r1,
2944                                        uint32_t r2, uint32_t m3, uintptr_t ra,
2945                                        decode_unicode_fn decode,
2946                                        encode_unicode_fn encode)
2947 {
2948     uint64_t dst = get_address(env, r1);
2949     uint64_t dlen = get_length(env, r1 + 1);
2950     uint64_t src = get_address(env, r2);
2951     uint64_t slen = get_length(env, r2 + 1);
2952     bool enh_check = m3 & 1;
2953     int cc, i;
2954 
2955     /* Lest we fail to service interrupts in a timely manner, limit the
2956        amount of work we're willing to do.  For now, let's cap at 256.  */
2957     for (i = 0; i < 256; ++i) {
2958         uint32_t c, ilen, olen;
2959 
2960         cc = decode(env, src, slen, enh_check, ra, &c, &ilen);
2961         if (unlikely(cc >= 0)) {
2962             break;
2963         }
2964         cc = encode(env, dst, dlen, ra, c, &olen);
2965         if (unlikely(cc >= 0)) {
2966             break;
2967         }
2968 
2969         src += ilen;
2970         slen -= ilen;
2971         dst += olen;
2972         dlen -= olen;
2973         cc = 3;
2974     }
2975 
2976     set_address(env, r1, dst);
2977     set_length(env, r1 + 1, dlen);
2978     set_address(env, r2, src);
2979     set_length(env, r2 + 1, slen);
2980 
2981     return cc;
2982 }
2983 
2984 uint32_t HELPER(cu12)(CPUS390XState *env, uint32_t r1, uint32_t r2, uint32_t m3)
2985 {
2986     return convert_unicode(env, r1, r2, m3, GETPC(),
2987                            decode_utf8, encode_utf16);
2988 }
2989 
2990 uint32_t HELPER(cu14)(CPUS390XState *env, uint32_t r1, uint32_t r2, uint32_t m3)
2991 {
2992     return convert_unicode(env, r1, r2, m3, GETPC(),
2993                            decode_utf8, encode_utf32);
2994 }
2995 
2996 uint32_t HELPER(cu21)(CPUS390XState *env, uint32_t r1, uint32_t r2, uint32_t m3)
2997 {
2998     return convert_unicode(env, r1, r2, m3, GETPC(),
2999                            decode_utf16, encode_utf8);
3000 }
3001 
3002 uint32_t HELPER(cu24)(CPUS390XState *env, uint32_t r1, uint32_t r2, uint32_t m3)
3003 {
3004     return convert_unicode(env, r1, r2, m3, GETPC(),
3005                            decode_utf16, encode_utf32);
3006 }
3007 
3008 uint32_t HELPER(cu41)(CPUS390XState *env, uint32_t r1, uint32_t r2, uint32_t m3)
3009 {
3010     return convert_unicode(env, r1, r2, m3, GETPC(),
3011                            decode_utf32, encode_utf8);
3012 }
3013 
3014 uint32_t HELPER(cu42)(CPUS390XState *env, uint32_t r1, uint32_t r2, uint32_t m3)
3015 {
3016     return convert_unicode(env, r1, r2, m3, GETPC(),
3017                            decode_utf32, encode_utf16);
3018 }
3019 
3020 void probe_write_access(CPUS390XState *env, uint64_t addr, uint64_t len,
3021                         uintptr_t ra)
3022 {
3023     /* test the actual access, not just any access to the page due to LAP */
3024     while (len) {
3025         const uint64_t pagelen = -(addr | TARGET_PAGE_MASK);
3026         const uint64_t curlen = MIN(pagelen, len);
3027 
3028         probe_write(env, addr, curlen, cpu_mmu_index(env, false), ra);
3029         addr = wrap_address(env, addr + curlen);
3030         len -= curlen;
3031     }
3032 }
3033 
3034 void HELPER(probe_write_access)(CPUS390XState *env, uint64_t addr, uint64_t len)
3035 {
3036     probe_write_access(env, addr, len, GETPC());
3037 }
3038