xref: /openbmc/qemu/target/s390x/mmu_helper.c (revision c5a5839856119a3644dcc0775a046ed0ee3081c3)
1 /*
2  * S390x MMU related functions
3  *
4  * Copyright (c) 2011 Alexander Graf
5  * Copyright (c) 2015 Thomas Huth, IBM Corporation
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17 
18 #include "qemu/osdep.h"
19 #include "qemu/error-report.h"
20 #include "exec/address-spaces.h"
21 #include "cpu.h"
22 #include "internal.h"
23 #include "kvm_s390x.h"
24 #include "sysemu/kvm.h"
25 #include "sysemu/tcg.h"
26 #include "exec/exec-all.h"
27 #include "trace.h"
28 #include "hw/hw.h"
29 #include "hw/s390x/storage-keys.h"
30 
31 /* Fetch/store bits in the translation exception code: */
32 #define FS_READ  0x800
33 #define FS_WRITE 0x400
34 
35 static void trigger_access_exception(CPUS390XState *env, uint32_t type,
36                                      uint64_t tec)
37 {
38     S390CPU *cpu = env_archcpu(env);
39 
40     if (kvm_enabled()) {
41         kvm_s390_access_exception(cpu, type, tec);
42     } else {
43         CPUState *cs = env_cpu(env);
44         if (type != PGM_ADDRESSING) {
45             stq_phys(cs->as, env->psa + offsetof(LowCore, trans_exc_code), tec);
46         }
47         trigger_pgm_exception(env, type);
48     }
49 }
50 
51 /* check whether the address would be proteted by Low-Address Protection */
52 static bool is_low_address(uint64_t addr)
53 {
54     return addr <= 511 || (addr >= 4096 && addr <= 4607);
55 }
56 
57 /* check whether Low-Address Protection is enabled for mmu_translate() */
58 static bool lowprot_enabled(const CPUS390XState *env, uint64_t asc)
59 {
60     if (!(env->cregs[0] & CR0_LOWPROT)) {
61         return false;
62     }
63     if (!(env->psw.mask & PSW_MASK_DAT)) {
64         return true;
65     }
66 
67     /* Check the private-space control bit */
68     switch (asc) {
69     case PSW_ASC_PRIMARY:
70         return !(env->cregs[1] & ASCE_PRIVATE_SPACE);
71     case PSW_ASC_SECONDARY:
72         return !(env->cregs[7] & ASCE_PRIVATE_SPACE);
73     case PSW_ASC_HOME:
74         return !(env->cregs[13] & ASCE_PRIVATE_SPACE);
75     default:
76         /* We don't support access register mode */
77         error_report("unsupported addressing mode");
78         exit(1);
79     }
80 }
81 
82 /**
83  * Translate real address to absolute (= physical)
84  * address by taking care of the prefix mapping.
85  */
86 target_ulong mmu_real2abs(CPUS390XState *env, target_ulong raddr)
87 {
88     if (raddr < 0x2000) {
89         return raddr + env->psa;    /* Map the lowcore. */
90     } else if (raddr >= env->psa && raddr < env->psa + 0x2000) {
91         return raddr - env->psa;    /* Map the 0 page. */
92     }
93     return raddr;
94 }
95 
96 static inline bool read_table_entry(CPUS390XState *env, hwaddr gaddr,
97                                     uint64_t *entry)
98 {
99     CPUState *cs = env_cpu(env);
100 
101     /*
102      * According to the PoP, these table addresses are "unpredictably real
103      * or absolute". Also, "it is unpredictable whether the address wraps
104      * or an addressing exception is recognized".
105      *
106      * We treat them as absolute addresses and don't wrap them.
107      */
108     if (unlikely(address_space_read(cs->as, gaddr, MEMTXATTRS_UNSPECIFIED,
109                                     entry, sizeof(*entry)) !=
110                  MEMTX_OK)) {
111         return false;
112     }
113     *entry = be64_to_cpu(*entry);
114     return true;
115 }
116 
117 static int mmu_translate_asce(CPUS390XState *env, target_ulong vaddr,
118                               uint64_t asc, uint64_t asce, target_ulong *raddr,
119                               int *flags, int rw)
120 {
121     const bool edat1 = (env->cregs[0] & CR0_EDAT) &&
122                        s390_has_feat(S390_FEAT_EDAT);
123     const bool edat2 = edat1 && s390_has_feat(S390_FEAT_EDAT_2);
124     const bool iep = (env->cregs[0] & CR0_IEP) &&
125                      s390_has_feat(S390_FEAT_INSTRUCTION_EXEC_PROT);
126     const int asce_tl = asce & ASCE_TABLE_LENGTH;
127     const int asce_p = asce & ASCE_PRIVATE_SPACE;
128     hwaddr gaddr = asce & ASCE_ORIGIN;
129     uint64_t entry;
130 
131     if (asce & ASCE_REAL_SPACE) {
132         /* direct mapping */
133         *raddr = vaddr;
134         return 0;
135     }
136 
137     switch (asce & ASCE_TYPE_MASK) {
138     case ASCE_TYPE_REGION1:
139         if (VADDR_REGION1_TL(vaddr) > asce_tl) {
140             return PGM_REG_FIRST_TRANS;
141         }
142         gaddr += VADDR_REGION1_TX(vaddr) * 8;
143         break;
144     case ASCE_TYPE_REGION2:
145         if (VADDR_REGION1_TX(vaddr)) {
146             return PGM_ASCE_TYPE;
147         }
148         if (VADDR_REGION2_TL(vaddr) > asce_tl) {
149             return PGM_REG_SEC_TRANS;
150         }
151         gaddr += VADDR_REGION2_TX(vaddr) * 8;
152         break;
153     case ASCE_TYPE_REGION3:
154         if (VADDR_REGION1_TX(vaddr) || VADDR_REGION2_TX(vaddr)) {
155             return PGM_ASCE_TYPE;
156         }
157         if (VADDR_REGION3_TL(vaddr) > asce_tl) {
158             return PGM_REG_THIRD_TRANS;
159         }
160         gaddr += VADDR_REGION3_TX(vaddr) * 8;
161         break;
162     case ASCE_TYPE_SEGMENT:
163         if (VADDR_REGION1_TX(vaddr) || VADDR_REGION2_TX(vaddr) ||
164             VADDR_REGION3_TX(vaddr)) {
165             return PGM_ASCE_TYPE;
166         }
167         if (VADDR_SEGMENT_TL(vaddr) > asce_tl) {
168             return PGM_SEGMENT_TRANS;
169         }
170         gaddr += VADDR_SEGMENT_TX(vaddr) * 8;
171         break;
172     }
173 
174     switch (asce & ASCE_TYPE_MASK) {
175     case ASCE_TYPE_REGION1:
176         if (!read_table_entry(env, gaddr, &entry)) {
177             return PGM_ADDRESSING;
178         }
179         if (entry & REGION_ENTRY_I) {
180             return PGM_REG_FIRST_TRANS;
181         }
182         if ((entry & REGION_ENTRY_TT) != REGION_ENTRY_TT_REGION1) {
183             return PGM_TRANS_SPEC;
184         }
185         if (VADDR_REGION2_TL(vaddr) < (entry & REGION_ENTRY_TF) >> 6 ||
186             VADDR_REGION2_TL(vaddr) > (entry & REGION_ENTRY_TL)) {
187             return PGM_REG_SEC_TRANS;
188         }
189         if (edat1 && (entry & REGION_ENTRY_P)) {
190             *flags &= ~PAGE_WRITE;
191         }
192         gaddr = (entry & REGION_ENTRY_ORIGIN) + VADDR_REGION2_TX(vaddr) * 8;
193         /* fall through */
194     case ASCE_TYPE_REGION2:
195         if (!read_table_entry(env, gaddr, &entry)) {
196             return PGM_ADDRESSING;
197         }
198         if (entry & REGION_ENTRY_I) {
199             return PGM_REG_SEC_TRANS;
200         }
201         if ((entry & REGION_ENTRY_TT) != REGION_ENTRY_TT_REGION2) {
202             return PGM_TRANS_SPEC;
203         }
204         if (VADDR_REGION3_TL(vaddr) < (entry & REGION_ENTRY_TF) >> 6 ||
205             VADDR_REGION3_TL(vaddr) > (entry & REGION_ENTRY_TL)) {
206             return PGM_REG_THIRD_TRANS;
207         }
208         if (edat1 && (entry & REGION_ENTRY_P)) {
209             *flags &= ~PAGE_WRITE;
210         }
211         gaddr = (entry & REGION_ENTRY_ORIGIN) + VADDR_REGION3_TX(vaddr) * 8;
212         /* fall through */
213     case ASCE_TYPE_REGION3:
214         if (!read_table_entry(env, gaddr, &entry)) {
215             return PGM_ADDRESSING;
216         }
217         if (entry & REGION_ENTRY_I) {
218             return PGM_REG_THIRD_TRANS;
219         }
220         if ((entry & REGION_ENTRY_TT) != REGION_ENTRY_TT_REGION3) {
221             return PGM_TRANS_SPEC;
222         }
223         if (edat2 && (entry & REGION3_ENTRY_CR) && asce_p) {
224             return PGM_TRANS_SPEC;
225         }
226         if (edat1 && (entry & REGION_ENTRY_P)) {
227             *flags &= ~PAGE_WRITE;
228         }
229         if (edat2 && (entry & REGION3_ENTRY_FC)) {
230             if (iep && (entry & REGION3_ENTRY_IEP)) {
231                 *flags &= ~PAGE_EXEC;
232             }
233             *raddr = (entry & REGION3_ENTRY_RFAA) |
234                      (vaddr & ~REGION3_ENTRY_RFAA);
235             return 0;
236         }
237         if (VADDR_SEGMENT_TL(vaddr) < (entry & REGION_ENTRY_TF) >> 6 ||
238             VADDR_SEGMENT_TL(vaddr) > (entry & REGION_ENTRY_TL)) {
239             return PGM_SEGMENT_TRANS;
240         }
241         gaddr = (entry & REGION_ENTRY_ORIGIN) + VADDR_SEGMENT_TX(vaddr) * 8;
242         /* fall through */
243     case ASCE_TYPE_SEGMENT:
244         if (!read_table_entry(env, gaddr, &entry)) {
245             return PGM_ADDRESSING;
246         }
247         if (entry & SEGMENT_ENTRY_I) {
248             return PGM_SEGMENT_TRANS;
249         }
250         if ((entry & SEGMENT_ENTRY_TT) != SEGMENT_ENTRY_TT_SEGMENT) {
251             return PGM_TRANS_SPEC;
252         }
253         if ((entry & SEGMENT_ENTRY_CS) && asce_p) {
254             return PGM_TRANS_SPEC;
255         }
256         if (entry & SEGMENT_ENTRY_P) {
257             *flags &= ~PAGE_WRITE;
258         }
259         if (edat1 && (entry & SEGMENT_ENTRY_FC)) {
260             if (iep && (entry & SEGMENT_ENTRY_IEP)) {
261                 *flags &= ~PAGE_EXEC;
262             }
263             *raddr = (entry & SEGMENT_ENTRY_SFAA) |
264                      (vaddr & ~SEGMENT_ENTRY_SFAA);
265             return 0;
266         }
267         gaddr = (entry & SEGMENT_ENTRY_ORIGIN) + VADDR_PAGE_TX(vaddr) * 8;
268         break;
269     }
270 
271     if (!read_table_entry(env, gaddr, &entry)) {
272         return PGM_ADDRESSING;
273     }
274     if (entry & PAGE_ENTRY_I) {
275         return PGM_PAGE_TRANS;
276     }
277     if (entry & PAGE_ENTRY_0) {
278         return PGM_TRANS_SPEC;
279     }
280     if (entry & PAGE_ENTRY_P) {
281         *flags &= ~PAGE_WRITE;
282     }
283     if (iep && (entry & PAGE_ENTRY_IEP)) {
284         *flags &= ~PAGE_EXEC;
285     }
286 
287     *raddr = entry & TARGET_PAGE_MASK;
288     return 0;
289 }
290 
291 static void mmu_handle_skey(target_ulong addr, int rw, int *flags)
292 {
293     static S390SKeysClass *skeyclass;
294     static S390SKeysState *ss;
295     uint8_t key;
296     int rc;
297 
298     if (unlikely(addr >= ram_size)) {
299         return;
300     }
301 
302     if (unlikely(!ss)) {
303         ss = s390_get_skeys_device();
304         skeyclass = S390_SKEYS_GET_CLASS(ss);
305     }
306 
307     /*
308      * Whenever we create a new TLB entry, we set the storage key reference
309      * bit. In case we allow write accesses, we set the storage key change
310      * bit. Whenever the guest changes the storage key, we have to flush the
311      * TLBs of all CPUs (the whole TLB or all affected entries), so that the
312      * next reference/change will result in an MMU fault and make us properly
313      * update the storage key here.
314      *
315      * Note 1: "record of references ... is not necessarily accurate",
316      *         "change bit may be set in case no storing has occurred".
317      *         -> We can set reference/change bits even on exceptions.
318      * Note 2: certain accesses seem to ignore storage keys. For example,
319      *         DAT translation does not set reference bits for table accesses.
320      *
321      * TODO: key-controlled protection. Only CPU accesses make use of the
322      *       PSW key. CSS accesses are different - we have to pass in the key.
323      *
324      * TODO: we have races between getting and setting the key.
325      */
326     rc = skeyclass->get_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key);
327     if (rc) {
328         trace_get_skeys_nonzero(rc);
329         return;
330     }
331 
332     switch (rw) {
333     case MMU_DATA_LOAD:
334     case MMU_INST_FETCH:
335         /*
336          * The TLB entry has to remain write-protected on read-faults if
337          * the storage key does not indicate a change already. Otherwise
338          * we might miss setting the change bit on write accesses.
339          */
340         if (!(key & SK_C)) {
341             *flags &= ~PAGE_WRITE;
342         }
343         break;
344     case MMU_DATA_STORE:
345         key |= SK_C;
346         break;
347     default:
348         g_assert_not_reached();
349     }
350 
351     /* Any store/fetch sets the reference bit */
352     key |= SK_R;
353 
354     rc = skeyclass->set_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key);
355     if (rc) {
356         trace_set_skeys_nonzero(rc);
357     }
358 }
359 
360 /**
361  * Translate a virtual (logical) address into a physical (absolute) address.
362  * @param vaddr  the virtual address
363  * @param rw     0 = read, 1 = write, 2 = code fetch
364  * @param asc    address space control (one of the PSW_ASC_* modes)
365  * @param raddr  the translated address is stored to this pointer
366  * @param flags  the PAGE_READ/WRITE/EXEC flags are stored to this pointer
367  * @param exc    true = inject a program check if a fault occurred
368  * @return       0 = success, != 0, the exception to raise
369  */
370 int mmu_translate(CPUS390XState *env, target_ulong vaddr, int rw, uint64_t asc,
371                   target_ulong *raddr, int *flags, uint64_t *tec)
372 {
373     uint64_t asce;
374     int r;
375 
376     *tec = (vaddr & TARGET_PAGE_MASK) | (asc >> 46) |
377             (rw == MMU_DATA_STORE ? FS_WRITE : FS_READ);
378     *flags = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
379 
380     if (is_low_address(vaddr & TARGET_PAGE_MASK) && lowprot_enabled(env, asc)) {
381         /*
382          * If any part of this page is currently protected, make sure the
383          * TLB entry will not be reused.
384          *
385          * As the protected range is always the first 512 bytes of the
386          * two first pages, we are able to catch all writes to these areas
387          * just by looking at the start address (triggering the tlb miss).
388          */
389         *flags |= PAGE_WRITE_INV;
390         if (is_low_address(vaddr) && rw == MMU_DATA_STORE) {
391             /* LAP sets bit 56 */
392             *tec |= 0x80;
393             return PGM_PROTECTION;
394         }
395     }
396 
397     vaddr &= TARGET_PAGE_MASK;
398 
399     if (!(env->psw.mask & PSW_MASK_DAT)) {
400         *raddr = vaddr;
401         goto nodat;
402     }
403 
404     switch (asc) {
405     case PSW_ASC_PRIMARY:
406         asce = env->cregs[1];
407         break;
408     case PSW_ASC_HOME:
409         asce = env->cregs[13];
410         break;
411     case PSW_ASC_SECONDARY:
412         asce = env->cregs[7];
413         break;
414     case PSW_ASC_ACCREG:
415     default:
416         hw_error("guest switched to unknown asc mode\n");
417         break;
418     }
419 
420     /* perform the DAT translation */
421     r = mmu_translate_asce(env, vaddr, asc, asce, raddr, flags, rw);
422     if (unlikely(r)) {
423         return r;
424     }
425 
426     /* check for DAT protection */
427     if (unlikely(rw == MMU_DATA_STORE && !(*flags & PAGE_WRITE))) {
428         /* DAT sets bit 61 only */
429         *tec |= 0x4;
430         return PGM_PROTECTION;
431     }
432 
433     /* check for Instruction-Execution-Protection */
434     if (unlikely(rw == MMU_INST_FETCH && !(*flags & PAGE_EXEC))) {
435         /* IEP sets bit 56 and 61 */
436         *tec |= 0x84;
437         return PGM_PROTECTION;
438     }
439 
440 nodat:
441     /* Convert real address -> absolute address */
442     *raddr = mmu_real2abs(env, *raddr);
443 
444     mmu_handle_skey(*raddr, rw, flags);
445     return 0;
446 }
447 
448 /**
449  * translate_pages: Translate a set of consecutive logical page addresses
450  * to absolute addresses. This function is used for TCG and old KVM without
451  * the MEMOP interface.
452  */
453 static int translate_pages(S390CPU *cpu, vaddr addr, int nr_pages,
454                            target_ulong *pages, bool is_write, uint64_t *tec)
455 {
456     uint64_t asc = cpu->env.psw.mask & PSW_MASK_ASC;
457     CPUS390XState *env = &cpu->env;
458     int ret, i, pflags;
459 
460     for (i = 0; i < nr_pages; i++) {
461         ret = mmu_translate(env, addr, is_write, asc, &pages[i], &pflags, tec);
462         if (ret) {
463             return ret;
464         }
465         if (!address_space_access_valid(&address_space_memory, pages[i],
466                                         TARGET_PAGE_SIZE, is_write,
467                                         MEMTXATTRS_UNSPECIFIED)) {
468             *tec = 0; /* unused */
469             return PGM_ADDRESSING;
470         }
471         addr += TARGET_PAGE_SIZE;
472     }
473 
474     return 0;
475 }
476 
477 int s390_cpu_pv_mem_rw(S390CPU *cpu, unsigned int offset, void *hostbuf,
478                        int len, bool is_write)
479 {
480     int ret;
481 
482     if (kvm_enabled()) {
483         ret = kvm_s390_mem_op_pv(cpu, offset, hostbuf, len, is_write);
484     } else {
485         /* Protected Virtualization is a KVM/Hardware only feature */
486         g_assert_not_reached();
487     }
488     return ret;
489 }
490 
491 /**
492  * s390_cpu_virt_mem_rw:
493  * @laddr:     the logical start address
494  * @ar:        the access register number
495  * @hostbuf:   buffer in host memory. NULL = do only checks w/o copying
496  * @len:       length that should be transferred
497  * @is_write:  true = write, false = read
498  * Returns:    0 on success, non-zero if an exception occurred
499  *
500  * Copy from/to guest memory using logical addresses. Note that we inject a
501  * program interrupt in case there is an error while accessing the memory.
502  *
503  * This function will always return (also for TCG), make sure to call
504  * s390_cpu_virt_mem_handle_exc() to properly exit the CPU loop.
505  */
506 int s390_cpu_virt_mem_rw(S390CPU *cpu, vaddr laddr, uint8_t ar, void *hostbuf,
507                          int len, bool is_write)
508 {
509     int currlen, nr_pages, i;
510     target_ulong *pages;
511     uint64_t tec;
512     int ret;
513 
514     if (kvm_enabled()) {
515         ret = kvm_s390_mem_op(cpu, laddr, ar, hostbuf, len, is_write);
516         if (ret >= 0) {
517             return ret;
518         }
519     }
520 
521     nr_pages = (((laddr & ~TARGET_PAGE_MASK) + len - 1) >> TARGET_PAGE_BITS)
522                + 1;
523     pages = g_malloc(nr_pages * sizeof(*pages));
524 
525     ret = translate_pages(cpu, laddr, nr_pages, pages, is_write, &tec);
526     if (ret) {
527         trigger_access_exception(&cpu->env, ret, tec);
528     } else if (hostbuf != NULL) {
529         /* Copy data by stepping through the area page by page */
530         for (i = 0; i < nr_pages; i++) {
531             currlen = MIN(len, TARGET_PAGE_SIZE - (laddr % TARGET_PAGE_SIZE));
532             cpu_physical_memory_rw(pages[i] | (laddr & ~TARGET_PAGE_MASK),
533                                    hostbuf, currlen, is_write);
534             laddr += currlen;
535             hostbuf += currlen;
536             len -= currlen;
537         }
538     }
539 
540     g_free(pages);
541     return ret;
542 }
543 
544 void s390_cpu_virt_mem_handle_exc(S390CPU *cpu, uintptr_t ra)
545 {
546     /* KVM will handle the interrupt automatically, TCG has to exit the TB */
547 #ifdef CONFIG_TCG
548     if (tcg_enabled()) {
549         cpu_loop_exit_restore(CPU(cpu), ra);
550     }
551 #endif
552 }
553 
554 /**
555  * Translate a real address into a physical (absolute) address.
556  * @param raddr  the real address
557  * @param rw     0 = read, 1 = write, 2 = code fetch
558  * @param addr   the translated address is stored to this pointer
559  * @param flags  the PAGE_READ/WRITE/EXEC flags are stored to this pointer
560  * @return       0 = success, != 0, the exception to raise
561  */
562 int mmu_translate_real(CPUS390XState *env, target_ulong raddr, int rw,
563                        target_ulong *addr, int *flags, uint64_t *tec)
564 {
565     const bool lowprot_enabled = env->cregs[0] & CR0_LOWPROT;
566 
567     *flags = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
568     if (is_low_address(raddr & TARGET_PAGE_MASK) && lowprot_enabled) {
569         /* see comment in mmu_translate() how this works */
570         *flags |= PAGE_WRITE_INV;
571         if (is_low_address(raddr) && rw == MMU_DATA_STORE) {
572             /* LAP sets bit 56 */
573             *tec = (raddr & TARGET_PAGE_MASK) | FS_WRITE | 0x80;
574             return PGM_PROTECTION;
575         }
576     }
577 
578     *addr = mmu_real2abs(env, raddr & TARGET_PAGE_MASK);
579 
580     mmu_handle_skey(*addr, rw, flags);
581     return 0;
582 }
583