xref: /openbmc/qemu/target/s390x/mmu_helper.c (revision 3dc29061f3291bf0b6cda9cc7bc04aa94101b52e)
1 /*
2  * S390x MMU related functions
3  *
4  * Copyright (c) 2011 Alexander Graf
5  * Copyright (c) 2015 Thomas Huth, IBM Corporation
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17 
18 #include "qemu/osdep.h"
19 #include "qemu/error-report.h"
20 #include "exec/address-spaces.h"
21 #include "cpu.h"
22 #include "internal.h"
23 #include "kvm_s390x.h"
24 #include "sysemu/kvm.h"
25 #include "sysemu/tcg.h"
26 #include "exec/exec-all.h"
27 #include "trace.h"
28 #include "hw/hw.h"
29 #include "hw/s390x/storage-keys.h"
30 
31 /* Fetch/store bits in the translation exception code: */
32 #define FS_READ  0x800
33 #define FS_WRITE 0x400
34 
35 static void trigger_access_exception(CPUS390XState *env, uint32_t type,
36                                      uint32_t ilen, uint64_t tec)
37 {
38     S390CPU *cpu = env_archcpu(env);
39 
40     if (kvm_enabled()) {
41         kvm_s390_access_exception(cpu, type, tec);
42     } else {
43         CPUState *cs = env_cpu(env);
44         if (type != PGM_ADDRESSING) {
45             stq_phys(cs->as, env->psa + offsetof(LowCore, trans_exc_code), tec);
46         }
47         trigger_pgm_exception(env, type, ilen);
48     }
49 }
50 
51 /* check whether the address would be proteted by Low-Address Protection */
52 static bool is_low_address(uint64_t addr)
53 {
54     return addr <= 511 || (addr >= 4096 && addr <= 4607);
55 }
56 
57 /* check whether Low-Address Protection is enabled for mmu_translate() */
58 static bool lowprot_enabled(const CPUS390XState *env, uint64_t asc)
59 {
60     if (!(env->cregs[0] & CR0_LOWPROT)) {
61         return false;
62     }
63     if (!(env->psw.mask & PSW_MASK_DAT)) {
64         return true;
65     }
66 
67     /* Check the private-space control bit */
68     switch (asc) {
69     case PSW_ASC_PRIMARY:
70         return !(env->cregs[1] & ASCE_PRIVATE_SPACE);
71     case PSW_ASC_SECONDARY:
72         return !(env->cregs[7] & ASCE_PRIVATE_SPACE);
73     case PSW_ASC_HOME:
74         return !(env->cregs[13] & ASCE_PRIVATE_SPACE);
75     default:
76         /* We don't support access register mode */
77         error_report("unsupported addressing mode");
78         exit(1);
79     }
80 }
81 
82 /**
83  * Translate real address to absolute (= physical)
84  * address by taking care of the prefix mapping.
85  */
86 target_ulong mmu_real2abs(CPUS390XState *env, target_ulong raddr)
87 {
88     if (raddr < 0x2000) {
89         return raddr + env->psa;    /* Map the lowcore. */
90     } else if (raddr >= env->psa && raddr < env->psa + 0x2000) {
91         return raddr - env->psa;    /* Map the 0 page. */
92     }
93     return raddr;
94 }
95 
96 static inline bool read_table_entry(CPUS390XState *env, hwaddr gaddr,
97                                     uint64_t *entry)
98 {
99     CPUState *cs = env_cpu(env);
100 
101     /*
102      * According to the PoP, these table addresses are "unpredictably real
103      * or absolute". Also, "it is unpredictable whether the address wraps
104      * or an addressing exception is recognized".
105      *
106      * We treat them as absolute addresses and don't wrap them.
107      */
108     if (unlikely(address_space_read(cs->as, gaddr, MEMTXATTRS_UNSPECIFIED,
109                                     (uint8_t *)entry, sizeof(*entry)) !=
110                  MEMTX_OK)) {
111         return false;
112     }
113     *entry = be64_to_cpu(*entry);
114     return true;
115 }
116 
117 static int mmu_translate_asce(CPUS390XState *env, target_ulong vaddr,
118                               uint64_t asc, uint64_t asce, target_ulong *raddr,
119                               int *flags, int rw, bool exc)
120 {
121     const bool edat1 = (env->cregs[0] & CR0_EDAT) &&
122                        s390_has_feat(S390_FEAT_EDAT);
123     const bool edat2 = edat1 && s390_has_feat(S390_FEAT_EDAT_2);
124     const int asce_tl = asce & ASCE_TABLE_LENGTH;
125     const int asce_p = asce & ASCE_PRIVATE_SPACE;
126     hwaddr gaddr = asce & ASCE_ORIGIN;
127     uint64_t entry;
128 
129     if (asce & ASCE_REAL_SPACE) {
130         /* direct mapping */
131         *raddr = vaddr;
132         return 0;
133     }
134 
135     switch (asce & ASCE_TYPE_MASK) {
136     case ASCE_TYPE_REGION1:
137         if (VADDR_REGION1_TL(vaddr) > asce_tl) {
138             return PGM_REG_FIRST_TRANS;
139         }
140         gaddr += VADDR_REGION1_TX(vaddr) * 8;
141         break;
142     case ASCE_TYPE_REGION2:
143         if (VADDR_REGION1_TX(vaddr)) {
144             return PGM_ASCE_TYPE;
145         }
146         if (VADDR_REGION2_TL(vaddr) > asce_tl) {
147             return PGM_REG_SEC_TRANS;
148         }
149         gaddr += VADDR_REGION2_TX(vaddr) * 8;
150         break;
151     case ASCE_TYPE_REGION3:
152         if (VADDR_REGION1_TX(vaddr) || VADDR_REGION2_TX(vaddr)) {
153             return PGM_ASCE_TYPE;
154         }
155         if (VADDR_REGION3_TL(vaddr) > asce_tl) {
156             return PGM_REG_THIRD_TRANS;
157         }
158         gaddr += VADDR_REGION3_TX(vaddr) * 8;
159         break;
160     case ASCE_TYPE_SEGMENT:
161         if (VADDR_REGION1_TX(vaddr) || VADDR_REGION2_TX(vaddr) ||
162             VADDR_REGION3_TX(vaddr)) {
163             return PGM_ASCE_TYPE;
164         }
165         if (VADDR_SEGMENT_TL(vaddr) > asce_tl) {
166             return PGM_SEGMENT_TRANS;
167         }
168         gaddr += VADDR_SEGMENT_TX(vaddr) * 8;
169         break;
170     }
171 
172     switch (asce & ASCE_TYPE_MASK) {
173     case ASCE_TYPE_REGION1:
174         if (!read_table_entry(env, gaddr, &entry)) {
175             return PGM_ADDRESSING;
176         }
177         if (entry & REGION_ENTRY_I) {
178             return PGM_REG_FIRST_TRANS;
179         }
180         if ((entry & REGION_ENTRY_TT) != REGION_ENTRY_TT_REGION1) {
181             return PGM_TRANS_SPEC;
182         }
183         if (VADDR_REGION2_TL(vaddr) < (entry & REGION_ENTRY_TF) >> 6 ||
184             VADDR_REGION2_TL(vaddr) > (entry & REGION_ENTRY_TL)) {
185             return PGM_REG_SEC_TRANS;
186         }
187         if (edat1 && (entry & REGION_ENTRY_P)) {
188             *flags &= ~PAGE_WRITE;
189         }
190         gaddr = (entry & REGION_ENTRY_ORIGIN) + VADDR_REGION2_TX(vaddr) * 8;
191         /* fall through */
192     case ASCE_TYPE_REGION2:
193         if (!read_table_entry(env, gaddr, &entry)) {
194             return PGM_ADDRESSING;
195         }
196         if (entry & REGION_ENTRY_I) {
197             return PGM_REG_SEC_TRANS;
198         }
199         if ((entry & REGION_ENTRY_TT) != REGION_ENTRY_TT_REGION2) {
200             return PGM_TRANS_SPEC;
201         }
202         if (VADDR_REGION3_TL(vaddr) < (entry & REGION_ENTRY_TF) >> 6 ||
203             VADDR_REGION3_TL(vaddr) > (entry & REGION_ENTRY_TL)) {
204             return PGM_REG_THIRD_TRANS;
205         }
206         if (edat1 && (entry & REGION_ENTRY_P)) {
207             *flags &= ~PAGE_WRITE;
208         }
209         gaddr = (entry & REGION_ENTRY_ORIGIN) + VADDR_REGION3_TX(vaddr) * 8;
210         /* fall through */
211     case ASCE_TYPE_REGION3:
212         if (!read_table_entry(env, gaddr, &entry)) {
213             return PGM_ADDRESSING;
214         }
215         if (entry & REGION_ENTRY_I) {
216             return PGM_REG_THIRD_TRANS;
217         }
218         if ((entry & REGION_ENTRY_TT) != REGION_ENTRY_TT_REGION3) {
219             return PGM_TRANS_SPEC;
220         }
221         if (edat2 && (entry & REGION3_ENTRY_CR) && asce_p) {
222             return PGM_TRANS_SPEC;
223         }
224         if (edat1 && (entry & REGION_ENTRY_P)) {
225             *flags &= ~PAGE_WRITE;
226         }
227         if (edat2 && (entry & REGION3_ENTRY_FC)) {
228             *raddr = (entry & REGION3_ENTRY_RFAA) |
229                      (vaddr & ~REGION3_ENTRY_RFAA);
230             return 0;
231         }
232         if (VADDR_SEGMENT_TL(vaddr) < (entry & REGION_ENTRY_TF) >> 6 ||
233             VADDR_SEGMENT_TL(vaddr) > (entry & REGION_ENTRY_TL)) {
234             return PGM_SEGMENT_TRANS;
235         }
236         gaddr = (entry & REGION_ENTRY_ORIGIN) + VADDR_SEGMENT_TX(vaddr) * 8;
237         /* fall through */
238     case ASCE_TYPE_SEGMENT:
239         if (!read_table_entry(env, gaddr, &entry)) {
240             return PGM_ADDRESSING;
241         }
242         if (entry & SEGMENT_ENTRY_I) {
243             return PGM_SEGMENT_TRANS;
244         }
245         if ((entry & SEGMENT_ENTRY_TT) != SEGMENT_ENTRY_TT_SEGMENT) {
246             return PGM_TRANS_SPEC;
247         }
248         if ((entry & SEGMENT_ENTRY_CS) && asce_p) {
249             return PGM_TRANS_SPEC;
250         }
251         if (entry & SEGMENT_ENTRY_P) {
252             *flags &= ~PAGE_WRITE;
253         }
254         if (edat1 && (entry & SEGMENT_ENTRY_FC)) {
255             *raddr = (entry & SEGMENT_ENTRY_SFAA) |
256                      (vaddr & ~SEGMENT_ENTRY_SFAA);
257             return 0;
258         }
259         gaddr = (entry & SEGMENT_ENTRY_ORIGIN) + VADDR_PAGE_TX(vaddr) * 8;
260         break;
261     }
262 
263     if (!read_table_entry(env, gaddr, &entry)) {
264         return PGM_ADDRESSING;
265     }
266     if (entry & PAGE_ENTRY_I) {
267         return PGM_PAGE_TRANS;
268     }
269     if (entry & PAGE_ENTRY_0) {
270         return PGM_TRANS_SPEC;
271     }
272     if (entry & PAGE_ENTRY_P) {
273         *flags &= ~PAGE_WRITE;
274     }
275 
276     *raddr = entry & TARGET_PAGE_MASK;
277     return 0;
278 }
279 
280 static void mmu_handle_skey(target_ulong addr, int rw, int *flags)
281 {
282     static S390SKeysClass *skeyclass;
283     static S390SKeysState *ss;
284     uint8_t key;
285     int rc;
286 
287     if (unlikely(addr >= ram_size)) {
288         return;
289     }
290 
291     if (unlikely(!ss)) {
292         ss = s390_get_skeys_device();
293         skeyclass = S390_SKEYS_GET_CLASS(ss);
294     }
295 
296     /*
297      * Whenever we create a new TLB entry, we set the storage key reference
298      * bit. In case we allow write accesses, we set the storage key change
299      * bit. Whenever the guest changes the storage key, we have to flush the
300      * TLBs of all CPUs (the whole TLB or all affected entries), so that the
301      * next reference/change will result in an MMU fault and make us properly
302      * update the storage key here.
303      *
304      * Note 1: "record of references ... is not necessarily accurate",
305      *         "change bit may be set in case no storing has occurred".
306      *         -> We can set reference/change bits even on exceptions.
307      * Note 2: certain accesses seem to ignore storage keys. For example,
308      *         DAT translation does not set reference bits for table accesses.
309      *
310      * TODO: key-controlled protection. Only CPU accesses make use of the
311      *       PSW key. CSS accesses are different - we have to pass in the key.
312      *
313      * TODO: we have races between getting and setting the key.
314      */
315     rc = skeyclass->get_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key);
316     if (rc) {
317         trace_get_skeys_nonzero(rc);
318         return;
319     }
320 
321     switch (rw) {
322     case MMU_DATA_LOAD:
323     case MMU_INST_FETCH:
324         /*
325          * The TLB entry has to remain write-protected on read-faults if
326          * the storage key does not indicate a change already. Otherwise
327          * we might miss setting the change bit on write accesses.
328          */
329         if (!(key & SK_C)) {
330             *flags &= ~PAGE_WRITE;
331         }
332         break;
333     case MMU_DATA_STORE:
334         key |= SK_C;
335         break;
336     default:
337         g_assert_not_reached();
338     }
339 
340     /* Any store/fetch sets the reference bit */
341     key |= SK_R;
342 
343     rc = skeyclass->set_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key);
344     if (rc) {
345         trace_set_skeys_nonzero(rc);
346     }
347 }
348 
349 /**
350  * Translate a virtual (logical) address into a physical (absolute) address.
351  * @param vaddr  the virtual address
352  * @param rw     0 = read, 1 = write, 2 = code fetch
353  * @param asc    address space control (one of the PSW_ASC_* modes)
354  * @param raddr  the translated address is stored to this pointer
355  * @param flags  the PAGE_READ/WRITE/EXEC flags are stored to this pointer
356  * @param exc    true = inject a program check if a fault occurred
357  * @return       0 if the translation was successful, -1 if a fault occurred
358  */
359 int mmu_translate(CPUS390XState *env, target_ulong vaddr, int rw, uint64_t asc,
360                   target_ulong *raddr, int *flags, bool exc)
361 {
362     /* Code accesses have an undefined ilc, let's use 2 bytes. */
363     const int ilen = (rw == MMU_INST_FETCH) ? 2 : ILEN_AUTO;
364     uint64_t tec = (vaddr & TARGET_PAGE_MASK) | (asc >> 46) |
365                    (rw == MMU_DATA_STORE ? FS_WRITE : FS_READ);
366     uint64_t asce;
367     int r;
368 
369 
370     *flags = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
371     if (is_low_address(vaddr & TARGET_PAGE_MASK) && lowprot_enabled(env, asc)) {
372         /*
373          * If any part of this page is currently protected, make sure the
374          * TLB entry will not be reused.
375          *
376          * As the protected range is always the first 512 bytes of the
377          * two first pages, we are able to catch all writes to these areas
378          * just by looking at the start address (triggering the tlb miss).
379          */
380         *flags |= PAGE_WRITE_INV;
381         if (is_low_address(vaddr) && rw == MMU_DATA_STORE) {
382             if (exc) {
383                 /* LAP sets bit 56 */
384                 tec |= 0x80;
385                 trigger_access_exception(env, PGM_PROTECTION, ilen, tec);
386             }
387             return -EACCES;
388         }
389     }
390 
391     vaddr &= TARGET_PAGE_MASK;
392 
393     if (!(env->psw.mask & PSW_MASK_DAT)) {
394         *raddr = vaddr;
395         goto nodat;
396     }
397 
398     switch (asc) {
399     case PSW_ASC_PRIMARY:
400         asce = env->cregs[1];
401         break;
402     case PSW_ASC_HOME:
403         asce = env->cregs[13];
404         break;
405     case PSW_ASC_SECONDARY:
406         asce = env->cregs[7];
407         break;
408     case PSW_ASC_ACCREG:
409     default:
410         hw_error("guest switched to unknown asc mode\n");
411         break;
412     }
413 
414     /* perform the DAT translation */
415     r = mmu_translate_asce(env, vaddr, asc, asce, raddr, flags, rw, exc);
416     if (unlikely(r)) {
417         if (exc) {
418             trigger_access_exception(env, r, ilen, tec);
419         }
420         return -1;
421     }
422 
423     /* check for DAT protection */
424     if (unlikely(rw == MMU_DATA_STORE && !(*flags & PAGE_WRITE))) {
425         if (exc) {
426             /* DAT sets bit 61 only */
427             tec |= 0x4;
428             trigger_access_exception(env, PGM_PROTECTION, ilen, tec);
429         }
430         return -1;
431     }
432 
433 nodat:
434     /* Convert real address -> absolute address */
435     *raddr = mmu_real2abs(env, *raddr);
436 
437     mmu_handle_skey(*raddr, rw, flags);
438     return 0;
439 }
440 
441 /**
442  * translate_pages: Translate a set of consecutive logical page addresses
443  * to absolute addresses. This function is used for TCG and old KVM without
444  * the MEMOP interface.
445  */
446 static int translate_pages(S390CPU *cpu, vaddr addr, int nr_pages,
447                            target_ulong *pages, bool is_write)
448 {
449     uint64_t asc = cpu->env.psw.mask & PSW_MASK_ASC;
450     CPUS390XState *env = &cpu->env;
451     int ret, i, pflags;
452 
453     for (i = 0; i < nr_pages; i++) {
454         ret = mmu_translate(env, addr, is_write, asc, &pages[i], &pflags, true);
455         if (ret) {
456             return ret;
457         }
458         if (!address_space_access_valid(&address_space_memory, pages[i],
459                                         TARGET_PAGE_SIZE, is_write,
460                                         MEMTXATTRS_UNSPECIFIED)) {
461             trigger_access_exception(env, PGM_ADDRESSING, ILEN_AUTO, 0);
462             return -EFAULT;
463         }
464         addr += TARGET_PAGE_SIZE;
465     }
466 
467     return 0;
468 }
469 
470 /**
471  * s390_cpu_virt_mem_rw:
472  * @laddr:     the logical start address
473  * @ar:        the access register number
474  * @hostbuf:   buffer in host memory. NULL = do only checks w/o copying
475  * @len:       length that should be transferred
476  * @is_write:  true = write, false = read
477  * Returns:    0 on success, non-zero if an exception occurred
478  *
479  * Copy from/to guest memory using logical addresses. Note that we inject a
480  * program interrupt in case there is an error while accessing the memory.
481  *
482  * This function will always return (also for TCG), make sure to call
483  * s390_cpu_virt_mem_handle_exc() to properly exit the CPU loop.
484  */
485 int s390_cpu_virt_mem_rw(S390CPU *cpu, vaddr laddr, uint8_t ar, void *hostbuf,
486                          int len, bool is_write)
487 {
488     int currlen, nr_pages, i;
489     target_ulong *pages;
490     int ret;
491 
492     if (kvm_enabled()) {
493         ret = kvm_s390_mem_op(cpu, laddr, ar, hostbuf, len, is_write);
494         if (ret >= 0) {
495             return ret;
496         }
497     }
498 
499     nr_pages = (((laddr & ~TARGET_PAGE_MASK) + len - 1) >> TARGET_PAGE_BITS)
500                + 1;
501     pages = g_malloc(nr_pages * sizeof(*pages));
502 
503     ret = translate_pages(cpu, laddr, nr_pages, pages, is_write);
504     if (ret == 0 && hostbuf != NULL) {
505         /* Copy data by stepping through the area page by page */
506         for (i = 0; i < nr_pages; i++) {
507             currlen = MIN(len, TARGET_PAGE_SIZE - (laddr % TARGET_PAGE_SIZE));
508             cpu_physical_memory_rw(pages[i] | (laddr & ~TARGET_PAGE_MASK),
509                                    hostbuf, currlen, is_write);
510             laddr += currlen;
511             hostbuf += currlen;
512             len -= currlen;
513         }
514     }
515 
516     g_free(pages);
517     return ret;
518 }
519 
520 void s390_cpu_virt_mem_handle_exc(S390CPU *cpu, uintptr_t ra)
521 {
522     /* KVM will handle the interrupt automatically, TCG has to exit the TB */
523 #ifdef CONFIG_TCG
524     if (tcg_enabled()) {
525         cpu_loop_exit_restore(CPU(cpu), ra);
526     }
527 #endif
528 }
529 
530 /**
531  * Translate a real address into a physical (absolute) address.
532  * @param raddr  the real address
533  * @param rw     0 = read, 1 = write, 2 = code fetch
534  * @param addr   the translated address is stored to this pointer
535  * @param flags  the PAGE_READ/WRITE/EXEC flags are stored to this pointer
536  * @return       0 if the translation was successful, < 0 if a fault occurred
537  */
538 int mmu_translate_real(CPUS390XState *env, target_ulong raddr, int rw,
539                        target_ulong *addr, int *flags)
540 {
541     /* Code accesses have an undefined ilc, let's use 2 bytes. */
542     uint64_t tec = (raddr & TARGET_PAGE_MASK) |
543                    (rw == MMU_DATA_STORE ? FS_WRITE : FS_READ);
544     const bool lowprot_enabled = env->cregs[0] & CR0_LOWPROT;
545 
546     *flags = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
547     if (is_low_address(raddr & TARGET_PAGE_MASK) && lowprot_enabled) {
548         /* see comment in mmu_translate() how this works */
549         *flags |= PAGE_WRITE_INV;
550         if (is_low_address(raddr) && rw == MMU_DATA_STORE) {
551             /* LAP sets bit 56 */
552             tec |= 0x80;
553             trigger_access_exception(env, PGM_PROTECTION, ILEN_AUTO, tec);
554             return -EACCES;
555         }
556     }
557 
558     *addr = mmu_real2abs(env, raddr & TARGET_PAGE_MASK);
559 
560     mmu_handle_skey(*addr, rw, flags);
561     return 0;
562 }
563