xref: /openbmc/qemu/target/s390x/kvm/kvm.c (revision 623d7e3551a6fc5693c06ea938c60fe281b52e27)
1 /*
2  * QEMU S390x KVM implementation
3  *
4  * Copyright (c) 2009 Alexander Graf <agraf@suse.de>
5  * Copyright IBM Corp. 2012
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "qemu/osdep.h"
22 #include <sys/ioctl.h>
23 
24 #include <linux/kvm.h>
25 #include <asm/ptrace.h>
26 
27 #include "cpu.h"
28 #include "s390x-internal.h"
29 #include "kvm_s390x.h"
30 #include "sysemu/kvm_int.h"
31 #include "qemu/cutils.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
34 #include "qemu/timer.h"
35 #include "qemu/units.h"
36 #include "qemu/main-loop.h"
37 #include "qemu/mmap-alloc.h"
38 #include "qemu/log.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/hw_accel.h"
41 #include "sysemu/runstate.h"
42 #include "sysemu/device_tree.h"
43 #include "exec/gdbstub.h"
44 #include "exec/ram_addr.h"
45 #include "trace.h"
46 #include "hw/s390x/s390-pci-inst.h"
47 #include "hw/s390x/s390-pci-bus.h"
48 #include "hw/s390x/ipl.h"
49 #include "hw/s390x/ebcdic.h"
50 #include "exec/memattrs.h"
51 #include "hw/s390x/s390-virtio-ccw.h"
52 #include "hw/s390x/s390-virtio-hcall.h"
53 #include "hw/s390x/pv.h"
54 
55 #ifndef DEBUG_KVM
56 #define DEBUG_KVM  0
57 #endif
58 
59 #define DPRINTF(fmt, ...) do {                \
60     if (DEBUG_KVM) {                          \
61         fprintf(stderr, fmt, ## __VA_ARGS__); \
62     }                                         \
63 } while (0)
64 
65 #define kvm_vm_check_mem_attr(s, attr) \
66     kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr)
67 
68 #define IPA0_DIAG                       0x8300
69 #define IPA0_SIGP                       0xae00
70 #define IPA0_B2                         0xb200
71 #define IPA0_B9                         0xb900
72 #define IPA0_EB                         0xeb00
73 #define IPA0_E3                         0xe300
74 
75 #define PRIV_B2_SCLP_CALL               0x20
76 #define PRIV_B2_CSCH                    0x30
77 #define PRIV_B2_HSCH                    0x31
78 #define PRIV_B2_MSCH                    0x32
79 #define PRIV_B2_SSCH                    0x33
80 #define PRIV_B2_STSCH                   0x34
81 #define PRIV_B2_TSCH                    0x35
82 #define PRIV_B2_TPI                     0x36
83 #define PRIV_B2_SAL                     0x37
84 #define PRIV_B2_RSCH                    0x38
85 #define PRIV_B2_STCRW                   0x39
86 #define PRIV_B2_STCPS                   0x3a
87 #define PRIV_B2_RCHP                    0x3b
88 #define PRIV_B2_SCHM                    0x3c
89 #define PRIV_B2_CHSC                    0x5f
90 #define PRIV_B2_SIGA                    0x74
91 #define PRIV_B2_XSCH                    0x76
92 
93 #define PRIV_EB_SQBS                    0x8a
94 #define PRIV_EB_PCISTB                  0xd0
95 #define PRIV_EB_SIC                     0xd1
96 
97 #define PRIV_B9_EQBS                    0x9c
98 #define PRIV_B9_CLP                     0xa0
99 #define PRIV_B9_PCISTG                  0xd0
100 #define PRIV_B9_PCILG                   0xd2
101 #define PRIV_B9_RPCIT                   0xd3
102 
103 #define PRIV_E3_MPCIFC                  0xd0
104 #define PRIV_E3_STPCIFC                 0xd4
105 
106 #define DIAG_TIMEREVENT                 0x288
107 #define DIAG_IPL                        0x308
108 #define DIAG_SET_CONTROL_PROGRAM_CODES  0x318
109 #define DIAG_KVM_HYPERCALL              0x500
110 #define DIAG_KVM_BREAKPOINT             0x501
111 
112 #define ICPT_INSTRUCTION                0x04
113 #define ICPT_PROGRAM                    0x08
114 #define ICPT_EXT_INT                    0x14
115 #define ICPT_WAITPSW                    0x1c
116 #define ICPT_SOFT_INTERCEPT             0x24
117 #define ICPT_CPU_STOP                   0x28
118 #define ICPT_OPEREXC                    0x2c
119 #define ICPT_IO                         0x40
120 #define ICPT_PV_INSTR                   0x68
121 #define ICPT_PV_INSTR_NOTIFICATION      0x6c
122 
123 #define NR_LOCAL_IRQS 32
124 /*
125  * Needs to be big enough to contain max_cpus emergency signals
126  * and in addition NR_LOCAL_IRQS interrupts
127  */
128 #define VCPU_IRQ_BUF_SIZE(max_cpus) (sizeof(struct kvm_s390_irq) * \
129                                      (max_cpus + NR_LOCAL_IRQS))
130 /*
131  * KVM does only support memory slots up to KVM_MEM_MAX_NR_PAGES pages
132  * as the dirty bitmap must be managed by bitops that take an int as
133  * position indicator. This would end at an unaligned  address
134  * (0x7fffff00000). As future variants might provide larger pages
135  * and to make all addresses properly aligned, let us split at 4TB.
136  */
137 #define KVM_SLOT_MAX_BYTES (4UL * TiB)
138 
139 static CPUWatchpoint hw_watchpoint;
140 /*
141  * We don't use a list because this structure is also used to transmit the
142  * hardware breakpoints to the kernel.
143  */
144 static struct kvm_hw_breakpoint *hw_breakpoints;
145 static int nb_hw_breakpoints;
146 
147 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
148     KVM_CAP_LAST_INFO
149 };
150 
151 static int cap_sync_regs;
152 static int cap_async_pf;
153 static int cap_mem_op;
154 static int cap_mem_op_extension;
155 static int cap_s390_irq;
156 static int cap_ri;
157 static int cap_hpage_1m;
158 static int cap_vcpu_resets;
159 static int cap_protected;
160 static int cap_zpci_op;
161 static int cap_protected_dump;
162 
163 static bool mem_op_storage_key_support;
164 
165 static int active_cmma;
166 
167 static int kvm_s390_query_mem_limit(uint64_t *memory_limit)
168 {
169     struct kvm_device_attr attr = {
170         .group = KVM_S390_VM_MEM_CTRL,
171         .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
172         .addr = (uint64_t) memory_limit,
173     };
174 
175     return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
176 }
177 
178 int kvm_s390_set_mem_limit(uint64_t new_limit, uint64_t *hw_limit)
179 {
180     int rc;
181 
182     struct kvm_device_attr attr = {
183         .group = KVM_S390_VM_MEM_CTRL,
184         .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
185         .addr = (uint64_t) &new_limit,
186     };
187 
188     if (!kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_LIMIT_SIZE)) {
189         return 0;
190     }
191 
192     rc = kvm_s390_query_mem_limit(hw_limit);
193     if (rc) {
194         return rc;
195     } else if (*hw_limit < new_limit) {
196         return -E2BIG;
197     }
198 
199     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
200 }
201 
202 int kvm_s390_cmma_active(void)
203 {
204     return active_cmma;
205 }
206 
207 static bool kvm_s390_cmma_available(void)
208 {
209     static bool initialized, value;
210 
211     if (!initialized) {
212         initialized = true;
213         value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) &&
214                 kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA);
215     }
216     return value;
217 }
218 
219 void kvm_s390_cmma_reset(void)
220 {
221     int rc;
222     struct kvm_device_attr attr = {
223         .group = KVM_S390_VM_MEM_CTRL,
224         .attr = KVM_S390_VM_MEM_CLR_CMMA,
225     };
226 
227     if (!kvm_s390_cmma_active()) {
228         return;
229     }
230 
231     rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
232     trace_kvm_clear_cmma(rc);
233 }
234 
235 static void kvm_s390_enable_cmma(void)
236 {
237     int rc;
238     struct kvm_device_attr attr = {
239         .group = KVM_S390_VM_MEM_CTRL,
240         .attr = KVM_S390_VM_MEM_ENABLE_CMMA,
241     };
242 
243     if (cap_hpage_1m) {
244         warn_report("CMM will not be enabled because it is not "
245                     "compatible with huge memory backings.");
246         return;
247     }
248     rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
249     active_cmma = !rc;
250     trace_kvm_enable_cmma(rc);
251 }
252 
253 static void kvm_s390_set_attr(uint64_t attr)
254 {
255     struct kvm_device_attr attribute = {
256         .group = KVM_S390_VM_CRYPTO,
257         .attr  = attr,
258     };
259 
260     int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute);
261 
262     if (ret) {
263         error_report("Failed to set crypto device attribute %lu: %s",
264                      attr, strerror(-ret));
265     }
266 }
267 
268 static void kvm_s390_init_aes_kw(void)
269 {
270     uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW;
271 
272     if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap",
273                                  NULL)) {
274             attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW;
275     }
276 
277     if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
278             kvm_s390_set_attr(attr);
279     }
280 }
281 
282 static void kvm_s390_init_dea_kw(void)
283 {
284     uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW;
285 
286     if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap",
287                                  NULL)) {
288             attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW;
289     }
290 
291     if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
292             kvm_s390_set_attr(attr);
293     }
294 }
295 
296 void kvm_s390_crypto_reset(void)
297 {
298     if (s390_has_feat(S390_FEAT_MSA_EXT_3)) {
299         kvm_s390_init_aes_kw();
300         kvm_s390_init_dea_kw();
301     }
302 }
303 
304 void kvm_s390_set_max_pagesize(uint64_t pagesize, Error **errp)
305 {
306     if (pagesize == 4 * KiB) {
307         return;
308     }
309 
310     if (!hpage_1m_allowed()) {
311         error_setg(errp, "This QEMU machine does not support huge page "
312                    "mappings");
313         return;
314     }
315 
316     if (pagesize != 1 * MiB) {
317         error_setg(errp, "Memory backing with 2G pages was specified, "
318                    "but KVM does not support this memory backing");
319         return;
320     }
321 
322     if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_HPAGE_1M, 0)) {
323         error_setg(errp, "Memory backing with 1M pages was specified, "
324                    "but KVM does not support this memory backing");
325         return;
326     }
327 
328     cap_hpage_1m = 1;
329 }
330 
331 int kvm_s390_get_hpage_1m(void)
332 {
333     return cap_hpage_1m;
334 }
335 
336 static void ccw_machine_class_foreach(ObjectClass *oc, void *opaque)
337 {
338     MachineClass *mc = MACHINE_CLASS(oc);
339 
340     mc->default_cpu_type = S390_CPU_TYPE_NAME("host");
341 }
342 
343 int kvm_arch_init(MachineState *ms, KVMState *s)
344 {
345     object_class_foreach(ccw_machine_class_foreach, TYPE_S390_CCW_MACHINE,
346                          false, NULL);
347 
348     if (!kvm_check_extension(kvm_state, KVM_CAP_DEVICE_CTRL)) {
349         error_report("KVM is missing capability KVM_CAP_DEVICE_CTRL - "
350                      "please use kernel 3.15 or newer");
351         return -1;
352     }
353     if (!kvm_check_extension(s, KVM_CAP_S390_COW)) {
354         error_report("KVM is missing capability KVM_CAP_S390_COW - "
355                      "unsupported environment");
356         return -1;
357     }
358 
359     cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS);
360     cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF);
361     cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP);
362     cap_mem_op_extension = kvm_check_extension(s, KVM_CAP_S390_MEM_OP_EXTENSION);
363     mem_op_storage_key_support = cap_mem_op_extension > 0;
364     cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ);
365     cap_vcpu_resets = kvm_check_extension(s, KVM_CAP_S390_VCPU_RESETS);
366     cap_protected = kvm_check_extension(s, KVM_CAP_S390_PROTECTED);
367     cap_zpci_op = kvm_check_extension(s, KVM_CAP_S390_ZPCI_OP);
368     cap_protected_dump = kvm_check_extension(s, KVM_CAP_S390_PROTECTED_DUMP);
369 
370     kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0);
371     kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0);
372     kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0);
373     if (ri_allowed()) {
374         if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) {
375             cap_ri = 1;
376         }
377     }
378     if (cpu_model_allowed()) {
379         kvm_vm_enable_cap(s, KVM_CAP_S390_GS, 0);
380     }
381 
382     /*
383      * The migration interface for ais was introduced with kernel 4.13
384      * but the capability itself had been active since 4.12. As migration
385      * support is considered necessary, we only try to enable this for
386      * newer machine types if KVM_CAP_S390_AIS_MIGRATION is available.
387      */
388     if (cpu_model_allowed() && kvm_kernel_irqchip_allowed() &&
389         kvm_check_extension(s, KVM_CAP_S390_AIS_MIGRATION)) {
390         kvm_vm_enable_cap(s, KVM_CAP_S390_AIS, 0);
391     }
392 
393     kvm_set_max_memslot_size(KVM_SLOT_MAX_BYTES);
394     return 0;
395 }
396 
397 int kvm_arch_irqchip_create(KVMState *s)
398 {
399     return 0;
400 }
401 
402 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
403 {
404     return cpu->cpu_index;
405 }
406 
407 int kvm_arch_init_vcpu(CPUState *cs)
408 {
409     unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus;
410     S390CPU *cpu = S390_CPU(cs);
411     kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state);
412     cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE(max_cpus));
413     return 0;
414 }
415 
416 int kvm_arch_destroy_vcpu(CPUState *cs)
417 {
418     S390CPU *cpu = S390_CPU(cs);
419 
420     g_free(cpu->irqstate);
421     cpu->irqstate = NULL;
422 
423     return 0;
424 }
425 
426 static void kvm_s390_reset_vcpu(S390CPU *cpu, unsigned long type)
427 {
428     CPUState *cs = CPU(cpu);
429 
430     /*
431      * The reset call is needed here to reset in-kernel vcpu data that
432      * we can't access directly from QEMU (i.e. with older kernels
433      * which don't support sync_regs/ONE_REG).  Before this ioctl
434      * cpu_synchronize_state() is called in common kvm code
435      * (kvm-all).
436      */
437     if (kvm_vcpu_ioctl(cs, type)) {
438         error_report("CPU reset failed on CPU %i type %lx",
439                      cs->cpu_index, type);
440     }
441 }
442 
443 void kvm_s390_reset_vcpu_initial(S390CPU *cpu)
444 {
445     kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET);
446 }
447 
448 void kvm_s390_reset_vcpu_clear(S390CPU *cpu)
449 {
450     if (cap_vcpu_resets) {
451         kvm_s390_reset_vcpu(cpu, KVM_S390_CLEAR_RESET);
452     } else {
453         kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET);
454     }
455 }
456 
457 void kvm_s390_reset_vcpu_normal(S390CPU *cpu)
458 {
459     if (cap_vcpu_resets) {
460         kvm_s390_reset_vcpu(cpu, KVM_S390_NORMAL_RESET);
461     }
462 }
463 
464 static int can_sync_regs(CPUState *cs, int regs)
465 {
466     return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs;
467 }
468 
469 int kvm_arch_put_registers(CPUState *cs, int level)
470 {
471     S390CPU *cpu = S390_CPU(cs);
472     CPUS390XState *env = &cpu->env;
473     struct kvm_sregs sregs;
474     struct kvm_regs regs;
475     struct kvm_fpu fpu = {};
476     int r;
477     int i;
478 
479     /* always save the PSW  and the GPRS*/
480     cs->kvm_run->psw_addr = env->psw.addr;
481     cs->kvm_run->psw_mask = env->psw.mask;
482 
483     if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
484         for (i = 0; i < 16; i++) {
485             cs->kvm_run->s.regs.gprs[i] = env->regs[i];
486             cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS;
487         }
488     } else {
489         for (i = 0; i < 16; i++) {
490             regs.gprs[i] = env->regs[i];
491         }
492         r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
493         if (r < 0) {
494             return r;
495         }
496     }
497 
498     if (can_sync_regs(cs, KVM_SYNC_VRS)) {
499         for (i = 0; i < 32; i++) {
500             cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0];
501             cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1];
502         }
503         cs->kvm_run->s.regs.fpc = env->fpc;
504         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS;
505     } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
506         for (i = 0; i < 16; i++) {
507             cs->kvm_run->s.regs.fprs[i] = *get_freg(env, i);
508         }
509         cs->kvm_run->s.regs.fpc = env->fpc;
510         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS;
511     } else {
512         /* Floating point */
513         for (i = 0; i < 16; i++) {
514             fpu.fprs[i] = *get_freg(env, i);
515         }
516         fpu.fpc = env->fpc;
517 
518         r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu);
519         if (r < 0) {
520             return r;
521         }
522     }
523 
524     /* Do we need to save more than that? */
525     if (level == KVM_PUT_RUNTIME_STATE) {
526         return 0;
527     }
528 
529     if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
530         cs->kvm_run->s.regs.cputm = env->cputm;
531         cs->kvm_run->s.regs.ckc = env->ckc;
532         cs->kvm_run->s.regs.todpr = env->todpr;
533         cs->kvm_run->s.regs.gbea = env->gbea;
534         cs->kvm_run->s.regs.pp = env->pp;
535         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0;
536     } else {
537         /*
538          * These ONE_REGS are not protected by a capability. As they are only
539          * necessary for migration we just trace a possible error, but don't
540          * return with an error return code.
541          */
542         kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
543         kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
544         kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
545         kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
546         kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp);
547     }
548 
549     if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
550         memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64);
551         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB;
552     }
553 
554     /* pfault parameters */
555     if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
556         cs->kvm_run->s.regs.pft = env->pfault_token;
557         cs->kvm_run->s.regs.pfs = env->pfault_select;
558         cs->kvm_run->s.regs.pfc = env->pfault_compare;
559         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT;
560     } else if (cap_async_pf) {
561         r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
562         if (r < 0) {
563             return r;
564         }
565         r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
566         if (r < 0) {
567             return r;
568         }
569         r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
570         if (r < 0) {
571             return r;
572         }
573     }
574 
575     /* access registers and control registers*/
576     if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
577         for (i = 0; i < 16; i++) {
578             cs->kvm_run->s.regs.acrs[i] = env->aregs[i];
579             cs->kvm_run->s.regs.crs[i] = env->cregs[i];
580         }
581         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS;
582         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS;
583     } else {
584         for (i = 0; i < 16; i++) {
585             sregs.acrs[i] = env->aregs[i];
586             sregs.crs[i] = env->cregs[i];
587         }
588         r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
589         if (r < 0) {
590             return r;
591         }
592     }
593 
594     if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
595         memcpy(cs->kvm_run->s.regs.gscb, env->gscb, 32);
596         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GSCB;
597     }
598 
599     if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
600         cs->kvm_run->s.regs.bpbc = env->bpbc;
601         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_BPBC;
602     }
603 
604     if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) {
605         cs->kvm_run->s.regs.etoken = env->etoken;
606         cs->kvm_run->s.regs.etoken_extension  = env->etoken_extension;
607         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ETOKEN;
608     }
609 
610     if (can_sync_regs(cs, KVM_SYNC_DIAG318)) {
611         cs->kvm_run->s.regs.diag318 = env->diag318_info;
612         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_DIAG318;
613     }
614 
615     /* Finally the prefix */
616     if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
617         cs->kvm_run->s.regs.prefix = env->psa;
618         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX;
619     } else {
620         /* prefix is only supported via sync regs */
621     }
622     return 0;
623 }
624 
625 int kvm_arch_get_registers(CPUState *cs)
626 {
627     S390CPU *cpu = S390_CPU(cs);
628     CPUS390XState *env = &cpu->env;
629     struct kvm_sregs sregs;
630     struct kvm_regs regs;
631     struct kvm_fpu fpu;
632     int i, r;
633 
634     /* get the PSW */
635     env->psw.addr = cs->kvm_run->psw_addr;
636     env->psw.mask = cs->kvm_run->psw_mask;
637 
638     /* the GPRS */
639     if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
640         for (i = 0; i < 16; i++) {
641             env->regs[i] = cs->kvm_run->s.regs.gprs[i];
642         }
643     } else {
644         r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
645         if (r < 0) {
646             return r;
647         }
648          for (i = 0; i < 16; i++) {
649             env->regs[i] = regs.gprs[i];
650         }
651     }
652 
653     /* The ACRS and CRS */
654     if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
655         for (i = 0; i < 16; i++) {
656             env->aregs[i] = cs->kvm_run->s.regs.acrs[i];
657             env->cregs[i] = cs->kvm_run->s.regs.crs[i];
658         }
659     } else {
660         r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
661         if (r < 0) {
662             return r;
663         }
664          for (i = 0; i < 16; i++) {
665             env->aregs[i] = sregs.acrs[i];
666             env->cregs[i] = sregs.crs[i];
667         }
668     }
669 
670     /* Floating point and vector registers */
671     if (can_sync_regs(cs, KVM_SYNC_VRS)) {
672         for (i = 0; i < 32; i++) {
673             env->vregs[i][0] = cs->kvm_run->s.regs.vrs[i][0];
674             env->vregs[i][1] = cs->kvm_run->s.regs.vrs[i][1];
675         }
676         env->fpc = cs->kvm_run->s.regs.fpc;
677     } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
678         for (i = 0; i < 16; i++) {
679             *get_freg(env, i) = cs->kvm_run->s.regs.fprs[i];
680         }
681         env->fpc = cs->kvm_run->s.regs.fpc;
682     } else {
683         r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu);
684         if (r < 0) {
685             return r;
686         }
687         for (i = 0; i < 16; i++) {
688             *get_freg(env, i) = fpu.fprs[i];
689         }
690         env->fpc = fpu.fpc;
691     }
692 
693     /* The prefix */
694     if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
695         env->psa = cs->kvm_run->s.regs.prefix;
696     }
697 
698     if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
699         env->cputm = cs->kvm_run->s.regs.cputm;
700         env->ckc = cs->kvm_run->s.regs.ckc;
701         env->todpr = cs->kvm_run->s.regs.todpr;
702         env->gbea = cs->kvm_run->s.regs.gbea;
703         env->pp = cs->kvm_run->s.regs.pp;
704     } else {
705         /*
706          * These ONE_REGS are not protected by a capability. As they are only
707          * necessary for migration we just trace a possible error, but don't
708          * return with an error return code.
709          */
710         kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
711         kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
712         kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
713         kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
714         kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp);
715     }
716 
717     if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
718         memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64);
719     }
720 
721     if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
722         memcpy(env->gscb, cs->kvm_run->s.regs.gscb, 32);
723     }
724 
725     if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
726         env->bpbc = cs->kvm_run->s.regs.bpbc;
727     }
728 
729     if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) {
730         env->etoken = cs->kvm_run->s.regs.etoken;
731         env->etoken_extension = cs->kvm_run->s.regs.etoken_extension;
732     }
733 
734     /* pfault parameters */
735     if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
736         env->pfault_token = cs->kvm_run->s.regs.pft;
737         env->pfault_select = cs->kvm_run->s.regs.pfs;
738         env->pfault_compare = cs->kvm_run->s.regs.pfc;
739     } else if (cap_async_pf) {
740         r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
741         if (r < 0) {
742             return r;
743         }
744         r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
745         if (r < 0) {
746             return r;
747         }
748         r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
749         if (r < 0) {
750             return r;
751         }
752     }
753 
754     if (can_sync_regs(cs, KVM_SYNC_DIAG318)) {
755         env->diag318_info = cs->kvm_run->s.regs.diag318;
756     }
757 
758     return 0;
759 }
760 
761 int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low)
762 {
763     int r;
764     struct kvm_device_attr attr = {
765         .group = KVM_S390_VM_TOD,
766         .attr = KVM_S390_VM_TOD_LOW,
767         .addr = (uint64_t)tod_low,
768     };
769 
770     r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
771     if (r) {
772         return r;
773     }
774 
775     attr.attr = KVM_S390_VM_TOD_HIGH;
776     attr.addr = (uint64_t)tod_high;
777     return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
778 }
779 
780 int kvm_s390_get_clock_ext(uint8_t *tod_high, uint64_t *tod_low)
781 {
782     int r;
783     struct kvm_s390_vm_tod_clock gtod;
784     struct kvm_device_attr attr = {
785         .group = KVM_S390_VM_TOD,
786         .attr = KVM_S390_VM_TOD_EXT,
787         .addr = (uint64_t)&gtod,
788     };
789 
790     r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
791     *tod_high = gtod.epoch_idx;
792     *tod_low  = gtod.tod;
793 
794     return r;
795 }
796 
797 int kvm_s390_set_clock(uint8_t tod_high, uint64_t tod_low)
798 {
799     int r;
800     struct kvm_device_attr attr = {
801         .group = KVM_S390_VM_TOD,
802         .attr = KVM_S390_VM_TOD_LOW,
803         .addr = (uint64_t)&tod_low,
804     };
805 
806     r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
807     if (r) {
808         return r;
809     }
810 
811     attr.attr = KVM_S390_VM_TOD_HIGH;
812     attr.addr = (uint64_t)&tod_high;
813     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
814 }
815 
816 int kvm_s390_set_clock_ext(uint8_t tod_high, uint64_t tod_low)
817 {
818     struct kvm_s390_vm_tod_clock gtod = {
819         .epoch_idx = tod_high,
820         .tod  = tod_low,
821     };
822     struct kvm_device_attr attr = {
823         .group = KVM_S390_VM_TOD,
824         .attr = KVM_S390_VM_TOD_EXT,
825         .addr = (uint64_t)&gtod,
826     };
827 
828     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
829 }
830 
831 /**
832  * kvm_s390_mem_op:
833  * @addr:      the logical start address in guest memory
834  * @ar:        the access register number
835  * @hostbuf:   buffer in host memory. NULL = do only checks w/o copying
836  * @len:       length that should be transferred
837  * @is_write:  true = write, false = read
838  * Returns:    0 on success, non-zero if an exception or error occurred
839  *
840  * Use KVM ioctl to read/write from/to guest memory. An access exception
841  * is injected into the vCPU in case of translation errors.
842  */
843 int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf,
844                     int len, bool is_write)
845 {
846     struct kvm_s390_mem_op mem_op = {
847         .gaddr = addr,
848         .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION,
849         .size = len,
850         .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE
851                        : KVM_S390_MEMOP_LOGICAL_READ,
852         .buf = (uint64_t)hostbuf,
853         .ar = ar,
854         .key = (cpu->env.psw.mask & PSW_MASK_KEY) >> PSW_SHIFT_KEY,
855     };
856     int ret;
857 
858     if (!cap_mem_op) {
859         return -ENOSYS;
860     }
861     if (!hostbuf) {
862         mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY;
863     }
864     if (mem_op_storage_key_support) {
865         mem_op.flags |= KVM_S390_MEMOP_F_SKEY_PROTECTION;
866     }
867 
868     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
869     if (ret < 0) {
870         warn_report("KVM_S390_MEM_OP failed: %s", strerror(-ret));
871     }
872     return ret;
873 }
874 
875 int kvm_s390_mem_op_pv(S390CPU *cpu, uint64_t offset, void *hostbuf,
876                        int len, bool is_write)
877 {
878     struct kvm_s390_mem_op mem_op = {
879         .sida_offset = offset,
880         .size = len,
881         .op = is_write ? KVM_S390_MEMOP_SIDA_WRITE
882                        : KVM_S390_MEMOP_SIDA_READ,
883         .buf = (uint64_t)hostbuf,
884     };
885     int ret;
886 
887     if (!cap_mem_op || !cap_protected) {
888         return -ENOSYS;
889     }
890 
891     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
892     if (ret < 0) {
893         error_report("KVM_S390_MEM_OP failed: %s", strerror(-ret));
894         abort();
895     }
896     return ret;
897 }
898 
899 static uint8_t const *sw_bp_inst;
900 static uint8_t sw_bp_ilen;
901 
902 static void determine_sw_breakpoint_instr(void)
903 {
904         /* DIAG 501 is used for sw breakpoints with old kernels */
905         static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
906         /* Instruction 0x0000 is used for sw breakpoints with recent kernels */
907         static const uint8_t instr_0x0000[] = {0x00, 0x00};
908 
909         if (sw_bp_inst) {
910             return;
911         }
912         if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) {
913             sw_bp_inst = diag_501;
914             sw_bp_ilen = sizeof(diag_501);
915             DPRINTF("KVM: will use 4-byte sw breakpoints.\n");
916         } else {
917             sw_bp_inst = instr_0x0000;
918             sw_bp_ilen = sizeof(instr_0x0000);
919             DPRINTF("KVM: will use 2-byte sw breakpoints.\n");
920         }
921 }
922 
923 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
924 {
925     determine_sw_breakpoint_instr();
926 
927     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
928                             sw_bp_ilen, 0) ||
929         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) {
930         return -EINVAL;
931     }
932     return 0;
933 }
934 
935 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
936 {
937     uint8_t t[MAX_ILEN];
938 
939     if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) {
940         return -EINVAL;
941     } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) {
942         return -EINVAL;
943     } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
944                                    sw_bp_ilen, 1)) {
945         return -EINVAL;
946     }
947 
948     return 0;
949 }
950 
951 static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr,
952                                                     int len, int type)
953 {
954     int n;
955 
956     for (n = 0; n < nb_hw_breakpoints; n++) {
957         if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type &&
958             (hw_breakpoints[n].len == len || len == -1)) {
959             return &hw_breakpoints[n];
960         }
961     }
962 
963     return NULL;
964 }
965 
966 static int insert_hw_breakpoint(target_ulong addr, int len, int type)
967 {
968     int size;
969 
970     if (find_hw_breakpoint(addr, len, type)) {
971         return -EEXIST;
972     }
973 
974     size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint);
975 
976     if (!hw_breakpoints) {
977         nb_hw_breakpoints = 0;
978         hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size);
979     } else {
980         hw_breakpoints =
981             (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size);
982     }
983 
984     if (!hw_breakpoints) {
985         nb_hw_breakpoints = 0;
986         return -ENOMEM;
987     }
988 
989     hw_breakpoints[nb_hw_breakpoints].addr = addr;
990     hw_breakpoints[nb_hw_breakpoints].len = len;
991     hw_breakpoints[nb_hw_breakpoints].type = type;
992 
993     nb_hw_breakpoints++;
994 
995     return 0;
996 }
997 
998 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
999                                   target_ulong len, int type)
1000 {
1001     switch (type) {
1002     case GDB_BREAKPOINT_HW:
1003         type = KVM_HW_BP;
1004         break;
1005     case GDB_WATCHPOINT_WRITE:
1006         if (len < 1) {
1007             return -EINVAL;
1008         }
1009         type = KVM_HW_WP_WRITE;
1010         break;
1011     default:
1012         return -ENOSYS;
1013     }
1014     return insert_hw_breakpoint(addr, len, type);
1015 }
1016 
1017 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1018                                   target_ulong len, int type)
1019 {
1020     int size;
1021     struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type);
1022 
1023     if (bp == NULL) {
1024         return -ENOENT;
1025     }
1026 
1027     nb_hw_breakpoints--;
1028     if (nb_hw_breakpoints > 0) {
1029         /*
1030          * In order to trim the array, move the last element to the position to
1031          * be removed - if necessary.
1032          */
1033         if (bp != &hw_breakpoints[nb_hw_breakpoints]) {
1034             *bp = hw_breakpoints[nb_hw_breakpoints];
1035         }
1036         size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint);
1037         hw_breakpoints =
1038              g_realloc(hw_breakpoints, size);
1039     } else {
1040         g_free(hw_breakpoints);
1041         hw_breakpoints = NULL;
1042     }
1043 
1044     return 0;
1045 }
1046 
1047 void kvm_arch_remove_all_hw_breakpoints(void)
1048 {
1049     nb_hw_breakpoints = 0;
1050     g_free(hw_breakpoints);
1051     hw_breakpoints = NULL;
1052 }
1053 
1054 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
1055 {
1056     int i;
1057 
1058     if (nb_hw_breakpoints > 0) {
1059         dbg->arch.nr_hw_bp = nb_hw_breakpoints;
1060         dbg->arch.hw_bp = hw_breakpoints;
1061 
1062         for (i = 0; i < nb_hw_breakpoints; ++i) {
1063             hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu,
1064                                                        hw_breakpoints[i].addr);
1065         }
1066         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1067     } else {
1068         dbg->arch.nr_hw_bp = 0;
1069         dbg->arch.hw_bp = NULL;
1070     }
1071 }
1072 
1073 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
1074 {
1075 }
1076 
1077 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1078 {
1079     return MEMTXATTRS_UNSPECIFIED;
1080 }
1081 
1082 int kvm_arch_process_async_events(CPUState *cs)
1083 {
1084     return cs->halted;
1085 }
1086 
1087 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq,
1088                                      struct kvm_s390_interrupt *interrupt)
1089 {
1090     int r = 0;
1091 
1092     interrupt->type = irq->type;
1093     switch (irq->type) {
1094     case KVM_S390_INT_VIRTIO:
1095         interrupt->parm = irq->u.ext.ext_params;
1096         /* fall through */
1097     case KVM_S390_INT_PFAULT_INIT:
1098     case KVM_S390_INT_PFAULT_DONE:
1099         interrupt->parm64 = irq->u.ext.ext_params2;
1100         break;
1101     case KVM_S390_PROGRAM_INT:
1102         interrupt->parm = irq->u.pgm.code;
1103         break;
1104     case KVM_S390_SIGP_SET_PREFIX:
1105         interrupt->parm = irq->u.prefix.address;
1106         break;
1107     case KVM_S390_INT_SERVICE:
1108         interrupt->parm = irq->u.ext.ext_params;
1109         break;
1110     case KVM_S390_MCHK:
1111         interrupt->parm = irq->u.mchk.cr14;
1112         interrupt->parm64 = irq->u.mchk.mcic;
1113         break;
1114     case KVM_S390_INT_EXTERNAL_CALL:
1115         interrupt->parm = irq->u.extcall.code;
1116         break;
1117     case KVM_S390_INT_EMERGENCY:
1118         interrupt->parm = irq->u.emerg.code;
1119         break;
1120     case KVM_S390_SIGP_STOP:
1121     case KVM_S390_RESTART:
1122         break; /* These types have no parameters */
1123     case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1124         interrupt->parm = irq->u.io.subchannel_id << 16;
1125         interrupt->parm |= irq->u.io.subchannel_nr;
1126         interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32;
1127         interrupt->parm64 |= irq->u.io.io_int_word;
1128         break;
1129     default:
1130         r = -EINVAL;
1131         break;
1132     }
1133     return r;
1134 }
1135 
1136 static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq)
1137 {
1138     struct kvm_s390_interrupt kvmint = {};
1139     int r;
1140 
1141     r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1142     if (r < 0) {
1143         fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1144         exit(1);
1145     }
1146 
1147     r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint);
1148     if (r < 0) {
1149         fprintf(stderr, "KVM failed to inject interrupt\n");
1150         exit(1);
1151     }
1152 }
1153 
1154 void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq)
1155 {
1156     CPUState *cs = CPU(cpu);
1157     int r;
1158 
1159     if (cap_s390_irq) {
1160         r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq);
1161         if (!r) {
1162             return;
1163         }
1164         error_report("KVM failed to inject interrupt %llx", irq->type);
1165         exit(1);
1166     }
1167 
1168     inject_vcpu_irq_legacy(cs, irq);
1169 }
1170 
1171 void kvm_s390_floating_interrupt_legacy(struct kvm_s390_irq *irq)
1172 {
1173     struct kvm_s390_interrupt kvmint = {};
1174     int r;
1175 
1176     r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1177     if (r < 0) {
1178         fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1179         exit(1);
1180     }
1181 
1182     r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint);
1183     if (r < 0) {
1184         fprintf(stderr, "KVM failed to inject interrupt\n");
1185         exit(1);
1186     }
1187 }
1188 
1189 void kvm_s390_program_interrupt(S390CPU *cpu, uint16_t code)
1190 {
1191     struct kvm_s390_irq irq = {
1192         .type = KVM_S390_PROGRAM_INT,
1193         .u.pgm.code = code,
1194     };
1195     qemu_log_mask(CPU_LOG_INT, "program interrupt at %#" PRIx64 "\n",
1196                   cpu->env.psw.addr);
1197     kvm_s390_vcpu_interrupt(cpu, &irq);
1198 }
1199 
1200 void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code)
1201 {
1202     struct kvm_s390_irq irq = {
1203         .type = KVM_S390_PROGRAM_INT,
1204         .u.pgm.code = code,
1205         .u.pgm.trans_exc_code = te_code,
1206         .u.pgm.exc_access_id = te_code & 3,
1207     };
1208 
1209     kvm_s390_vcpu_interrupt(cpu, &irq);
1210 }
1211 
1212 static void kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run,
1213                                  uint16_t ipbh0)
1214 {
1215     CPUS390XState *env = &cpu->env;
1216     uint64_t sccb;
1217     uint32_t code;
1218     int r;
1219 
1220     sccb = env->regs[ipbh0 & 0xf];
1221     code = env->regs[(ipbh0 & 0xf0) >> 4];
1222 
1223     switch (run->s390_sieic.icptcode) {
1224     case ICPT_PV_INSTR_NOTIFICATION:
1225         g_assert(s390_is_pv());
1226         /* The notification intercepts are currently handled by KVM */
1227         error_report("unexpected SCLP PV notification");
1228         exit(1);
1229         break;
1230     case ICPT_PV_INSTR:
1231         g_assert(s390_is_pv());
1232         sclp_service_call_protected(env, sccb, code);
1233         /* Setting the CC is done by the Ultravisor. */
1234         break;
1235     case ICPT_INSTRUCTION:
1236         g_assert(!s390_is_pv());
1237         r = sclp_service_call(env, sccb, code);
1238         if (r < 0) {
1239             kvm_s390_program_interrupt(cpu, -r);
1240             return;
1241         }
1242         setcc(cpu, r);
1243     }
1244 }
1245 
1246 static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1247 {
1248     CPUS390XState *env = &cpu->env;
1249     int rc = 0;
1250     uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16;
1251 
1252     switch (ipa1) {
1253     case PRIV_B2_XSCH:
1254         ioinst_handle_xsch(cpu, env->regs[1], RA_IGNORED);
1255         break;
1256     case PRIV_B2_CSCH:
1257         ioinst_handle_csch(cpu, env->regs[1], RA_IGNORED);
1258         break;
1259     case PRIV_B2_HSCH:
1260         ioinst_handle_hsch(cpu, env->regs[1], RA_IGNORED);
1261         break;
1262     case PRIV_B2_MSCH:
1263         ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1264         break;
1265     case PRIV_B2_SSCH:
1266         ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1267         break;
1268     case PRIV_B2_STCRW:
1269         ioinst_handle_stcrw(cpu, run->s390_sieic.ipb, RA_IGNORED);
1270         break;
1271     case PRIV_B2_STSCH:
1272         ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1273         break;
1274     case PRIV_B2_TSCH:
1275         /* We should only get tsch via KVM_EXIT_S390_TSCH. */
1276         fprintf(stderr, "Spurious tsch intercept\n");
1277         break;
1278     case PRIV_B2_CHSC:
1279         ioinst_handle_chsc(cpu, run->s390_sieic.ipb, RA_IGNORED);
1280         break;
1281     case PRIV_B2_TPI:
1282         /* This should have been handled by kvm already. */
1283         fprintf(stderr, "Spurious tpi intercept\n");
1284         break;
1285     case PRIV_B2_SCHM:
1286         ioinst_handle_schm(cpu, env->regs[1], env->regs[2],
1287                            run->s390_sieic.ipb, RA_IGNORED);
1288         break;
1289     case PRIV_B2_RSCH:
1290         ioinst_handle_rsch(cpu, env->regs[1], RA_IGNORED);
1291         break;
1292     case PRIV_B2_RCHP:
1293         ioinst_handle_rchp(cpu, env->regs[1], RA_IGNORED);
1294         break;
1295     case PRIV_B2_STCPS:
1296         /* We do not provide this instruction, it is suppressed. */
1297         break;
1298     case PRIV_B2_SAL:
1299         ioinst_handle_sal(cpu, env->regs[1], RA_IGNORED);
1300         break;
1301     case PRIV_B2_SIGA:
1302         /* Not provided, set CC = 3 for subchannel not operational */
1303         setcc(cpu, 3);
1304         break;
1305     case PRIV_B2_SCLP_CALL:
1306         kvm_sclp_service_call(cpu, run, ipbh0);
1307         break;
1308     default:
1309         rc = -1;
1310         DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1);
1311         break;
1312     }
1313 
1314     return rc;
1315 }
1316 
1317 static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run,
1318                                   uint8_t *ar)
1319 {
1320     CPUS390XState *env = &cpu->env;
1321     uint32_t x2 = (run->s390_sieic.ipa & 0x000f);
1322     uint32_t base2 = run->s390_sieic.ipb >> 28;
1323     uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1324                      ((run->s390_sieic.ipb & 0xff00) << 4);
1325 
1326     if (disp2 & 0x80000) {
1327         disp2 += 0xfff00000;
1328     }
1329     if (ar) {
1330         *ar = base2;
1331     }
1332 
1333     return (base2 ? env->regs[base2] : 0) +
1334            (x2 ? env->regs[x2] : 0) + (long)(int)disp2;
1335 }
1336 
1337 static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run,
1338                                   uint8_t *ar)
1339 {
1340     CPUS390XState *env = &cpu->env;
1341     uint32_t base2 = run->s390_sieic.ipb >> 28;
1342     uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1343                      ((run->s390_sieic.ipb & 0xff00) << 4);
1344 
1345     if (disp2 & 0x80000) {
1346         disp2 += 0xfff00000;
1347     }
1348     if (ar) {
1349         *ar = base2;
1350     }
1351 
1352     return (base2 ? env->regs[base2] : 0) + (long)(int)disp2;
1353 }
1354 
1355 static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run)
1356 {
1357     uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1358 
1359     if (s390_has_feat(S390_FEAT_ZPCI)) {
1360         return clp_service_call(cpu, r2, RA_IGNORED);
1361     } else {
1362         return -1;
1363     }
1364 }
1365 
1366 static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run)
1367 {
1368     uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1369     uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1370 
1371     if (s390_has_feat(S390_FEAT_ZPCI)) {
1372         return pcilg_service_call(cpu, r1, r2, RA_IGNORED);
1373     } else {
1374         return -1;
1375     }
1376 }
1377 
1378 static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run)
1379 {
1380     uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1381     uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1382 
1383     if (s390_has_feat(S390_FEAT_ZPCI)) {
1384         return pcistg_service_call(cpu, r1, r2, RA_IGNORED);
1385     } else {
1386         return -1;
1387     }
1388 }
1389 
1390 static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1391 {
1392     uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1393     uint64_t fiba;
1394     uint8_t ar;
1395 
1396     if (s390_has_feat(S390_FEAT_ZPCI)) {
1397         fiba = get_base_disp_rxy(cpu, run, &ar);
1398 
1399         return stpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
1400     } else {
1401         return -1;
1402     }
1403 }
1404 
1405 static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run)
1406 {
1407     CPUS390XState *env = &cpu->env;
1408     uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1409     uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1410     uint8_t isc;
1411     uint16_t mode;
1412     int r;
1413 
1414     mode = env->regs[r1] & 0xffff;
1415     isc = (env->regs[r3] >> 27) & 0x7;
1416     r = css_do_sic(env, isc, mode);
1417     if (r) {
1418         kvm_s390_program_interrupt(cpu, -r);
1419     }
1420 
1421     return 0;
1422 }
1423 
1424 static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run)
1425 {
1426     uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1427     uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1428 
1429     if (s390_has_feat(S390_FEAT_ZPCI)) {
1430         return rpcit_service_call(cpu, r1, r2, RA_IGNORED);
1431     } else {
1432         return -1;
1433     }
1434 }
1435 
1436 static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run)
1437 {
1438     uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1439     uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1440     uint64_t gaddr;
1441     uint8_t ar;
1442 
1443     if (s390_has_feat(S390_FEAT_ZPCI)) {
1444         gaddr = get_base_disp_rsy(cpu, run, &ar);
1445 
1446         return pcistb_service_call(cpu, r1, r3, gaddr, ar, RA_IGNORED);
1447     } else {
1448         return -1;
1449     }
1450 }
1451 
1452 static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1453 {
1454     uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1455     uint64_t fiba;
1456     uint8_t ar;
1457 
1458     if (s390_has_feat(S390_FEAT_ZPCI)) {
1459         fiba = get_base_disp_rxy(cpu, run, &ar);
1460 
1461         return mpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
1462     } else {
1463         return -1;
1464     }
1465 }
1466 
1467 static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1468 {
1469     int r = 0;
1470 
1471     switch (ipa1) {
1472     case PRIV_B9_CLP:
1473         r = kvm_clp_service_call(cpu, run);
1474         break;
1475     case PRIV_B9_PCISTG:
1476         r = kvm_pcistg_service_call(cpu, run);
1477         break;
1478     case PRIV_B9_PCILG:
1479         r = kvm_pcilg_service_call(cpu, run);
1480         break;
1481     case PRIV_B9_RPCIT:
1482         r = kvm_rpcit_service_call(cpu, run);
1483         break;
1484     case PRIV_B9_EQBS:
1485         /* just inject exception */
1486         r = -1;
1487         break;
1488     default:
1489         r = -1;
1490         DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1);
1491         break;
1492     }
1493 
1494     return r;
1495 }
1496 
1497 static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1498 {
1499     int r = 0;
1500 
1501     switch (ipbl) {
1502     case PRIV_EB_PCISTB:
1503         r = kvm_pcistb_service_call(cpu, run);
1504         break;
1505     case PRIV_EB_SIC:
1506         r = kvm_sic_service_call(cpu, run);
1507         break;
1508     case PRIV_EB_SQBS:
1509         /* just inject exception */
1510         r = -1;
1511         break;
1512     default:
1513         r = -1;
1514         DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl);
1515         break;
1516     }
1517 
1518     return r;
1519 }
1520 
1521 static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1522 {
1523     int r = 0;
1524 
1525     switch (ipbl) {
1526     case PRIV_E3_MPCIFC:
1527         r = kvm_mpcifc_service_call(cpu, run);
1528         break;
1529     case PRIV_E3_STPCIFC:
1530         r = kvm_stpcifc_service_call(cpu, run);
1531         break;
1532     default:
1533         r = -1;
1534         DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl);
1535         break;
1536     }
1537 
1538     return r;
1539 }
1540 
1541 static int handle_hypercall(S390CPU *cpu, struct kvm_run *run)
1542 {
1543     CPUS390XState *env = &cpu->env;
1544     int ret;
1545 
1546     ret = s390_virtio_hypercall(env);
1547     if (ret == -EINVAL) {
1548         kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1549         return 0;
1550     }
1551 
1552     return ret;
1553 }
1554 
1555 static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run)
1556 {
1557     uint64_t r1, r3;
1558     int rc;
1559 
1560     r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1561     r3 = run->s390_sieic.ipa & 0x000f;
1562     rc = handle_diag_288(&cpu->env, r1, r3);
1563     if (rc) {
1564         kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1565     }
1566 }
1567 
1568 static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run)
1569 {
1570     uint64_t r1, r3;
1571 
1572     r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1573     r3 = run->s390_sieic.ipa & 0x000f;
1574     handle_diag_308(&cpu->env, r1, r3, RA_IGNORED);
1575 }
1576 
1577 static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run)
1578 {
1579     CPUS390XState *env = &cpu->env;
1580     unsigned long pc;
1581 
1582     pc = env->psw.addr - sw_bp_ilen;
1583     if (kvm_find_sw_breakpoint(CPU(cpu), pc)) {
1584         env->psw.addr = pc;
1585         return EXCP_DEBUG;
1586     }
1587 
1588     return -ENOENT;
1589 }
1590 
1591 void kvm_s390_set_diag318(CPUState *cs, uint64_t diag318_info)
1592 {
1593     CPUS390XState *env = &S390_CPU(cs)->env;
1594 
1595     /* Feat bit is set only if KVM supports sync for diag318 */
1596     if (s390_has_feat(S390_FEAT_DIAG_318)) {
1597         env->diag318_info = diag318_info;
1598         cs->kvm_run->s.regs.diag318 = diag318_info;
1599         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_DIAG318;
1600         /*
1601          * diag 318 info is zeroed during a clear reset and
1602          * diag 308 IPL subcodes.
1603          */
1604     }
1605 }
1606 
1607 static void handle_diag_318(S390CPU *cpu, struct kvm_run *run)
1608 {
1609     uint64_t reg = (run->s390_sieic.ipa & 0x00f0) >> 4;
1610     uint64_t diag318_info = run->s.regs.gprs[reg];
1611     CPUState *t;
1612 
1613     /*
1614      * DIAG 318 can only be enabled with KVM support. As such, let's
1615      * ensure a guest cannot execute this instruction erroneously.
1616      */
1617     if (!s390_has_feat(S390_FEAT_DIAG_318)) {
1618         kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1619         return;
1620     }
1621 
1622     CPU_FOREACH(t) {
1623         run_on_cpu(t, s390_do_cpu_set_diag318,
1624                    RUN_ON_CPU_HOST_ULONG(diag318_info));
1625     }
1626 }
1627 
1628 #define DIAG_KVM_CODE_MASK 0x000000000000ffff
1629 
1630 static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb)
1631 {
1632     int r = 0;
1633     uint16_t func_code;
1634 
1635     /*
1636      * For any diagnose call we support, bits 48-63 of the resulting
1637      * address specify the function code; the remainder is ignored.
1638      */
1639     func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK;
1640     switch (func_code) {
1641     case DIAG_TIMEREVENT:
1642         kvm_handle_diag_288(cpu, run);
1643         break;
1644     case DIAG_IPL:
1645         kvm_handle_diag_308(cpu, run);
1646         break;
1647     case DIAG_SET_CONTROL_PROGRAM_CODES:
1648         handle_diag_318(cpu, run);
1649         break;
1650     case DIAG_KVM_HYPERCALL:
1651         r = handle_hypercall(cpu, run);
1652         break;
1653     case DIAG_KVM_BREAKPOINT:
1654         r = handle_sw_breakpoint(cpu, run);
1655         break;
1656     default:
1657         DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code);
1658         kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1659         break;
1660     }
1661 
1662     return r;
1663 }
1664 
1665 static int kvm_s390_handle_sigp(S390CPU *cpu, uint8_t ipa1, uint32_t ipb)
1666 {
1667     CPUS390XState *env = &cpu->env;
1668     const uint8_t r1 = ipa1 >> 4;
1669     const uint8_t r3 = ipa1 & 0x0f;
1670     int ret;
1671     uint8_t order;
1672 
1673     /* get order code */
1674     order = decode_basedisp_rs(env, ipb, NULL) & SIGP_ORDER_MASK;
1675 
1676     ret = handle_sigp(env, order, r1, r3);
1677     setcc(cpu, ret);
1678     return 0;
1679 }
1680 
1681 static int handle_instruction(S390CPU *cpu, struct kvm_run *run)
1682 {
1683     unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00);
1684     uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff;
1685     int r = -1;
1686 
1687     DPRINTF("handle_instruction 0x%x 0x%x\n",
1688             run->s390_sieic.ipa, run->s390_sieic.ipb);
1689     switch (ipa0) {
1690     case IPA0_B2:
1691         r = handle_b2(cpu, run, ipa1);
1692         break;
1693     case IPA0_B9:
1694         r = handle_b9(cpu, run, ipa1);
1695         break;
1696     case IPA0_EB:
1697         r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff);
1698         break;
1699     case IPA0_E3:
1700         r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff);
1701         break;
1702     case IPA0_DIAG:
1703         r = handle_diag(cpu, run, run->s390_sieic.ipb);
1704         break;
1705     case IPA0_SIGP:
1706         r = kvm_s390_handle_sigp(cpu, ipa1, run->s390_sieic.ipb);
1707         break;
1708     }
1709 
1710     if (r < 0) {
1711         r = 0;
1712         kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1713     }
1714 
1715     return r;
1716 }
1717 
1718 static void unmanageable_intercept(S390CPU *cpu, S390CrashReason reason,
1719                                    int pswoffset)
1720 {
1721     CPUState *cs = CPU(cpu);
1722 
1723     s390_cpu_halt(cpu);
1724     cpu->env.crash_reason = reason;
1725     qemu_system_guest_panicked(cpu_get_crash_info(cs));
1726 }
1727 
1728 /* try to detect pgm check loops */
1729 static int handle_oper_loop(S390CPU *cpu, struct kvm_run *run)
1730 {
1731     CPUState *cs = CPU(cpu);
1732     PSW oldpsw, newpsw;
1733 
1734     newpsw.mask = ldq_phys(cs->as, cpu->env.psa +
1735                            offsetof(LowCore, program_new_psw));
1736     newpsw.addr = ldq_phys(cs->as, cpu->env.psa +
1737                            offsetof(LowCore, program_new_psw) + 8);
1738     oldpsw.mask  = run->psw_mask;
1739     oldpsw.addr  = run->psw_addr;
1740     /*
1741      * Avoid endless loops of operation exceptions, if the pgm new
1742      * PSW will cause a new operation exception.
1743      * The heuristic checks if the pgm new psw is within 6 bytes before
1744      * the faulting psw address (with same DAT, AS settings) and the
1745      * new psw is not a wait psw and the fault was not triggered by
1746      * problem state. In that case go into crashed state.
1747      */
1748 
1749     if (oldpsw.addr - newpsw.addr <= 6 &&
1750         !(newpsw.mask & PSW_MASK_WAIT) &&
1751         !(oldpsw.mask & PSW_MASK_PSTATE) &&
1752         (newpsw.mask & PSW_MASK_ASC) == (oldpsw.mask & PSW_MASK_ASC) &&
1753         (newpsw.mask & PSW_MASK_DAT) == (oldpsw.mask & PSW_MASK_DAT)) {
1754         unmanageable_intercept(cpu, S390_CRASH_REASON_OPINT_LOOP,
1755                                offsetof(LowCore, program_new_psw));
1756         return EXCP_HALTED;
1757     }
1758     return 0;
1759 }
1760 
1761 static int handle_intercept(S390CPU *cpu)
1762 {
1763     CPUState *cs = CPU(cpu);
1764     struct kvm_run *run = cs->kvm_run;
1765     int icpt_code = run->s390_sieic.icptcode;
1766     int r = 0;
1767 
1768     DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code, (long)run->psw_addr);
1769     switch (icpt_code) {
1770         case ICPT_INSTRUCTION:
1771         case ICPT_PV_INSTR:
1772         case ICPT_PV_INSTR_NOTIFICATION:
1773             r = handle_instruction(cpu, run);
1774             break;
1775         case ICPT_PROGRAM:
1776             unmanageable_intercept(cpu, S390_CRASH_REASON_PGMINT_LOOP,
1777                                    offsetof(LowCore, program_new_psw));
1778             r = EXCP_HALTED;
1779             break;
1780         case ICPT_EXT_INT:
1781             unmanageable_intercept(cpu, S390_CRASH_REASON_EXTINT_LOOP,
1782                                    offsetof(LowCore, external_new_psw));
1783             r = EXCP_HALTED;
1784             break;
1785         case ICPT_WAITPSW:
1786             /* disabled wait, since enabled wait is handled in kernel */
1787             s390_handle_wait(cpu);
1788             r = EXCP_HALTED;
1789             break;
1790         case ICPT_CPU_STOP:
1791             do_stop_interrupt(&cpu->env);
1792             r = EXCP_HALTED;
1793             break;
1794         case ICPT_OPEREXC:
1795             /* check for break points */
1796             r = handle_sw_breakpoint(cpu, run);
1797             if (r == -ENOENT) {
1798                 /* Then check for potential pgm check loops */
1799                 r = handle_oper_loop(cpu, run);
1800                 if (r == 0) {
1801                     kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1802                 }
1803             }
1804             break;
1805         case ICPT_SOFT_INTERCEPT:
1806             fprintf(stderr, "KVM unimplemented icpt SOFT\n");
1807             exit(1);
1808             break;
1809         case ICPT_IO:
1810             fprintf(stderr, "KVM unimplemented icpt IO\n");
1811             exit(1);
1812             break;
1813         default:
1814             fprintf(stderr, "Unknown intercept code: %d\n", icpt_code);
1815             exit(1);
1816             break;
1817     }
1818 
1819     return r;
1820 }
1821 
1822 static int handle_tsch(S390CPU *cpu)
1823 {
1824     CPUState *cs = CPU(cpu);
1825     struct kvm_run *run = cs->kvm_run;
1826     int ret;
1827 
1828     ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb,
1829                              RA_IGNORED);
1830     if (ret < 0) {
1831         /*
1832          * Failure.
1833          * If an I/O interrupt had been dequeued, we have to reinject it.
1834          */
1835         if (run->s390_tsch.dequeued) {
1836             s390_io_interrupt(run->s390_tsch.subchannel_id,
1837                               run->s390_tsch.subchannel_nr,
1838                               run->s390_tsch.io_int_parm,
1839                               run->s390_tsch.io_int_word);
1840         }
1841         ret = 0;
1842     }
1843     return ret;
1844 }
1845 
1846 static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar)
1847 {
1848     const MachineState *ms = MACHINE(qdev_get_machine());
1849     uint16_t conf_cpus = 0, reserved_cpus = 0;
1850     SysIB_322 sysib;
1851     int del, i;
1852 
1853     if (s390_is_pv()) {
1854         s390_cpu_pv_mem_read(cpu, 0, &sysib, sizeof(sysib));
1855     } else if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) {
1856         return;
1857     }
1858     /* Shift the stack of Extended Names to prepare for our own data */
1859     memmove(&sysib.ext_names[1], &sysib.ext_names[0],
1860             sizeof(sysib.ext_names[0]) * (sysib.count - 1));
1861     /* First virt level, that doesn't provide Ext Names delimits stack. It is
1862      * assumed it's not capable of managing Extended Names for lower levels.
1863      */
1864     for (del = 1; del < sysib.count; del++) {
1865         if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) {
1866             break;
1867         }
1868     }
1869     if (del < sysib.count) {
1870         memset(sysib.ext_names[del], 0,
1871                sizeof(sysib.ext_names[0]) * (sysib.count - del));
1872     }
1873 
1874     /* count the cpus and split them into configured and reserved ones */
1875     for (i = 0; i < ms->possible_cpus->len; i++) {
1876         if (ms->possible_cpus->cpus[i].cpu) {
1877             conf_cpus++;
1878         } else {
1879             reserved_cpus++;
1880         }
1881     }
1882     sysib.vm[0].total_cpus = conf_cpus + reserved_cpus;
1883     sysib.vm[0].conf_cpus = conf_cpus;
1884     sysib.vm[0].reserved_cpus = reserved_cpus;
1885 
1886     /* Insert short machine name in EBCDIC, padded with blanks */
1887     if (qemu_name) {
1888         memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name));
1889         ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name),
1890                                                     strlen(qemu_name)));
1891     }
1892     sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */
1893     /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's
1894      * considered by s390 as not capable of providing any Extended Name.
1895      * Therefore if no name was specified on qemu invocation, we go with the
1896      * same "KVMguest" default, which KVM has filled into short name field.
1897      */
1898     strpadcpy((char *)sysib.ext_names[0],
1899               sizeof(sysib.ext_names[0]),
1900               qemu_name ?: "KVMguest", '\0');
1901 
1902     /* Insert UUID */
1903     memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid));
1904 
1905     if (s390_is_pv()) {
1906         s390_cpu_pv_mem_write(cpu, 0, &sysib, sizeof(sysib));
1907     } else {
1908         s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib));
1909     }
1910 }
1911 
1912 static int handle_stsi(S390CPU *cpu)
1913 {
1914     CPUState *cs = CPU(cpu);
1915     struct kvm_run *run = cs->kvm_run;
1916 
1917     switch (run->s390_stsi.fc) {
1918     case 3:
1919         if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) {
1920             return 0;
1921         }
1922         /* Only sysib 3.2.2 needs post-handling for now. */
1923         insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar);
1924         return 0;
1925     default:
1926         return 0;
1927     }
1928 }
1929 
1930 static int kvm_arch_handle_debug_exit(S390CPU *cpu)
1931 {
1932     CPUState *cs = CPU(cpu);
1933     struct kvm_run *run = cs->kvm_run;
1934 
1935     int ret = 0;
1936     struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1937 
1938     switch (arch_info->type) {
1939     case KVM_HW_WP_WRITE:
1940         if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1941             cs->watchpoint_hit = &hw_watchpoint;
1942             hw_watchpoint.vaddr = arch_info->addr;
1943             hw_watchpoint.flags = BP_MEM_WRITE;
1944             ret = EXCP_DEBUG;
1945         }
1946         break;
1947     case KVM_HW_BP:
1948         if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1949             ret = EXCP_DEBUG;
1950         }
1951         break;
1952     case KVM_SINGLESTEP:
1953         if (cs->singlestep_enabled) {
1954             ret = EXCP_DEBUG;
1955         }
1956         break;
1957     default:
1958         ret = -ENOSYS;
1959     }
1960 
1961     return ret;
1962 }
1963 
1964 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1965 {
1966     S390CPU *cpu = S390_CPU(cs);
1967     int ret = 0;
1968 
1969     qemu_mutex_lock_iothread();
1970 
1971     kvm_cpu_synchronize_state(cs);
1972 
1973     switch (run->exit_reason) {
1974         case KVM_EXIT_S390_SIEIC:
1975             ret = handle_intercept(cpu);
1976             break;
1977         case KVM_EXIT_S390_RESET:
1978             s390_ipl_reset_request(cs, S390_RESET_REIPL);
1979             break;
1980         case KVM_EXIT_S390_TSCH:
1981             ret = handle_tsch(cpu);
1982             break;
1983         case KVM_EXIT_S390_STSI:
1984             ret = handle_stsi(cpu);
1985             break;
1986         case KVM_EXIT_DEBUG:
1987             ret = kvm_arch_handle_debug_exit(cpu);
1988             break;
1989         default:
1990             fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason);
1991             break;
1992     }
1993     qemu_mutex_unlock_iothread();
1994 
1995     if (ret == 0) {
1996         ret = EXCP_INTERRUPT;
1997     }
1998     return ret;
1999 }
2000 
2001 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
2002 {
2003     return true;
2004 }
2005 
2006 void kvm_s390_enable_css_support(S390CPU *cpu)
2007 {
2008     int r;
2009 
2010     /* Activate host kernel channel subsystem support. */
2011     r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0);
2012     assert(r == 0);
2013 }
2014 
2015 void kvm_arch_init_irq_routing(KVMState *s)
2016 {
2017     /*
2018      * Note that while irqchip capabilities generally imply that cpustates
2019      * are handled in-kernel, it is not true for s390 (yet); therefore, we
2020      * have to override the common code kvm_halt_in_kernel_allowed setting.
2021      */
2022     if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2023         kvm_gsi_routing_allowed = true;
2024         kvm_halt_in_kernel_allowed = false;
2025     }
2026 }
2027 
2028 int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch,
2029                                     int vq, bool assign)
2030 {
2031     struct kvm_ioeventfd kick = {
2032         .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY |
2033         KVM_IOEVENTFD_FLAG_DATAMATCH,
2034         .fd = event_notifier_get_fd(notifier),
2035         .datamatch = vq,
2036         .addr = sch,
2037         .len = 8,
2038     };
2039     trace_kvm_assign_subch_ioeventfd(kick.fd, kick.addr, assign,
2040                                      kick.datamatch);
2041     if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) {
2042         return -ENOSYS;
2043     }
2044     if (!assign) {
2045         kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
2046     }
2047     return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
2048 }
2049 
2050 int kvm_s390_get_protected_dump(void)
2051 {
2052     return cap_protected_dump;
2053 }
2054 
2055 int kvm_s390_get_ri(void)
2056 {
2057     return cap_ri;
2058 }
2059 
2060 int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state)
2061 {
2062     struct kvm_mp_state mp_state = {};
2063     int ret;
2064 
2065     /* the kvm part might not have been initialized yet */
2066     if (CPU(cpu)->kvm_state == NULL) {
2067         return 0;
2068     }
2069 
2070     switch (cpu_state) {
2071     case S390_CPU_STATE_STOPPED:
2072         mp_state.mp_state = KVM_MP_STATE_STOPPED;
2073         break;
2074     case S390_CPU_STATE_CHECK_STOP:
2075         mp_state.mp_state = KVM_MP_STATE_CHECK_STOP;
2076         break;
2077     case S390_CPU_STATE_OPERATING:
2078         mp_state.mp_state = KVM_MP_STATE_OPERATING;
2079         break;
2080     case S390_CPU_STATE_LOAD:
2081         mp_state.mp_state = KVM_MP_STATE_LOAD;
2082         break;
2083     default:
2084         error_report("Requested CPU state is not a valid S390 CPU state: %u",
2085                      cpu_state);
2086         exit(1);
2087     }
2088 
2089     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
2090     if (ret) {
2091         trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state,
2092                                        strerror(-ret));
2093     }
2094 
2095     return ret;
2096 }
2097 
2098 void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu)
2099 {
2100     unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus;
2101     struct kvm_s390_irq_state irq_state = {
2102         .buf = (uint64_t) cpu->irqstate,
2103         .len = VCPU_IRQ_BUF_SIZE(max_cpus),
2104     };
2105     CPUState *cs = CPU(cpu);
2106     int32_t bytes;
2107 
2108     if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2109         return;
2110     }
2111 
2112     bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state);
2113     if (bytes < 0) {
2114         cpu->irqstate_saved_size = 0;
2115         error_report("Migration of interrupt state failed");
2116         return;
2117     }
2118 
2119     cpu->irqstate_saved_size = bytes;
2120 }
2121 
2122 int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu)
2123 {
2124     CPUState *cs = CPU(cpu);
2125     struct kvm_s390_irq_state irq_state = {
2126         .buf = (uint64_t) cpu->irqstate,
2127         .len = cpu->irqstate_saved_size,
2128     };
2129     int r;
2130 
2131     if (cpu->irqstate_saved_size == 0) {
2132         return 0;
2133     }
2134 
2135     if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2136         return -ENOSYS;
2137     }
2138 
2139     r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state);
2140     if (r) {
2141         error_report("Setting interrupt state failed %d", r);
2142     }
2143     return r;
2144 }
2145 
2146 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2147                              uint64_t address, uint32_t data, PCIDevice *dev)
2148 {
2149     S390PCIBusDevice *pbdev;
2150     uint32_t vec = data & ZPCI_MSI_VEC_MASK;
2151 
2152     if (!dev) {
2153         DPRINTF("add_msi_route no pci device\n");
2154         return -ENODEV;
2155     }
2156 
2157     pbdev = s390_pci_find_dev_by_target(s390_get_phb(), DEVICE(dev)->id);
2158     if (!pbdev) {
2159         DPRINTF("add_msi_route no zpci device\n");
2160         return -ENODEV;
2161     }
2162 
2163     route->type = KVM_IRQ_ROUTING_S390_ADAPTER;
2164     route->flags = 0;
2165     route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr;
2166     route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr;
2167     route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset;
2168     route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset + vec;
2169     route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id;
2170     return 0;
2171 }
2172 
2173 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2174                                 int vector, PCIDevice *dev)
2175 {
2176     return 0;
2177 }
2178 
2179 int kvm_arch_release_virq_post(int virq)
2180 {
2181     return 0;
2182 }
2183 
2184 int kvm_arch_msi_data_to_gsi(uint32_t data)
2185 {
2186     abort();
2187 }
2188 
2189 static int query_cpu_subfunc(S390FeatBitmap features)
2190 {
2191     struct kvm_s390_vm_cpu_subfunc prop = {};
2192     struct kvm_device_attr attr = {
2193         .group = KVM_S390_VM_CPU_MODEL,
2194         .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC,
2195         .addr = (uint64_t) &prop,
2196     };
2197     int rc;
2198 
2199     rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2200     if (rc) {
2201         return  rc;
2202     }
2203 
2204     /*
2205      * We're going to add all subfunctions now, if the corresponding feature
2206      * is available that unlocks the query functions.
2207      */
2208     s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2209     if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2210         s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2211     }
2212     if (test_bit(S390_FEAT_MSA, features)) {
2213         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2214         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2215         s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2216         s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2217         s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2218     }
2219     if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2220         s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2221     }
2222     if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2223         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2224         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2225         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2226         s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2227     }
2228     if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2229         s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2230     }
2231     if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2232         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2233     }
2234     if (test_bit(S390_FEAT_MSA_EXT_9, features)) {
2235         s390_add_from_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa);
2236     }
2237     if (test_bit(S390_FEAT_ESORT_BASE, features)) {
2238         s390_add_from_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl);
2239     }
2240     if (test_bit(S390_FEAT_DEFLATE_BASE, features)) {
2241         s390_add_from_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc);
2242     }
2243     return 0;
2244 }
2245 
2246 static int configure_cpu_subfunc(const S390FeatBitmap features)
2247 {
2248     struct kvm_s390_vm_cpu_subfunc prop = {};
2249     struct kvm_device_attr attr = {
2250         .group = KVM_S390_VM_CPU_MODEL,
2251         .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC,
2252         .addr = (uint64_t) &prop,
2253     };
2254 
2255     if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2256                            KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) {
2257         /* hardware support might be missing, IBC will handle most of this */
2258         return 0;
2259     }
2260 
2261     s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2262     if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2263         s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2264     }
2265     if (test_bit(S390_FEAT_MSA, features)) {
2266         s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2267         s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2268         s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2269         s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2270         s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2271     }
2272     if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2273         s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2274     }
2275     if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2276         s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2277         s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2278         s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2279         s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2280     }
2281     if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2282         s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2283     }
2284     if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2285         s390_fill_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2286     }
2287     if (test_bit(S390_FEAT_MSA_EXT_9, features)) {
2288         s390_fill_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa);
2289     }
2290     if (test_bit(S390_FEAT_ESORT_BASE, features)) {
2291         s390_fill_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl);
2292     }
2293     if (test_bit(S390_FEAT_DEFLATE_BASE, features)) {
2294         s390_fill_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc);
2295     }
2296     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2297 }
2298 
2299 static int kvm_to_feat[][2] = {
2300     { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP },
2301     { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 },
2302     { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO },
2303     { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF },
2304     { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE },
2305     { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS },
2306     { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB },
2307     { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI },
2308     { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS },
2309     { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY },
2310     { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA },
2311     { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI},
2312     { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF},
2313     { KVM_S390_VM_CPU_FEAT_KSS, S390_FEAT_SIE_KSS},
2314 };
2315 
2316 static int query_cpu_feat(S390FeatBitmap features)
2317 {
2318     struct kvm_s390_vm_cpu_feat prop = {};
2319     struct kvm_device_attr attr = {
2320         .group = KVM_S390_VM_CPU_MODEL,
2321         .attr = KVM_S390_VM_CPU_MACHINE_FEAT,
2322         .addr = (uint64_t) &prop,
2323     };
2324     int rc;
2325     int i;
2326 
2327     rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2328     if (rc) {
2329         return  rc;
2330     }
2331 
2332     for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2333         if (test_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat)) {
2334             set_bit(kvm_to_feat[i][1], features);
2335         }
2336     }
2337     return 0;
2338 }
2339 
2340 static int configure_cpu_feat(const S390FeatBitmap features)
2341 {
2342     struct kvm_s390_vm_cpu_feat prop = {};
2343     struct kvm_device_attr attr = {
2344         .group = KVM_S390_VM_CPU_MODEL,
2345         .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT,
2346         .addr = (uint64_t) &prop,
2347     };
2348     int i;
2349 
2350     for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2351         if (test_bit(kvm_to_feat[i][1], features)) {
2352             set_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat);
2353         }
2354     }
2355     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2356 }
2357 
2358 bool kvm_s390_cpu_models_supported(void)
2359 {
2360     if (!cpu_model_allowed()) {
2361         /* compatibility machines interfere with the cpu model */
2362         return false;
2363     }
2364     return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2365                              KVM_S390_VM_CPU_MACHINE) &&
2366            kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2367                              KVM_S390_VM_CPU_PROCESSOR) &&
2368            kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2369                              KVM_S390_VM_CPU_MACHINE_FEAT) &&
2370            kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2371                              KVM_S390_VM_CPU_PROCESSOR_FEAT) &&
2372            kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2373                              KVM_S390_VM_CPU_MACHINE_SUBFUNC);
2374 }
2375 
2376 void kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp)
2377 {
2378     struct kvm_s390_vm_cpu_machine prop = {};
2379     struct kvm_device_attr attr = {
2380         .group = KVM_S390_VM_CPU_MODEL,
2381         .attr = KVM_S390_VM_CPU_MACHINE,
2382         .addr = (uint64_t) &prop,
2383     };
2384     uint16_t unblocked_ibc = 0, cpu_type = 0;
2385     int rc;
2386 
2387     memset(model, 0, sizeof(*model));
2388 
2389     if (!kvm_s390_cpu_models_supported()) {
2390         error_setg(errp, "KVM doesn't support CPU models");
2391         return;
2392     }
2393 
2394     /* query the basic cpu model properties */
2395     rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2396     if (rc) {
2397         error_setg(errp, "KVM: Error querying host CPU model: %d", rc);
2398         return;
2399     }
2400 
2401     cpu_type = cpuid_type(prop.cpuid);
2402     if (has_ibc(prop.ibc)) {
2403         model->lowest_ibc = lowest_ibc(prop.ibc);
2404         unblocked_ibc = unblocked_ibc(prop.ibc);
2405     }
2406     model->cpu_id = cpuid_id(prop.cpuid);
2407     model->cpu_id_format = cpuid_format(prop.cpuid);
2408     model->cpu_ver = 0xff;
2409 
2410     /* get supported cpu features indicated via STFL(E) */
2411     s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL,
2412                              (uint8_t *) prop.fac_mask);
2413     /* dat-enhancement facility 2 has no bit but was introduced with stfle */
2414     if (test_bit(S390_FEAT_STFLE, model->features)) {
2415         set_bit(S390_FEAT_DAT_ENH_2, model->features);
2416     }
2417     /* get supported cpu features indicated e.g. via SCLP */
2418     rc = query_cpu_feat(model->features);
2419     if (rc) {
2420         error_setg(errp, "KVM: Error querying CPU features: %d", rc);
2421         return;
2422     }
2423     /* get supported cpu subfunctions indicated via query / test bit */
2424     rc = query_cpu_subfunc(model->features);
2425     if (rc) {
2426         error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc);
2427         return;
2428     }
2429 
2430     /* PTFF subfunctions might be indicated although kernel support missing */
2431     if (!test_bit(S390_FEAT_MULTIPLE_EPOCH, model->features)) {
2432         clear_bit(S390_FEAT_PTFF_QSIE, model->features);
2433         clear_bit(S390_FEAT_PTFF_QTOUE, model->features);
2434         clear_bit(S390_FEAT_PTFF_STOE, model->features);
2435         clear_bit(S390_FEAT_PTFF_STOUE, model->features);
2436     }
2437 
2438     /* with cpu model support, CMM is only indicated if really available */
2439     if (kvm_s390_cmma_available()) {
2440         set_bit(S390_FEAT_CMM, model->features);
2441     } else {
2442         /* no cmm -> no cmm nt */
2443         clear_bit(S390_FEAT_CMM_NT, model->features);
2444     }
2445 
2446     /* bpb needs kernel support for migration, VSIE and reset */
2447     if (!kvm_check_extension(kvm_state, KVM_CAP_S390_BPB)) {
2448         clear_bit(S390_FEAT_BPB, model->features);
2449     }
2450 
2451     /*
2452      * If we have support for protected virtualization, indicate
2453      * the protected virtualization IPL unpack facility.
2454      */
2455     if (cap_protected) {
2456         set_bit(S390_FEAT_UNPACK, model->features);
2457     }
2458 
2459     /* We emulate a zPCI bus and AEN, therefore we don't need HW support */
2460     set_bit(S390_FEAT_ZPCI, model->features);
2461     set_bit(S390_FEAT_ADAPTER_EVENT_NOTIFICATION, model->features);
2462 
2463     if (s390_known_cpu_type(cpu_type)) {
2464         /* we want the exact model, even if some features are missing */
2465         model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc),
2466                                        ibc_ec_ga(unblocked_ibc), NULL);
2467     } else {
2468         /* model unknown, e.g. too new - search using features */
2469         model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc),
2470                                        ibc_ec_ga(unblocked_ibc),
2471                                        model->features);
2472     }
2473     if (!model->def) {
2474         error_setg(errp, "KVM: host CPU model could not be identified");
2475         return;
2476     }
2477     /* for now, we can only provide the AP feature with HW support */
2478     if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO,
2479         KVM_S390_VM_CRYPTO_ENABLE_APIE)) {
2480         set_bit(S390_FEAT_AP, model->features);
2481     }
2482 
2483     /*
2484      * Extended-Length SCCB is handled entirely within QEMU.
2485      * For PV guests this is completely fenced by the Ultravisor, as Service
2486      * Call error checking and STFLE interpretation are handled via SIE.
2487      */
2488     set_bit(S390_FEAT_EXTENDED_LENGTH_SCCB, model->features);
2489 
2490     if (kvm_check_extension(kvm_state, KVM_CAP_S390_DIAG318)) {
2491         set_bit(S390_FEAT_DIAG_318, model->features);
2492     }
2493 
2494     /* strip of features that are not part of the maximum model */
2495     bitmap_and(model->features, model->features, model->def->full_feat,
2496                S390_FEAT_MAX);
2497 }
2498 
2499 static void kvm_s390_configure_apie(bool interpret)
2500 {
2501     uint64_t attr = interpret ? KVM_S390_VM_CRYPTO_ENABLE_APIE :
2502                                 KVM_S390_VM_CRYPTO_DISABLE_APIE;
2503 
2504     if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
2505         kvm_s390_set_attr(attr);
2506     }
2507 }
2508 
2509 void kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp)
2510 {
2511     struct kvm_s390_vm_cpu_processor prop  = {
2512         .fac_list = { 0 },
2513     };
2514     struct kvm_device_attr attr = {
2515         .group = KVM_S390_VM_CPU_MODEL,
2516         .attr = KVM_S390_VM_CPU_PROCESSOR,
2517         .addr = (uint64_t) &prop,
2518     };
2519     int rc;
2520 
2521     if (!model) {
2522         /* compatibility handling if cpu models are disabled */
2523         if (kvm_s390_cmma_available()) {
2524             kvm_s390_enable_cmma();
2525         }
2526         return;
2527     }
2528     if (!kvm_s390_cpu_models_supported()) {
2529         error_setg(errp, "KVM doesn't support CPU models");
2530         return;
2531     }
2532     prop.cpuid = s390_cpuid_from_cpu_model(model);
2533     prop.ibc = s390_ibc_from_cpu_model(model);
2534     /* configure cpu features indicated via STFL(e) */
2535     s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL,
2536                          (uint8_t *) prop.fac_list);
2537     rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2538     if (rc) {
2539         error_setg(errp, "KVM: Error configuring the CPU model: %d", rc);
2540         return;
2541     }
2542     /* configure cpu features indicated e.g. via SCLP */
2543     rc = configure_cpu_feat(model->features);
2544     if (rc) {
2545         error_setg(errp, "KVM: Error configuring CPU features: %d", rc);
2546         return;
2547     }
2548     /* configure cpu subfunctions indicated via query / test bit */
2549     rc = configure_cpu_subfunc(model->features);
2550     if (rc) {
2551         error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc);
2552         return;
2553     }
2554     /* enable CMM via CMMA */
2555     if (test_bit(S390_FEAT_CMM, model->features)) {
2556         kvm_s390_enable_cmma();
2557     }
2558 
2559     if (test_bit(S390_FEAT_AP, model->features)) {
2560         kvm_s390_configure_apie(true);
2561     }
2562 }
2563 
2564 void kvm_s390_restart_interrupt(S390CPU *cpu)
2565 {
2566     struct kvm_s390_irq irq = {
2567         .type = KVM_S390_RESTART,
2568     };
2569 
2570     kvm_s390_vcpu_interrupt(cpu, &irq);
2571 }
2572 
2573 void kvm_s390_stop_interrupt(S390CPU *cpu)
2574 {
2575     struct kvm_s390_irq irq = {
2576         .type = KVM_S390_SIGP_STOP,
2577     };
2578 
2579     kvm_s390_vcpu_interrupt(cpu, &irq);
2580 }
2581 
2582 bool kvm_arch_cpu_check_are_resettable(void)
2583 {
2584     return true;
2585 }
2586 
2587 int kvm_s390_get_zpci_op(void)
2588 {
2589     return cap_zpci_op;
2590 }
2591 
2592 void kvm_arch_accel_class_init(ObjectClass *oc)
2593 {
2594 }
2595