xref: /openbmc/qemu/target/riscv/monitor.c (revision f3fa412de28ae3cb31d38811d30a77e4e20456cc)
1 /*
2  * QEMU monitor for RISC-V
3  *
4  * Copyright (c) 2019 Bin Meng <bmeng.cn@gmail.com>
5  *
6  * RISC-V specific monitor commands implementation
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2 or later, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "cpu.h"
23 #include "cpu_bits.h"
24 #include "monitor/monitor.h"
25 #include "monitor/hmp-target.h"
26 
27 #ifdef TARGET_RISCV64
28 #define PTE_HEADER_FIELDS       "vaddr            paddr            "\
29                                 "size             attr\n"
30 #define PTE_HEADER_DELIMITER    "---------------- ---------------- "\
31                                 "---------------- -------\n"
32 #else
33 #define PTE_HEADER_FIELDS       "vaddr    paddr            size     attr\n"
34 #define PTE_HEADER_DELIMITER    "-------- ---------------- -------- -------\n"
35 #endif
36 
37 /* Perform linear address sign extension */
38 static target_ulong addr_canonical(int va_bits, target_ulong addr)
39 {
40 #ifdef TARGET_RISCV64
41     if (addr & (1UL << (va_bits - 1))) {
42         addr |= (hwaddr)-(1L << va_bits);
43     }
44 #endif
45 
46     return addr;
47 }
48 
49 static void print_pte_header(Monitor *mon)
50 {
51     monitor_printf(mon, PTE_HEADER_FIELDS);
52     monitor_printf(mon, PTE_HEADER_DELIMITER);
53 }
54 
55 static void print_pte(Monitor *mon, int va_bits, target_ulong vaddr,
56                       hwaddr paddr, target_ulong size, int attr)
57 {
58     /* santity check on vaddr */
59     if (vaddr >= (1UL << va_bits)) {
60         return;
61     }
62 
63     if (!size) {
64         return;
65     }
66 
67     monitor_printf(mon, TARGET_FMT_lx " " TARGET_FMT_plx " " TARGET_FMT_lx
68                    " %c%c%c%c%c%c%c\n",
69                    addr_canonical(va_bits, vaddr),
70                    paddr, size,
71                    attr & PTE_R ? 'r' : '-',
72                    attr & PTE_W ? 'w' : '-',
73                    attr & PTE_X ? 'x' : '-',
74                    attr & PTE_U ? 'u' : '-',
75                    attr & PTE_G ? 'g' : '-',
76                    attr & PTE_A ? 'a' : '-',
77                    attr & PTE_D ? 'd' : '-');
78 }
79 
80 static void walk_pte(Monitor *mon, hwaddr base, target_ulong start,
81                      int level, int ptidxbits, int ptesize, int va_bits,
82                      target_ulong *vbase, hwaddr *pbase, hwaddr *last_paddr,
83                      target_ulong *last_size, int *last_attr)
84 {
85     hwaddr pte_addr;
86     hwaddr paddr;
87     target_ulong pgsize;
88     target_ulong pte;
89     int ptshift;
90     int attr;
91     int idx;
92 
93     if (level < 0) {
94         return;
95     }
96 
97     ptshift = level * ptidxbits;
98     pgsize = 1UL << (PGSHIFT + ptshift);
99 
100     for (idx = 0; idx < (1UL << ptidxbits); idx++) {
101         pte_addr = base + idx * ptesize;
102         cpu_physical_memory_read(pte_addr, &pte, ptesize);
103 
104         paddr = (hwaddr)(pte >> PTE_PPN_SHIFT) << PGSHIFT;
105         attr = pte & 0xff;
106 
107         /* PTE has to be valid */
108         if (attr & PTE_V) {
109             if (attr & (PTE_R | PTE_W | PTE_X)) {
110                 /*
111                  * A leaf PTE has been found
112                  *
113                  * If current PTE's permission bits differ from the last one,
114                  * or current PTE's ppn does not make a contiguous physical
115                  * address block together with the last one, print out the last
116                  * contiguous mapped block details.
117                  */
118                 if ((*last_attr != attr) ||
119                     (*last_paddr + *last_size != paddr)) {
120                     print_pte(mon, va_bits, *vbase, *pbase,
121                               *last_paddr + *last_size - *pbase, *last_attr);
122 
123                     *vbase = start;
124                     *pbase = paddr;
125                     *last_attr = attr;
126                 }
127 
128                 *last_paddr = paddr;
129                 *last_size = pgsize;
130             } else {
131                 /* pointer to the next level of the page table */
132                 walk_pte(mon, paddr, start, level - 1, ptidxbits, ptesize,
133                          va_bits, vbase, pbase, last_paddr,
134                          last_size, last_attr);
135             }
136         }
137 
138         start += pgsize;
139     }
140 
141 }
142 
143 static void mem_info_svxx(Monitor *mon, CPUArchState *env)
144 {
145     int levels, ptidxbits, ptesize, vm, va_bits;
146     hwaddr base;
147     target_ulong vbase;
148     hwaddr pbase;
149     hwaddr last_paddr;
150     target_ulong last_size;
151     int last_attr;
152 
153     if (riscv_cpu_is_32bit(env)) {
154         base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
155         vm = get_field(env->satp, SATP32_MODE);
156     } else {
157         base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
158         vm = get_field(env->satp, SATP64_MODE);
159     }
160 
161     switch (vm) {
162     case VM_1_10_SV32:
163         levels = 2;
164         ptidxbits = 10;
165         ptesize = 4;
166         break;
167     case VM_1_10_SV39:
168         levels = 3;
169         ptidxbits = 9;
170         ptesize = 8;
171         break;
172     case VM_1_10_SV48:
173         levels = 4;
174         ptidxbits = 9;
175         ptesize = 8;
176         break;
177     case VM_1_10_SV57:
178         levels = 5;
179         ptidxbits = 9;
180         ptesize = 8;
181         break;
182     default:
183         g_assert_not_reached();
184         break;
185     }
186 
187     /* calculate virtual address bits */
188     va_bits = PGSHIFT + levels * ptidxbits;
189 
190     /* print header */
191     print_pte_header(mon);
192 
193     vbase = -1;
194     pbase = -1;
195     last_paddr = -1;
196     last_size = 0;
197     last_attr = 0;
198 
199     /* walk page tables, starting from address 0 */
200     walk_pte(mon, base, 0, levels - 1, ptidxbits, ptesize, va_bits,
201              &vbase, &pbase, &last_paddr, &last_size, &last_attr);
202 
203     /* don't forget the last one */
204     print_pte(mon, va_bits, vbase, pbase,
205               last_paddr + last_size - pbase, last_attr);
206 }
207 
208 void hmp_info_mem(Monitor *mon, const QDict *qdict)
209 {
210     CPUArchState *env;
211 
212     env = mon_get_cpu_env(mon);
213     if (!env) {
214         monitor_printf(mon, "No CPU available\n");
215         return;
216     }
217 
218     if (!riscv_feature(env, RISCV_FEATURE_MMU)) {
219         monitor_printf(mon, "S-mode MMU unavailable\n");
220         return;
221     }
222 
223     if (riscv_cpu_is_32bit(env)) {
224         if (!(env->satp & SATP32_MODE)) {
225             monitor_printf(mon, "No translation or protection\n");
226             return;
227         }
228     } else {
229         if (!(env->satp & SATP64_MODE)) {
230             monitor_printf(mon, "No translation or protection\n");
231             return;
232         }
233     }
234 
235     mem_info_svxx(mon, env);
236 }
237