xref: /openbmc/qemu/target/riscv/fpu_helper.c (revision c5a5839856119a3644dcc0775a046ed0ee3081c3)
1 /*
2  * RISC-V FPU Emulation Helpers for QEMU.
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "qemu/host-utils.h"
22 #include "exec/exec-all.h"
23 #include "exec/helper-proto.h"
24 #include "fpu/softfloat.h"
25 
26 target_ulong riscv_cpu_get_fflags(CPURISCVState *env)
27 {
28     int soft = get_float_exception_flags(&env->fp_status);
29     target_ulong hard = 0;
30 
31     hard |= (soft & float_flag_inexact) ? FPEXC_NX : 0;
32     hard |= (soft & float_flag_underflow) ? FPEXC_UF : 0;
33     hard |= (soft & float_flag_overflow) ? FPEXC_OF : 0;
34     hard |= (soft & float_flag_divbyzero) ? FPEXC_DZ : 0;
35     hard |= (soft & float_flag_invalid) ? FPEXC_NV : 0;
36 
37     return hard;
38 }
39 
40 void riscv_cpu_set_fflags(CPURISCVState *env, target_ulong hard)
41 {
42     int soft = 0;
43 
44     soft |= (hard & FPEXC_NX) ? float_flag_inexact : 0;
45     soft |= (hard & FPEXC_UF) ? float_flag_underflow : 0;
46     soft |= (hard & FPEXC_OF) ? float_flag_overflow : 0;
47     soft |= (hard & FPEXC_DZ) ? float_flag_divbyzero : 0;
48     soft |= (hard & FPEXC_NV) ? float_flag_invalid : 0;
49 
50     set_float_exception_flags(soft, &env->fp_status);
51 }
52 
53 void helper_set_rounding_mode(CPURISCVState *env, uint32_t rm)
54 {
55     int softrm;
56 
57     if (rm == 7) {
58         rm = env->frm;
59     }
60     switch (rm) {
61     case 0:
62         softrm = float_round_nearest_even;
63         break;
64     case 1:
65         softrm = float_round_to_zero;
66         break;
67     case 2:
68         softrm = float_round_down;
69         break;
70     case 3:
71         softrm = float_round_up;
72         break;
73     case 4:
74         softrm = float_round_ties_away;
75         break;
76     default:
77         riscv_raise_exception(env, RISCV_EXCP_ILLEGAL_INST, GETPC());
78     }
79 
80     set_float_rounding_mode(softrm, &env->fp_status);
81 }
82 
83 uint64_t helper_fmadd_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
84                         uint64_t frs3)
85 {
86     return float32_muladd(frs1, frs2, frs3, 0, &env->fp_status);
87 }
88 
89 uint64_t helper_fmadd_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
90                         uint64_t frs3)
91 {
92     return float64_muladd(frs1, frs2, frs3, 0, &env->fp_status);
93 }
94 
95 uint64_t helper_fmsub_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
96                         uint64_t frs3)
97 {
98     return float32_muladd(frs1, frs2, frs3, float_muladd_negate_c,
99                           &env->fp_status);
100 }
101 
102 uint64_t helper_fmsub_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
103                         uint64_t frs3)
104 {
105     return float64_muladd(frs1, frs2, frs3, float_muladd_negate_c,
106                           &env->fp_status);
107 }
108 
109 uint64_t helper_fnmsub_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
110                          uint64_t frs3)
111 {
112     return float32_muladd(frs1, frs2, frs3, float_muladd_negate_product,
113                           &env->fp_status);
114 }
115 
116 uint64_t helper_fnmsub_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
117                          uint64_t frs3)
118 {
119     return float64_muladd(frs1, frs2, frs3, float_muladd_negate_product,
120                           &env->fp_status);
121 }
122 
123 uint64_t helper_fnmadd_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
124                          uint64_t frs3)
125 {
126     return float32_muladd(frs1, frs2, frs3, float_muladd_negate_c |
127                           float_muladd_negate_product, &env->fp_status);
128 }
129 
130 uint64_t helper_fnmadd_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
131                          uint64_t frs3)
132 {
133     return float64_muladd(frs1, frs2, frs3, float_muladd_negate_c |
134                           float_muladd_negate_product, &env->fp_status);
135 }
136 
137 uint64_t helper_fadd_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
138 {
139     return float32_add(frs1, frs2, &env->fp_status);
140 }
141 
142 uint64_t helper_fsub_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
143 {
144     return float32_sub(frs1, frs2, &env->fp_status);
145 }
146 
147 uint64_t helper_fmul_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
148 {
149     return float32_mul(frs1, frs2, &env->fp_status);
150 }
151 
152 uint64_t helper_fdiv_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
153 {
154     return float32_div(frs1, frs2, &env->fp_status);
155 }
156 
157 uint64_t helper_fmin_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
158 {
159     return float32_minnum(frs1, frs2, &env->fp_status);
160 }
161 
162 uint64_t helper_fmax_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
163 {
164     return float32_maxnum(frs1, frs2, &env->fp_status);
165 }
166 
167 uint64_t helper_fsqrt_s(CPURISCVState *env, uint64_t frs1)
168 {
169     return float32_sqrt(frs1, &env->fp_status);
170 }
171 
172 target_ulong helper_fle_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
173 {
174     return float32_le(frs1, frs2, &env->fp_status);
175 }
176 
177 target_ulong helper_flt_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
178 {
179     return float32_lt(frs1, frs2, &env->fp_status);
180 }
181 
182 target_ulong helper_feq_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
183 {
184     return float32_eq_quiet(frs1, frs2, &env->fp_status);
185 }
186 
187 target_ulong helper_fcvt_w_s(CPURISCVState *env, uint64_t frs1)
188 {
189     return float32_to_int32(frs1, &env->fp_status);
190 }
191 
192 target_ulong helper_fcvt_wu_s(CPURISCVState *env, uint64_t frs1)
193 {
194     return (int32_t)float32_to_uint32(frs1, &env->fp_status);
195 }
196 
197 #if defined(TARGET_RISCV64)
198 uint64_t helper_fcvt_l_s(CPURISCVState *env, uint64_t frs1)
199 {
200     return float32_to_int64(frs1, &env->fp_status);
201 }
202 
203 uint64_t helper_fcvt_lu_s(CPURISCVState *env, uint64_t frs1)
204 {
205     return float32_to_uint64(frs1, &env->fp_status);
206 }
207 #endif
208 
209 uint64_t helper_fcvt_s_w(CPURISCVState *env, target_ulong rs1)
210 {
211     return int32_to_float32((int32_t)rs1, &env->fp_status);
212 }
213 
214 uint64_t helper_fcvt_s_wu(CPURISCVState *env, target_ulong rs1)
215 {
216     return uint32_to_float32((uint32_t)rs1, &env->fp_status);
217 }
218 
219 #if defined(TARGET_RISCV64)
220 uint64_t helper_fcvt_s_l(CPURISCVState *env, uint64_t rs1)
221 {
222     return int64_to_float32(rs1, &env->fp_status);
223 }
224 
225 uint64_t helper_fcvt_s_lu(CPURISCVState *env, uint64_t rs1)
226 {
227     return uint64_to_float32(rs1, &env->fp_status);
228 }
229 #endif
230 
231 target_ulong helper_fclass_s(uint64_t frs1)
232 {
233     float32 f = frs1;
234     bool sign = float32_is_neg(f);
235 
236     if (float32_is_infinity(f)) {
237         return sign ? 1 << 0 : 1 << 7;
238     } else if (float32_is_zero(f)) {
239         return sign ? 1 << 3 : 1 << 4;
240     } else if (float32_is_zero_or_denormal(f)) {
241         return sign ? 1 << 2 : 1 << 5;
242     } else if (float32_is_any_nan(f)) {
243         float_status s = { }; /* for snan_bit_is_one */
244         return float32_is_quiet_nan(f, &s) ? 1 << 9 : 1 << 8;
245     } else {
246         return sign ? 1 << 1 : 1 << 6;
247     }
248 }
249 
250 uint64_t helper_fadd_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
251 {
252     return float64_add(frs1, frs2, &env->fp_status);
253 }
254 
255 uint64_t helper_fsub_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
256 {
257     return float64_sub(frs1, frs2, &env->fp_status);
258 }
259 
260 uint64_t helper_fmul_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
261 {
262     return float64_mul(frs1, frs2, &env->fp_status);
263 }
264 
265 uint64_t helper_fdiv_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
266 {
267     return float64_div(frs1, frs2, &env->fp_status);
268 }
269 
270 uint64_t helper_fmin_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
271 {
272     return float64_minnum(frs1, frs2, &env->fp_status);
273 }
274 
275 uint64_t helper_fmax_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
276 {
277     return float64_maxnum(frs1, frs2, &env->fp_status);
278 }
279 
280 uint64_t helper_fcvt_s_d(CPURISCVState *env, uint64_t rs1)
281 {
282     return float64_to_float32(rs1, &env->fp_status);
283 }
284 
285 uint64_t helper_fcvt_d_s(CPURISCVState *env, uint64_t rs1)
286 {
287     return float32_to_float64(rs1, &env->fp_status);
288 }
289 
290 uint64_t helper_fsqrt_d(CPURISCVState *env, uint64_t frs1)
291 {
292     return float64_sqrt(frs1, &env->fp_status);
293 }
294 
295 target_ulong helper_fle_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
296 {
297     return float64_le(frs1, frs2, &env->fp_status);
298 }
299 
300 target_ulong helper_flt_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
301 {
302     return float64_lt(frs1, frs2, &env->fp_status);
303 }
304 
305 target_ulong helper_feq_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
306 {
307     return float64_eq_quiet(frs1, frs2, &env->fp_status);
308 }
309 
310 target_ulong helper_fcvt_w_d(CPURISCVState *env, uint64_t frs1)
311 {
312     return float64_to_int32(frs1, &env->fp_status);
313 }
314 
315 target_ulong helper_fcvt_wu_d(CPURISCVState *env, uint64_t frs1)
316 {
317     return (int32_t)float64_to_uint32(frs1, &env->fp_status);
318 }
319 
320 #if defined(TARGET_RISCV64)
321 uint64_t helper_fcvt_l_d(CPURISCVState *env, uint64_t frs1)
322 {
323     return float64_to_int64(frs1, &env->fp_status);
324 }
325 
326 uint64_t helper_fcvt_lu_d(CPURISCVState *env, uint64_t frs1)
327 {
328     return float64_to_uint64(frs1, &env->fp_status);
329 }
330 #endif
331 
332 uint64_t helper_fcvt_d_w(CPURISCVState *env, target_ulong rs1)
333 {
334     return int32_to_float64((int32_t)rs1, &env->fp_status);
335 }
336 
337 uint64_t helper_fcvt_d_wu(CPURISCVState *env, target_ulong rs1)
338 {
339     return uint32_to_float64((uint32_t)rs1, &env->fp_status);
340 }
341 
342 #if defined(TARGET_RISCV64)
343 uint64_t helper_fcvt_d_l(CPURISCVState *env, uint64_t rs1)
344 {
345     return int64_to_float64(rs1, &env->fp_status);
346 }
347 
348 uint64_t helper_fcvt_d_lu(CPURISCVState *env, uint64_t rs1)
349 {
350     return uint64_to_float64(rs1, &env->fp_status);
351 }
352 #endif
353 
354 target_ulong helper_fclass_d(uint64_t frs1)
355 {
356     float64 f = frs1;
357     bool sign = float64_is_neg(f);
358 
359     if (float64_is_infinity(f)) {
360         return sign ? 1 << 0 : 1 << 7;
361     } else if (float64_is_zero(f)) {
362         return sign ? 1 << 3 : 1 << 4;
363     } else if (float64_is_zero_or_denormal(f)) {
364         return sign ? 1 << 2 : 1 << 5;
365     } else if (float64_is_any_nan(f)) {
366         float_status s = { }; /* for snan_bit_is_one */
367         return float64_is_quiet_nan(f, &s) ? 1 << 9 : 1 << 8;
368     } else {
369         return sign ? 1 << 1 : 1 << 6;
370     }
371 }
372