xref: /openbmc/qemu/target/riscv/fpu_helper.c (revision 8e0ef068942e4152f0d23e76ca1f5e35dc4456f7)
1 /*
2  * RISC-V FPU Emulation Helpers for QEMU.
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "qemu/host-utils.h"
22 #include "exec/exec-all.h"
23 #include "exec/helper-proto.h"
24 #include "fpu/softfloat.h"
25 #include "internals.h"
26 
27 target_ulong riscv_cpu_get_fflags(CPURISCVState *env)
28 {
29     int soft = get_float_exception_flags(&env->fp_status);
30     target_ulong hard = 0;
31 
32     hard |= (soft & float_flag_inexact) ? FPEXC_NX : 0;
33     hard |= (soft & float_flag_underflow) ? FPEXC_UF : 0;
34     hard |= (soft & float_flag_overflow) ? FPEXC_OF : 0;
35     hard |= (soft & float_flag_divbyzero) ? FPEXC_DZ : 0;
36     hard |= (soft & float_flag_invalid) ? FPEXC_NV : 0;
37 
38     return hard;
39 }
40 
41 void riscv_cpu_set_fflags(CPURISCVState *env, target_ulong hard)
42 {
43     int soft = 0;
44 
45     soft |= (hard & FPEXC_NX) ? float_flag_inexact : 0;
46     soft |= (hard & FPEXC_UF) ? float_flag_underflow : 0;
47     soft |= (hard & FPEXC_OF) ? float_flag_overflow : 0;
48     soft |= (hard & FPEXC_DZ) ? float_flag_divbyzero : 0;
49     soft |= (hard & FPEXC_NV) ? float_flag_invalid : 0;
50 
51     set_float_exception_flags(soft, &env->fp_status);
52 }
53 
54 void helper_set_rounding_mode(CPURISCVState *env, uint32_t rm)
55 {
56     int softrm;
57 
58     if (rm == 7) {
59         rm = env->frm;
60     }
61     switch (rm) {
62     case 0:
63         softrm = float_round_nearest_even;
64         break;
65     case 1:
66         softrm = float_round_to_zero;
67         break;
68     case 2:
69         softrm = float_round_down;
70         break;
71     case 3:
72         softrm = float_round_up;
73         break;
74     case 4:
75         softrm = float_round_ties_away;
76         break;
77     default:
78         riscv_raise_exception(env, RISCV_EXCP_ILLEGAL_INST, GETPC());
79     }
80 
81     set_float_rounding_mode(softrm, &env->fp_status);
82 }
83 
84 uint64_t helper_fmadd_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
85                         uint64_t frs3)
86 {
87     return float32_muladd(frs1, frs2, frs3, 0, &env->fp_status);
88 }
89 
90 uint64_t helper_fmadd_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
91                         uint64_t frs3)
92 {
93     return float64_muladd(frs1, frs2, frs3, 0, &env->fp_status);
94 }
95 
96 uint64_t helper_fmsub_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
97                         uint64_t frs3)
98 {
99     return float32_muladd(frs1, frs2, frs3, float_muladd_negate_c,
100                           &env->fp_status);
101 }
102 
103 uint64_t helper_fmsub_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
104                         uint64_t frs3)
105 {
106     return float64_muladd(frs1, frs2, frs3, float_muladd_negate_c,
107                           &env->fp_status);
108 }
109 
110 uint64_t helper_fnmsub_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
111                          uint64_t frs3)
112 {
113     return float32_muladd(frs1, frs2, frs3, float_muladd_negate_product,
114                           &env->fp_status);
115 }
116 
117 uint64_t helper_fnmsub_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
118                          uint64_t frs3)
119 {
120     return float64_muladd(frs1, frs2, frs3, float_muladd_negate_product,
121                           &env->fp_status);
122 }
123 
124 uint64_t helper_fnmadd_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
125                          uint64_t frs3)
126 {
127     return float32_muladd(frs1, frs2, frs3, float_muladd_negate_c |
128                           float_muladd_negate_product, &env->fp_status);
129 }
130 
131 uint64_t helper_fnmadd_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
132                          uint64_t frs3)
133 {
134     return float64_muladd(frs1, frs2, frs3, float_muladd_negate_c |
135                           float_muladd_negate_product, &env->fp_status);
136 }
137 
138 uint64_t helper_fadd_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
139 {
140     return float32_add(frs1, frs2, &env->fp_status);
141 }
142 
143 uint64_t helper_fsub_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
144 {
145     return float32_sub(frs1, frs2, &env->fp_status);
146 }
147 
148 uint64_t helper_fmul_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
149 {
150     return float32_mul(frs1, frs2, &env->fp_status);
151 }
152 
153 uint64_t helper_fdiv_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
154 {
155     return float32_div(frs1, frs2, &env->fp_status);
156 }
157 
158 uint64_t helper_fmin_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
159 {
160     return float32_minnum(frs1, frs2, &env->fp_status);
161 }
162 
163 uint64_t helper_fmax_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
164 {
165     return float32_maxnum(frs1, frs2, &env->fp_status);
166 }
167 
168 uint64_t helper_fsqrt_s(CPURISCVState *env, uint64_t frs1)
169 {
170     return float32_sqrt(frs1, &env->fp_status);
171 }
172 
173 target_ulong helper_fle_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
174 {
175     return float32_le(frs1, frs2, &env->fp_status);
176 }
177 
178 target_ulong helper_flt_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
179 {
180     return float32_lt(frs1, frs2, &env->fp_status);
181 }
182 
183 target_ulong helper_feq_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
184 {
185     return float32_eq_quiet(frs1, frs2, &env->fp_status);
186 }
187 
188 target_ulong helper_fcvt_w_s(CPURISCVState *env, uint64_t frs1)
189 {
190     return float32_to_int32(frs1, &env->fp_status);
191 }
192 
193 target_ulong helper_fcvt_wu_s(CPURISCVState *env, uint64_t frs1)
194 {
195     return (int32_t)float32_to_uint32(frs1, &env->fp_status);
196 }
197 
198 #if defined(TARGET_RISCV64)
199 uint64_t helper_fcvt_l_s(CPURISCVState *env, uint64_t frs1)
200 {
201     return float32_to_int64(frs1, &env->fp_status);
202 }
203 
204 uint64_t helper_fcvt_lu_s(CPURISCVState *env, uint64_t frs1)
205 {
206     return float32_to_uint64(frs1, &env->fp_status);
207 }
208 #endif
209 
210 uint64_t helper_fcvt_s_w(CPURISCVState *env, target_ulong rs1)
211 {
212     return int32_to_float32((int32_t)rs1, &env->fp_status);
213 }
214 
215 uint64_t helper_fcvt_s_wu(CPURISCVState *env, target_ulong rs1)
216 {
217     return uint32_to_float32((uint32_t)rs1, &env->fp_status);
218 }
219 
220 #if defined(TARGET_RISCV64)
221 uint64_t helper_fcvt_s_l(CPURISCVState *env, uint64_t rs1)
222 {
223     return int64_to_float32(rs1, &env->fp_status);
224 }
225 
226 uint64_t helper_fcvt_s_lu(CPURISCVState *env, uint64_t rs1)
227 {
228     return uint64_to_float32(rs1, &env->fp_status);
229 }
230 #endif
231 
232 target_ulong helper_fclass_s(uint64_t frs1)
233 {
234     return fclass_s(frs1);
235 }
236 
237 uint64_t helper_fadd_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
238 {
239     return float64_add(frs1, frs2, &env->fp_status);
240 }
241 
242 uint64_t helper_fsub_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
243 {
244     return float64_sub(frs1, frs2, &env->fp_status);
245 }
246 
247 uint64_t helper_fmul_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
248 {
249     return float64_mul(frs1, frs2, &env->fp_status);
250 }
251 
252 uint64_t helper_fdiv_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
253 {
254     return float64_div(frs1, frs2, &env->fp_status);
255 }
256 
257 uint64_t helper_fmin_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
258 {
259     return float64_minnum(frs1, frs2, &env->fp_status);
260 }
261 
262 uint64_t helper_fmax_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
263 {
264     return float64_maxnum(frs1, frs2, &env->fp_status);
265 }
266 
267 uint64_t helper_fcvt_s_d(CPURISCVState *env, uint64_t rs1)
268 {
269     return float64_to_float32(rs1, &env->fp_status);
270 }
271 
272 uint64_t helper_fcvt_d_s(CPURISCVState *env, uint64_t rs1)
273 {
274     return float32_to_float64(rs1, &env->fp_status);
275 }
276 
277 uint64_t helper_fsqrt_d(CPURISCVState *env, uint64_t frs1)
278 {
279     return float64_sqrt(frs1, &env->fp_status);
280 }
281 
282 target_ulong helper_fle_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
283 {
284     return float64_le(frs1, frs2, &env->fp_status);
285 }
286 
287 target_ulong helper_flt_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
288 {
289     return float64_lt(frs1, frs2, &env->fp_status);
290 }
291 
292 target_ulong helper_feq_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
293 {
294     return float64_eq_quiet(frs1, frs2, &env->fp_status);
295 }
296 
297 target_ulong helper_fcvt_w_d(CPURISCVState *env, uint64_t frs1)
298 {
299     return float64_to_int32(frs1, &env->fp_status);
300 }
301 
302 target_ulong helper_fcvt_wu_d(CPURISCVState *env, uint64_t frs1)
303 {
304     return (int32_t)float64_to_uint32(frs1, &env->fp_status);
305 }
306 
307 #if defined(TARGET_RISCV64)
308 uint64_t helper_fcvt_l_d(CPURISCVState *env, uint64_t frs1)
309 {
310     return float64_to_int64(frs1, &env->fp_status);
311 }
312 
313 uint64_t helper_fcvt_lu_d(CPURISCVState *env, uint64_t frs1)
314 {
315     return float64_to_uint64(frs1, &env->fp_status);
316 }
317 #endif
318 
319 uint64_t helper_fcvt_d_w(CPURISCVState *env, target_ulong rs1)
320 {
321     return int32_to_float64((int32_t)rs1, &env->fp_status);
322 }
323 
324 uint64_t helper_fcvt_d_wu(CPURISCVState *env, target_ulong rs1)
325 {
326     return uint32_to_float64((uint32_t)rs1, &env->fp_status);
327 }
328 
329 #if defined(TARGET_RISCV64)
330 uint64_t helper_fcvt_d_l(CPURISCVState *env, uint64_t rs1)
331 {
332     return int64_to_float64(rs1, &env->fp_status);
333 }
334 
335 uint64_t helper_fcvt_d_lu(CPURISCVState *env, uint64_t rs1)
336 {
337     return uint64_to_float64(rs1, &env->fp_status);
338 }
339 #endif
340 
341 target_ulong helper_fclass_d(uint64_t frs1)
342 {
343     return fclass_d(frs1);
344 }
345