xref: /openbmc/qemu/target/ppc/mem_helper.c (revision af51dbed380b7eec0c815da1c37b46e57a909ce8)
1 /*
2  *  PowerPC memory access emulation helpers for QEMU.
3  *
4  *  Copyright (c) 2003-2007 Jocelyn Mayer
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/exec-all.h"
22 #include "qemu/host-utils.h"
23 #include "exec/helper-proto.h"
24 #include "helper_regs.h"
25 #include "exec/cpu_ldst.h"
26 #include "tcg.h"
27 #include "internal.h"
28 #include "qemu/atomic128.h"
29 
30 //#define DEBUG_OP
31 
32 static inline bool needs_byteswap(const CPUPPCState *env)
33 {
34 #if defined(TARGET_WORDS_BIGENDIAN)
35   return msr_le;
36 #else
37   return !msr_le;
38 #endif
39 }
40 
41 /*****************************************************************************/
42 /* Memory load and stores */
43 
44 static inline target_ulong addr_add(CPUPPCState *env, target_ulong addr,
45                                     target_long arg)
46 {
47 #if defined(TARGET_PPC64)
48     if (!msr_is_64bit(env, env->msr)) {
49         return (uint32_t)(addr + arg);
50     } else
51 #endif
52     {
53         return addr + arg;
54     }
55 }
56 
57 void helper_lmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
58 {
59     for (; reg < 32; reg++) {
60         if (needs_byteswap(env)) {
61             env->gpr[reg] = bswap32(cpu_ldl_data_ra(env, addr, GETPC()));
62         } else {
63             env->gpr[reg] = cpu_ldl_data_ra(env, addr, GETPC());
64         }
65         addr = addr_add(env, addr, 4);
66     }
67 }
68 
69 void helper_stmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
70 {
71     for (; reg < 32; reg++) {
72         if (needs_byteswap(env)) {
73             cpu_stl_data_ra(env, addr, bswap32((uint32_t)env->gpr[reg]),
74                                                    GETPC());
75         } else {
76             cpu_stl_data_ra(env, addr, (uint32_t)env->gpr[reg], GETPC());
77         }
78         addr = addr_add(env, addr, 4);
79     }
80 }
81 
82 static void do_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
83                    uint32_t reg, uintptr_t raddr)
84 {
85     int sh;
86 
87     for (; nb > 3; nb -= 4) {
88         env->gpr[reg] = cpu_ldl_data_ra(env, addr, raddr);
89         reg = (reg + 1) % 32;
90         addr = addr_add(env, addr, 4);
91     }
92     if (unlikely(nb > 0)) {
93         env->gpr[reg] = 0;
94         for (sh = 24; nb > 0; nb--, sh -= 8) {
95             env->gpr[reg] |= cpu_ldub_data_ra(env, addr, raddr) << sh;
96             addr = addr_add(env, addr, 1);
97         }
98     }
99 }
100 
101 void helper_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb, uint32_t reg)
102 {
103     do_lsw(env, addr, nb, reg, GETPC());
104 }
105 
106 /* PPC32 specification says we must generate an exception if
107  * rA is in the range of registers to be loaded.
108  * In an other hand, IBM says this is valid, but rA won't be loaded.
109  * For now, I'll follow the spec...
110  */
111 void helper_lswx(CPUPPCState *env, target_ulong addr, uint32_t reg,
112                  uint32_t ra, uint32_t rb)
113 {
114     if (likely(xer_bc != 0)) {
115         int num_used_regs = DIV_ROUND_UP(xer_bc, 4);
116         if (unlikely((ra != 0 && lsw_reg_in_range(reg, num_used_regs, ra)) ||
117                      lsw_reg_in_range(reg, num_used_regs, rb))) {
118             raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
119                                    POWERPC_EXCP_INVAL |
120                                    POWERPC_EXCP_INVAL_LSWX, GETPC());
121         } else {
122             do_lsw(env, addr, xer_bc, reg, GETPC());
123         }
124     }
125 }
126 
127 void helper_stsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
128                  uint32_t reg)
129 {
130     int sh;
131 
132     for (; nb > 3; nb -= 4) {
133         cpu_stl_data_ra(env, addr, env->gpr[reg], GETPC());
134         reg = (reg + 1) % 32;
135         addr = addr_add(env, addr, 4);
136     }
137     if (unlikely(nb > 0)) {
138         for (sh = 24; nb > 0; nb--, sh -= 8) {
139             cpu_stb_data_ra(env, addr, (env->gpr[reg] >> sh) & 0xFF, GETPC());
140             addr = addr_add(env, addr, 1);
141         }
142     }
143 }
144 
145 static void dcbz_common(CPUPPCState *env, target_ulong addr,
146                         uint32_t opcode, bool epid, uintptr_t retaddr)
147 {
148     target_ulong mask, dcbz_size = env->dcache_line_size;
149     uint32_t i;
150     void *haddr;
151     int mmu_idx = epid ? PPC_TLB_EPID_STORE : env->dmmu_idx;
152 
153 #if defined(TARGET_PPC64)
154     /* Check for dcbz vs dcbzl on 970 */
155     if (env->excp_model == POWERPC_EXCP_970 &&
156         !(opcode & 0x00200000) && ((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1) {
157         dcbz_size = 32;
158     }
159 #endif
160 
161     /* Align address */
162     mask = ~(dcbz_size - 1);
163     addr &= mask;
164 
165     /* Check reservation */
166     if ((env->reserve_addr & mask) == (addr & mask))  {
167         env->reserve_addr = (target_ulong)-1ULL;
168     }
169 
170     /* Try fast path translate */
171     haddr = tlb_vaddr_to_host(env, addr, MMU_DATA_STORE, mmu_idx);
172     if (haddr) {
173         memset(haddr, 0, dcbz_size);
174     } else {
175         /* Slow path */
176         for (i = 0; i < dcbz_size; i += 8) {
177             if (epid) {
178 #if !defined(CONFIG_USER_ONLY)
179                 /* Does not make sense on USER_ONLY config */
180                 cpu_stq_eps_ra(env, addr + i, 0, retaddr);
181 #endif
182             } else {
183                 cpu_stq_data_ra(env, addr + i, 0, retaddr);
184             }
185         }
186     }
187 }
188 
189 void helper_dcbz(CPUPPCState *env, target_ulong addr, uint32_t opcode)
190 {
191     dcbz_common(env, addr, opcode, false, GETPC());
192 }
193 
194 void helper_dcbzep(CPUPPCState *env, target_ulong addr, uint32_t opcode)
195 {
196     dcbz_common(env, addr, opcode, true, GETPC());
197 }
198 
199 void helper_icbi(CPUPPCState *env, target_ulong addr)
200 {
201     addr &= ~(env->dcache_line_size - 1);
202     /* Invalidate one cache line :
203      * PowerPC specification says this is to be treated like a load
204      * (not a fetch) by the MMU. To be sure it will be so,
205      * do the load "by hand".
206      */
207     cpu_ldl_data_ra(env, addr, GETPC());
208 }
209 
210 void helper_icbiep(CPUPPCState *env, target_ulong addr)
211 {
212 #if !defined(CONFIG_USER_ONLY)
213     /* See comments above */
214     addr &= ~(env->dcache_line_size - 1);
215     cpu_ldl_epl_ra(env, addr, GETPC());
216 #endif
217 }
218 
219 /* XXX: to be tested */
220 target_ulong helper_lscbx(CPUPPCState *env, target_ulong addr, uint32_t reg,
221                           uint32_t ra, uint32_t rb)
222 {
223     int i, c, d;
224 
225     d = 24;
226     for (i = 0; i < xer_bc; i++) {
227         c = cpu_ldub_data_ra(env, addr, GETPC());
228         addr = addr_add(env, addr, 1);
229         /* ra (if not 0) and rb are never modified */
230         if (likely(reg != rb && (ra == 0 || reg != ra))) {
231             env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d);
232         }
233         if (unlikely(c == xer_cmp)) {
234             break;
235         }
236         if (likely(d != 0)) {
237             d -= 8;
238         } else {
239             d = 24;
240             reg++;
241             reg = reg & 0x1F;
242         }
243     }
244     return i;
245 }
246 
247 #ifdef TARGET_PPC64
248 uint64_t helper_lq_le_parallel(CPUPPCState *env, target_ulong addr,
249                                uint32_t opidx)
250 {
251     Int128 ret;
252 
253     /* We will have raised EXCP_ATOMIC from the translator.  */
254     assert(HAVE_ATOMIC128);
255     ret = helper_atomic_ldo_le_mmu(env, addr, opidx, GETPC());
256     env->retxh = int128_gethi(ret);
257     return int128_getlo(ret);
258 }
259 
260 uint64_t helper_lq_be_parallel(CPUPPCState *env, target_ulong addr,
261                                uint32_t opidx)
262 {
263     Int128 ret;
264 
265     /* We will have raised EXCP_ATOMIC from the translator.  */
266     assert(HAVE_ATOMIC128);
267     ret = helper_atomic_ldo_be_mmu(env, addr, opidx, GETPC());
268     env->retxh = int128_gethi(ret);
269     return int128_getlo(ret);
270 }
271 
272 void helper_stq_le_parallel(CPUPPCState *env, target_ulong addr,
273                             uint64_t lo, uint64_t hi, uint32_t opidx)
274 {
275     Int128 val;
276 
277     /* We will have raised EXCP_ATOMIC from the translator.  */
278     assert(HAVE_ATOMIC128);
279     val = int128_make128(lo, hi);
280     helper_atomic_sto_le_mmu(env, addr, val, opidx, GETPC());
281 }
282 
283 void helper_stq_be_parallel(CPUPPCState *env, target_ulong addr,
284                             uint64_t lo, uint64_t hi, uint32_t opidx)
285 {
286     Int128 val;
287 
288     /* We will have raised EXCP_ATOMIC from the translator.  */
289     assert(HAVE_ATOMIC128);
290     val = int128_make128(lo, hi);
291     helper_atomic_sto_be_mmu(env, addr, val, opidx, GETPC());
292 }
293 
294 uint32_t helper_stqcx_le_parallel(CPUPPCState *env, target_ulong addr,
295                                   uint64_t new_lo, uint64_t new_hi,
296                                   uint32_t opidx)
297 {
298     bool success = false;
299 
300     /* We will have raised EXCP_ATOMIC from the translator.  */
301     assert(HAVE_CMPXCHG128);
302 
303     if (likely(addr == env->reserve_addr)) {
304         Int128 oldv, cmpv, newv;
305 
306         cmpv = int128_make128(env->reserve_val2, env->reserve_val);
307         newv = int128_make128(new_lo, new_hi);
308         oldv = helper_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv,
309                                              opidx, GETPC());
310         success = int128_eq(oldv, cmpv);
311     }
312     env->reserve_addr = -1;
313     return env->so + success * CRF_EQ_BIT;
314 }
315 
316 uint32_t helper_stqcx_be_parallel(CPUPPCState *env, target_ulong addr,
317                                   uint64_t new_lo, uint64_t new_hi,
318                                   uint32_t opidx)
319 {
320     bool success = false;
321 
322     /* We will have raised EXCP_ATOMIC from the translator.  */
323     assert(HAVE_CMPXCHG128);
324 
325     if (likely(addr == env->reserve_addr)) {
326         Int128 oldv, cmpv, newv;
327 
328         cmpv = int128_make128(env->reserve_val2, env->reserve_val);
329         newv = int128_make128(new_lo, new_hi);
330         oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv,
331                                              opidx, GETPC());
332         success = int128_eq(oldv, cmpv);
333     }
334     env->reserve_addr = -1;
335     return env->so + success * CRF_EQ_BIT;
336 }
337 #endif
338 
339 /*****************************************************************************/
340 /* Altivec extension helpers */
341 #if defined(HOST_WORDS_BIGENDIAN)
342 #define HI_IDX 0
343 #define LO_IDX 1
344 #else
345 #define HI_IDX 1
346 #define LO_IDX 0
347 #endif
348 
349 /* We use msr_le to determine index ordering in a vector.  However,
350    byteswapping is not simply controlled by msr_le.  We also need to take
351    into account endianness of the target.  This is done for the little-endian
352    PPC64 user-mode target. */
353 
354 #define LVE(name, access, swap, element)                        \
355     void helper_##name(CPUPPCState *env, ppc_avr_t *r,          \
356                        target_ulong addr)                       \
357     {                                                           \
358         size_t n_elems = ARRAY_SIZE(r->element);                \
359         int adjust = HI_IDX*(n_elems - 1);                      \
360         int sh = sizeof(r->element[0]) >> 1;                    \
361         int index = (addr & 0xf) >> sh;                         \
362         if (msr_le) {                                           \
363             index = n_elems - index - 1;                        \
364         }                                                       \
365                                                                 \
366         if (needs_byteswap(env)) {                              \
367             r->element[LO_IDX ? index : (adjust - index)] =     \
368                 swap(access(env, addr, GETPC()));               \
369         } else {                                                \
370             r->element[LO_IDX ? index : (adjust - index)] =     \
371                 access(env, addr, GETPC());                     \
372         }                                                       \
373     }
374 #define I(x) (x)
375 LVE(lvebx, cpu_ldub_data_ra, I, u8)
376 LVE(lvehx, cpu_lduw_data_ra, bswap16, u16)
377 LVE(lvewx, cpu_ldl_data_ra, bswap32, u32)
378 #undef I
379 #undef LVE
380 
381 #define STVE(name, access, swap, element)                               \
382     void helper_##name(CPUPPCState *env, ppc_avr_t *r,                  \
383                        target_ulong addr)                               \
384     {                                                                   \
385         size_t n_elems = ARRAY_SIZE(r->element);                        \
386         int adjust = HI_IDX * (n_elems - 1);                            \
387         int sh = sizeof(r->element[0]) >> 1;                            \
388         int index = (addr & 0xf) >> sh;                                 \
389         if (msr_le) {                                                   \
390             index = n_elems - index - 1;                                \
391         }                                                               \
392                                                                         \
393         if (needs_byteswap(env)) {                                      \
394             access(env, addr, swap(r->element[LO_IDX ? index :          \
395                                               (adjust - index)]),       \
396                         GETPC());                                       \
397         } else {                                                        \
398             access(env, addr, r->element[LO_IDX ? index :               \
399                                          (adjust - index)], GETPC());   \
400         }                                                               \
401     }
402 #define I(x) (x)
403 STVE(stvebx, cpu_stb_data_ra, I, u8)
404 STVE(stvehx, cpu_stw_data_ra, bswap16, u16)
405 STVE(stvewx, cpu_stl_data_ra, bswap32, u32)
406 #undef I
407 #undef LVE
408 
409 #ifdef TARGET_PPC64
410 #define GET_NB(rb) ((rb >> 56) & 0xFF)
411 
412 #define VSX_LXVL(name, lj)                                              \
413 void helper_##name(CPUPPCState *env, target_ulong addr,                 \
414                    target_ulong xt_num, target_ulong rb)                \
415 {                                                                       \
416     int i;                                                              \
417     ppc_vsr_t xt;                                                       \
418     uint64_t nb = GET_NB(rb);                                           \
419                                                                         \
420     xt.s128 = int128_zero();                                            \
421     if (nb) {                                                           \
422         nb = (nb >= 16) ? 16 : nb;                                      \
423         if (msr_le && !lj) {                                            \
424             for (i = 16; i > 16 - nb; i--) {                            \
425                 xt.VsrB(i - 1) = cpu_ldub_data_ra(env, addr, GETPC());  \
426                 addr = addr_add(env, addr, 1);                          \
427             }                                                           \
428         } else {                                                        \
429             for (i = 0; i < nb; i++) {                                  \
430                 xt.VsrB(i) = cpu_ldub_data_ra(env, addr, GETPC());      \
431                 addr = addr_add(env, addr, 1);                          \
432             }                                                           \
433         }                                                               \
434     }                                                                   \
435     putVSR(xt_num, &xt, env);                                           \
436 }
437 
438 VSX_LXVL(lxvl, 0)
439 VSX_LXVL(lxvll, 1)
440 #undef VSX_LXVL
441 
442 #define VSX_STXVL(name, lj)                                       \
443 void helper_##name(CPUPPCState *env, target_ulong addr,           \
444                    target_ulong xt_num, target_ulong rb)          \
445 {                                                                 \
446     int i;                                                        \
447     ppc_vsr_t xt;                                                 \
448     target_ulong nb = GET_NB(rb);                                 \
449                                                                   \
450     if (!nb) {                                                    \
451         return;                                                   \
452     }                                                             \
453     getVSR(xt_num, &xt, env);                                     \
454     nb = (nb >= 16) ? 16 : nb;                                    \
455     if (msr_le && !lj) {                                          \
456         for (i = 16; i > 16 - nb; i--) {                          \
457             cpu_stb_data_ra(env, addr, xt.VsrB(i - 1), GETPC());  \
458             addr = addr_add(env, addr, 1);                        \
459         }                                                         \
460     } else {                                                      \
461         for (i = 0; i < nb; i++) {                                \
462             cpu_stb_data_ra(env, addr, xt.VsrB(i), GETPC());      \
463             addr = addr_add(env, addr, 1);                        \
464         }                                                         \
465     }                                                             \
466 }
467 
468 VSX_STXVL(stxvl, 0)
469 VSX_STXVL(stxvll, 1)
470 #undef VSX_STXVL
471 #undef GET_NB
472 #endif /* TARGET_PPC64 */
473 
474 #undef HI_IDX
475 #undef LO_IDX
476 
477 void helper_tbegin(CPUPPCState *env)
478 {
479     /* As a degenerate implementation, always fail tbegin.  The reason
480      * given is "Nesting overflow".  The "persistent" bit is set,
481      * providing a hint to the error handler to not retry.  The TFIAR
482      * captures the address of the failure, which is this tbegin
483      * instruction.  Instruction execution will continue with the
484      * next instruction in memory, which is precisely what we want.
485      */
486 
487     env->spr[SPR_TEXASR] =
488         (1ULL << TEXASR_FAILURE_PERSISTENT) |
489         (1ULL << TEXASR_NESTING_OVERFLOW) |
490         (msr_hv << TEXASR_PRIVILEGE_HV) |
491         (msr_pr << TEXASR_PRIVILEGE_PR) |
492         (1ULL << TEXASR_FAILURE_SUMMARY) |
493         (1ULL << TEXASR_TFIAR_EXACT);
494     env->spr[SPR_TFIAR] = env->nip | (msr_hv << 1) | msr_pr;
495     env->spr[SPR_TFHAR] = env->nip + 4;
496     env->crf[0] = 0xB; /* 0b1010 = transaction failure */
497 }
498